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linear dynamical systems
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(Communicated by Michel Fliess)

Abstract. A linear dynamical system resulting from the interconnection of subsystems is con-
sidered. Assuming that this interconnection is ‘‘temporal’’, i.e. starting at a given initial time
in the continuous-time case and ending at a given final time in the discrete-time case, such a
system is also said to be ‘‘temporal’’. Temporal interconnections generate ‘‘uncontrollable im-
pulsive behaviors’’ which are not found in the classical theory, though they have been studied
for more than 20 years in the case of systems with constant coe‰cients. Determining the struc-
ture of the impulsive behavior of a temporal system is a key problem in the theory of linear
dynamical systems. It is addressed here, using module theory, for systems with time-varying
coe‰cients, in both the continuous- and discrete-time cases. These two cases are merged into
a general framework. The impulsive behavior of a temporal system satisfying a suitable regu-
larity condition has a structure which is fully elucidated. It turns out that the determination of
this structure in practice is an algebraic—not an analytic—problem, which makes the calcu-
lations simpler and easier to computerize. The theory is illustrated through several examples.

2000 Mathematics Subject Classification: 93.

1 Introduction

Continuous- or discrete-time systems exhibit ‘‘impulsive motions’’, i.e., in the
continuous-time case, linear combinations of the Dirac distribution d and its
derivatives [35], [36], and in the discrete-time case, backward solutions with finite
support [21], [24]. The space spanned by all impulsive motions of a system is called
its ‘‘impulsive behavior’’ and is denoted as By. The purpose of this paper is to study
the structure of By, for a system with constant or time-varying coe‰cients. Let us
explain the importance of this structure.

Consider the following continuous-time system with constant coe‰cients, in
‘‘descriptor form’’ [32]:

ðEq� AÞx ¼ Bu; t A T0ð1Þ

where the function u is the ‘‘system input’’, assumed to be known, x is the ‘‘descriptor
vector’’ and q is the ‘‘continuous-time derivative’’, i.e. the distributional derivative
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with respect to time t; E;A and B are matrices belonging to <q�q;<q�q and <q�m,
respectively. Suppose that T0 ¼ ½0;þy½, which means that the system is formed at
time t ¼ 0 (as a result, for example, of switching or of component failure in some
other system [35]; such events are frequent in electrical circuits, mechanics, hydraulics,
etc. [13]). Therefore, let us call (1) a ‘‘temporal system’’ (to point out the di¤erence
with the classic situation where T0 ¼ <, and where system (1) is thus perpetually
existing). Assume that the matrix pencil Es � A is regular (i.e. that the polynomial
jEs � Aj is nonzero [12]) for (1) to have solutions [18]. If E is singular, the restrictions
to T0 of the components xi of x contain impulsive motions with coe‰cients only
depending on the ‘‘initial values’’ xið0�Þ, when the latter are incompatible with the
equation ðEq� AÞx ¼ Bu. These impulsive motions, which are said to be ‘‘uncon-
trollable’’ due to their complete dependence on initial conditions, span the ‘‘uncon-
trollable part’’ By;u of By. To know what event arose at time t ¼ 0, the values of the
above-mentioned coe‰cients are not significant, as opposed to the structure of By;u.
Setting T ¼ <, the temporal system (1) can be written in the more general form

BðqÞwðtÞ ¼ eðtÞ; t A T
eðtÞ ¼ 0; t A T0

�
ð2Þ

where BðqÞ is a q � k matrix (k ¼ q þ m) with entries in <½q� and w is the column-
matrix whose entries are the system variables (here the components xi and ui of x and
u, respectively); the function e has any restriction to the complement TnT0 of T0 in
T. It is known that the structure of By;u is completely determined by the structure of
the ‘‘zeros at infinity’’ of the matrix BðqÞ ([33], [18])—a notion which is explained
below. Therefore, the characterization of the structure of By;u is not an analytic
problem (involving derivations, integrations, etc., in the framework of the theory of
distributions), but an algebraic one, which makes the calculations much simpler and
easier to computerize.

A similar problem is posed by discrete-time systems [21], [22]. The variables are
now sequences (denoted as functions defined on the set of integers Z). Let q be the
usual ‘‘shift forward operator’’ wðtÞ ! wðt þ 1Þ, define the ‘‘discrete-time derivative’’
q ¼ q � 1, and with this notation consider the discrete-time system with constant
coe‰cients (1). Assume that the sequence u (again called the ‘‘input’’) is known and
that the matrix pencil Ez � A is regular. Suppose that the matrix E is singular (which
means that the system is noncausal) and that T0 ¼ f. . . ;�2;�1; 0g, i.e. that the sys-
tem exists only up to the ‘‘final time’’ t ¼ 0 (a phenomenon which arises in various
fields: for example the ‘‘Leontief model’’, in economy, describes the time pattern of
production in several interrelated production sectors; it is of the form (1), possibly
noncausal, and valid up to a finite final time [23]). For the same reason as above, let
us call (1) (or (2) which is the most general form) a ‘‘temporal system’’. Due to the
fact that (1) is noncausal, the restrictions to T0 of the variables xi contain backward
solutions with finite support (i.e. impulsive motions), with coe‰cients only depending
on the ‘‘final values’’ xið1Þ. As in the continuous-time case, these impulsive motions,
said to be uncontrollable due to their complete dependence on final conditions, span
the ‘‘uncontrollable part’’ By;u of By. Considering the temporal system (2), where
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T ¼ Z and where the sequence e has any restriction to TnT0, the structure of By;u is
a key problem. One can deduce from recent results of the literature that this structure
is determined by the ‘‘structure at infinity’’ of the matrix BðqÞ ([1], [16], [17]); more
specifically, it is shown below that the structure of By;u reflects the structure of the
zeros at infinity of BðqÞ, exactly as in the continuous-time case.

In the existing literature, only the case of systems with constant coe‰cients has
been treated, and two distinct theories have been developed to prove the above-
mentioned connection between the structure of By;u and that of the zeros at infinity
of BðqÞ: one for the continuous-time, using the Laplace transform, and the other for
the discrete-time, using the Z-transform. In both cases, complicated calculations yield
a very simple structure theorem, without really explaining it. These calculations
become inextricable in the case of systems with time-varying coe‰cients, although
these systems raise the same problem ([24], [6], [38]); therefore, no general result on
the structure of impulsive behaviors has been obtained in that case.

The problem of determining the structure of the impulsive behavior By (and of its
uncontrollable part By;u) of a linear temporal system with constant or time-varying
coe‰cients is solved here using an algebraic approach based on module theory. The
continuous- and discrete-time cases are merged into a general framework. In the case
of constant coe‰cients, complicated calculations are avoided, and the existing theory
is both clarified and completed. In the case of time-varying coe‰cients, one di‰culty
arises from singularities which may occur, typically whenever a system coe‰cient
annihilates a part of an impulsive motion when vanishing (e.g., in the continuous-time
case, an impulsive motion proportional to d is annihilated by a nonzero coe‰cient a

such that að0Þ ¼ 0Þ. A temporal system with no such problem is said to be ‘‘regular’’.
We show that, for regular temporal systems, the structure of By;u is still completely
determined by the structure of the zeros at infinity of the matrix BðqÞ (once this notion
has suitably been generalized [5], [25]).

The notion of ‘‘temporal interconnection’’ is useful for the sequel. Any system
may be considered as resulting from the interconnection of subsystems [30]. In the
continuous-time case, a switching, a component failure, etc., as mentioned above, are
interconnections starting at a given initial time (assumed to be zero without loss of
generality, since the origin of time can be freely chosen), i.e. only e¤ective on T0 ¼
½0;þy½HT; such an interconnection is said to be ‘‘temporal’’ in what follows. In the
discrete-time case, a temporal interconnection is an interconnection valid up to a given

final time (also assumed to be zero), i.e. only e¤ective on T0 ¼ f. . . ;�2;�1; 0gHT.
A temporal system results from the temporal interconnection of subsystems. This is
clear when considering (2) which is obtained by interconnecting the system BðqÞw ¼ e

with the trivial system e ¼ 0 through the temporal interconnection eðtÞ ¼ eðtÞ, t A T0.
The paper is organized as follows. Preliminaries are collected in Section 2: first the

mathematical tools, and then the basic notions of system theory. Temporal systems
with constant coe‰cients (case (I)) are studied in Section 3: using a key isomorphism,
it is shown that the structure of By is identical to the structure of a space Ay, easier
to study than By, and whose construction is classic in homological algebra. The
space Ay is also studied in Section 4 in the case when the system coe‰cients are time-
varying though belonging to a field (case (II)). The assumption that the coe‰cients

Impulsive systems and behaviors 783

Brought to you by | Conservatoire national des arts et métiers
Authenticated

Download Date | 7/4/16 1:52 PM



belong to a field, amounts to discarding singularities (since coe‰cients which are not
identically zero cannot vanish). However, to properly define and study the impulsive
behavior By of a temporal system with time-varying coe‰cients, one must assume
that these coe‰cients belong to a ring of functions (case (III)). This case is studied in
Section 5. Most of the results in Section 3 are extended to case (III) under a suitable
regularity condition. Section 6 includes the concluding remarks and summarizes the
main results. Preliminary results have already been published [2], [3].

2 Preliminaries

2.1 Some algebra

2.1.1 Di¤erential polynomials and formal power series

A general framework. Using general di¤erential polynomials, one can study
continuous- and discrete-time systems with constant or time-varying coe‰cients in a
unique framework.

Consider first the continuous-time case. Let K be a commutative Noetherian
domain equipped with the continuous-time derivative a ! _aa ¼ da

dt
ða A K Þ, which is

assumed to be an endomorphism of K ; K is the ring to which the coe‰cients of the
system under study belong (and is called the ‘‘coe‰cient ring’’, for short). The ele-
ments of K ½q� (where q is the indeterminate introduced in Section 1) are operators on
the system variables. Let w be such a variable and a A K . From the Leibniz rule:
qðawÞ ¼ aqw þ _aaw; this yields the ‘‘commutation rule’’

qa ¼ aqþ _aa:ð3Þ

Consider now the discrete-time case. The coe‰cient ring K is a commutative
Noetherian domain equipped with the derivative a ! ag ¼ aa � a, where aaðtÞ ¼
aðt þ 1Þ, assuming that a is an automorphism of K . Let w be a system variable and
consider the indeterminate q ¼ q � 1, as in Section 1. One has [15]: qðawÞðtÞ ¼
aðt þ 1Þwðt þ 1Þ � aðtÞwðtÞ ¼ aðt þ 1Þðwðt þ 1Þ � wðtÞÞ þ ðaðt þ 1Þ � aðtÞÞwðtÞ, which
yields the commutation rule

qa ¼ aaqþ ag:ð4Þ

A derivation g for which the commutation rule (4) holds is called an ‘‘a-derivation’’
[7]. Clearly, (3) is of the form (4) with a ¼ 1 (i.e. identity). Thus, the continuous- and
discrete-time cases are merged into a unique general framework, assuming that K is
a commutative Noetherian domain equipped with an a-derivation g where a is an
automorphism of K . The subring of constants of K (consisting of all elements a such
that ag ¼ 0) is denoted as k ; in everything that follows, k is a field, and, except when
explicitly stated, ‘‘space’’ means ‘‘k-vector space’’.

The ring of di¤erential polynomials with coe‰cients in K and indeterminate q,
equipped with the commutation rule (4), is denoted by K ½q; a; g�, as usual [7], and we
set R ¼ K ½q; a; g�.
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Three cases. Let us specify the cases considered in the sequel:

(I) K ¼ < (case of constant coe‰cients);

(II) K is a field;

(III) K ¼ <½t� (in the continuous- or discrete-time case) or K ¼ <ftg (in the
continuous-time case only). The ring <½t� is identified with the ring of polyno-
mial functions on the real line, and <ftg denotes the ring of convergent power
series with real coe‰cients.

Cases (I), (II) and (III) are studied in Sections 3, 4 and 5, respectively.

Formal power and Laurent series. Set s ¼ 1=q and b ¼ a�1; S :¼ K ½½s; b; g�� denotes
the ring of formal power series in s, equipped with the commutation rule [7]

sa ¼ abs� sabgs;ð5Þ

deduced from (4). Similarly, L ¼ K ððs; b; gÞÞ is the ring of formal Laurent series
in s, equipped with the commutation rule (5). The rings R and S can be embedded
in L ¼ K ððs; b; gÞÞ; all these rings are domains (i.e. integral rings) and are non-
commutative, except if K ¼ k . As sS ¼ Ss, this two-sided ideal is denoted by ðsÞ;
the units of S are the power series whose constant term is a unit of K . The ring L is
obtained from R by ‘‘localization at infinity’’ (which yields K ½q; q�1; a; g�, the ring of
skew Laurent polynomials [26]) and then ‘‘completion at infinity’’ (i.e. completion
with respect to the ðsÞ-adic topology).

Properties of the rings. The domains R and S are Noetherian since so is K ([26],
§§1.2.9, 1.4.5), therefore they are Ore ([7], §0.8)1. In case (III), one has the following
result:

Lemma 1. Let us assume that K ¼ <½t�. (i) Any element of L is of the formP
ib0; finite biðsÞti, biðsÞ A <ððsÞÞ, i.e. L is a polynomial ring with coe‰cients in <ððsÞÞ.

(ii) Setting x ¼ 0 in the continuous-time case and x ¼ 1 in the discrete-time one, L
is equipped with the commutation rule ta ¼ at þ ae, where a A <ððsÞÞ and ae :¼
�ðxqþ 1Þ da

dq
. (iii) The ring L ¼ <ððsÞÞ½t; 1; e� is a simple principal ideal domain.

Proof. (i) is obvious. (ii): By induction, for any i A Z, tq i ¼ q it � ðxqþ 1Þiq i�1 ¼
q it � ðxqþ 1Þ dðq iÞ

dq
. Using (i), it is easy to obtain (ii). (iii): As e is a 1-derivation of the

field <ððsÞÞ, L ¼ <ððsÞÞ½t; 1; e� is a principal ideal domain ([7], §8.3). An element f of
L is right invariant if, and only if properties (a) and (b) below are satisfied ([7], §8.3,
Proposition 3.2): (a) tf ¼ ft, which implies f A <½t�, according to the commutation

1 In what follows, ‘‘noncommutative’’ means ‘‘possibly noncommutative’’. In addition, and
with this understanding, ‘‘field’’ means ‘‘noncommutative field’’ (also called ‘‘skew field’’ or
‘‘division ring’’ by many authors), ‘‘Ore’’ means ‘‘left and right Ore’’, ‘‘Noetherian’’ means
‘‘left and right Noetherian’’, etc.
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rule in (ii). (b) For any c A <ððsÞÞ, cf ¼ fc; with c ¼ s, this implies f A < by (5).
Therefore, L is simple ([7], §8.3, Corollary 3.6). r

In cases (I) and (II), R and S are principal ideal domains, S is local with maximal
ideal ðsÞ, and L is the quotient field of S . All these rings are commutative in case (I).
k ¼ < in cases (I) and (III).

2.1.2 Modules

Let D be a Noetherian domain with quotient field Q ; DM (resp. DM
f ) denotes the

category of all left (resp. finitely generated left) D-modules. Due to the Noetherian
property of D , any M A DM

f is finitely presented, i.e. it has a presentation

E !f
F !f M ! 0ð6Þ

where, e.g., E ¼ D q, F ¼ D k ðqa kÞ and where f : F ! coker f is the canonical
epimorphism. Let M be defined by (6), let ðeiÞ1aiaq and ðwiÞ1aiak be bases of E and
F , respectively, and assume that the elements of E and F are represented by row-
matrices in those bases, as usual in the theory of ‘‘D-modules’’ [14]. Let B A D q�k be
the matrix representing f ; f is the right multiplication by B (written �B in the liter-
ature). Setting ei ¼ f ðeiÞ, 1a i a q, one has ei ¼ eiB, thus

Bw ¼ eð7Þ

where e ¼ ½e1; . . . ; eq�T and w ¼ ½w1; . . . ;wk�T . The module M ¼ coker �B (i.e.
the module with ‘‘matrix of definition’’ B) is generated by the elements wi ¼ fðwiÞ,
1a ia k (written M ¼ ½w�D , where w ¼ ½w1; . . . ;wk�T ), such that

Bw ¼ 0:ð8Þ

This module M is said to be defined by generators (the elements wi) and relations
(the rows of (8)) [29].

As D is an Ore domain, the set of torsion elements of M is a submodule of M [7].

2.1.3 Matrices

Completely left coprime factorizations. Let V be a matrix with entries in D (or ‘‘a
matrix over D ’’, for short). Assume that V is right regular; V is said to be complet-

able if there exists a matrix W over D , having the same number of columns as V ,

such that
V

W

� �
is unimodular [7]. Left coprimeness of matrices over D is not an

ambiguous notion when D is a principal ideal domain. In more general cases, several
kinds of left coprimeness may be defined. In this paper, the following notion will be
useful:
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Definition 2. Let D and N be two matrices over D , having the same number of rows,
and assume that V :¼ ½D N� is right regular. The pair ðD;NÞ is said to be com-

pletely left coprime if V is completable.

Let B̂B A Q q�k. There exist matrices D A D q�q and N A D q�k such that D is of rank q

(i.e. invertible over Q)2 and B̂B ¼ D�1N.

Definition 3. The above pair ðD;NÞ is said to be a completely left coprime factoriza-

tion (CLCF) of B̂B over D , if this pair is completely left coprime.

Remark 4. As is well known, a left coprime factorization of any matrix B̂B A Q q�k

over D exists if D is a principal ideal domain, as a consequence of the Smith form
([7], Chap. 8). If D is more general, e.g., a Noetherian domain, a completely left
coprime factorization of B̂B over D does not necessarily exist.

Smith-MacMillan form at infinity. Let us consider the rings R and S , as defined in
§2.1.1, and let BðqÞ A R q�k be a matrix of rank r. The following result is classic in
case (I) [32] and has been extended to case (II) in [5]: there exist two unimodular
matrices UðsÞ A S q�q and VðsÞ A S k�k, as well as integers n1; . . . ; nr, n1 a � � �a nr,
such that

UðsÞBðqÞV�1ðsÞ ¼ diagfsnig1aiar 0

0 0

� �
;ð9Þ

The matrix in the right-hand member of (9) is called the Smith-MacMillan form at

infinity of BðqÞ ([34], [32]). Define the finite sequences ðmiÞ1aiar and ðpiÞ1aiar as:
mi ¼ maxð0; niÞ and pi ¼ maxð0;�niÞ. Among the integers mi (resp. pi), those which
are nonzero (if any) are called the structural indexes of the zeros at infinity (resp. of
the poles at infinity) of the matrix BðqÞ ([5], [25]); they are put in increasing (resp.
decreasing) order and denoted by mi ð1a ia rÞ (resp. pi ð1a i a sÞ).

2.1.4 Duality

Kernels. Let D be the ring R or S in §2.1.1; D is a k -algebra. Let W A DM, and let
M A DM

f be the module presented by (6), i.e. M ¼ coker �B. The abelian group
HomD ðM;WÞ consisting of all homomorphisms M ! W has a canonical structure
of k-vector space and of left E-module, where E is the endomorphism ring of W ,
since W is a left ðE ;DÞ-bimodule3; HomD ðM;WÞ is called the ‘‘W -dual’’4 of M

2 Recall that over an Ore domain D , the row and column ranks of a matrix are equal and
coincide with the rank of this matrix over the quotient field Q : see, e.g., ([7], §5.4, exerc. 11).
3 An ðE ;DÞ-bimodule is a left E-module which is a right D-module (with an associative law
relating the two actions). In this paper, where all modules are left modules a ‘‘left ðE ;DÞ-
bimodule’’ is a left E-module which is a left D-module provided that the rings E and D are
compatible, i.e. such that ed ¼ de, Ee A E , Ed A D (with an obvious associative law).
4 It should not be confused with the ‘‘algebraic dual’’ HomD ðM;DÞ, which will not be used in
this paper.
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([19], §19D) and is denoted as M �. This module is E-isomorphic to the set of all ele-
ments w A W k such that Bw ¼ 0, and is identified with this set assuming that the
generators chosen for M are those in §2.1.2. Therefore, M � is the kernel in W k of the
left multiplication by B (written B� in the literature); denoting this kernel as ker B�,
one can write M � ¼ ker B�. In what follows, the class of all E-modules of the form
M �, where M A DM

f , is denoted as ðDMf Þ�.

The module ~DD. Let D ¼ S in any case considered in §2.1.1. For any m A N (where N
denotes the set of natural integers), set ~CCm ¼ S

ðsmÞ (thus ~CC0 ¼ 0Þ and let ~ddðm�1Þ be
the canonical image of 1 A S in ~CCm. The S-module ~CCm is isomorphic to a submodule
of ~CCmþ1, under right multiplication by s, and ~ddðmÞs ¼ sþ ðsmþ1Þ ¼ s~ddðmÞ; identifying
~ddðm�1Þ with s~ddðmÞ; ~CCm is embedded in ~CCmþ1, and

~CCm ¼
Lm
i¼1

K ~ddði�1Þ:ð10Þ

Set

~DD :¼ lim�!
m

~CCm ¼
L
mb0

K ~ddðmÞð11Þ

The left S-module ~DD becomes a left L-module, setting s�1~ddðmÞ ¼ ~ddðmþ1Þ, and thus a left
R -module by restriction of the ring of scalars. Considering s and q as operators on ~DD,
s is a left inverse of q, but s has no left inverse since s~dd ¼ 0.

Assuming that K is a field (case (II)), the only simple S-module is ðsÞ, and the S-
module ~DD is the canonical cogenerator of SM ([19], §3).

Assuming that K ¼ < (case (I)), S is commutative. According to Matlis’ theory
([19], §3I), as S is complete (for the ðsÞ-adic topology), S and the endomorphism ring

E of ~DD are isomorphic (as rings), thus these two rings are identified.

A useful lemma. In the lemma below, D is a Noetherian domain, W is a D-module
and E is the endomorphism ring of W .

Lemma 5. (i) Consider the following relation, denoted as F, between two elements of

ðDMf Þ�: M 0 FN 0 if (and only if ) there exist two D-modules M and N in DM
f such

that M 0 ¼ M �, N 0 ¼ N � and M GD N; it is an equivalence relation, and M 0 FN 0

implies M 0 GE N 0. (ii) Let d A D be such that dD ¼ Dd, and let M A DM
f . The set

dM is a submodule of M and dM � ¼ ðdMÞ�. (iii) Let d be as in (ii) and M A DM
f . If

M is such that dM ¼ 0, then dM � ¼ 0. Conversely, assuming that W is a cogenerator,

if dM � ¼ 0, then dM ¼ 0. (iv) Let 00 d be as in (ii), and let n and m be natural

integers such that M � FW m, N � FW n and dM � ¼ dN �; if W is a cogenerator, then

M � ¼ N �.

Proof. (i): The relation F is obviously an equivalence relation. Assuming that
M � FN �, there exists a D-isomorphism j : M !@ N. Let j � : N � ! M � be defined
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as: j �l :¼ lj, l A N �; j � is an E-isomorphism. (ii): As dD ¼ Dd, dM is an S-
submodule of M. Let l A ðdMÞ�; for any m A M, lðdMÞ ¼ dlðmÞ ¼ ðdlÞðmÞ. The
mapping ðdMÞ� C l ! dl A dM � is a canonical E-isomorphism under which the E-
modules ðdMÞ� and dM � are identified. (iii) is an obvious consequence of (ii). (iv):
There exist two free D-modules Fm GD D m and F 0

n GD D n such M � ¼ ðFmÞ� and
N � ¼ ðF 0

nÞ
�. By (ii), dðFmÞ� ¼ ðdFmÞ� and dðF 0

nÞ
� ¼ ðdF 0

nÞ
�; therefore, assuming

that dM � ¼ dN �, one obtains ðdFmÞ� ¼ ðdFnÞ�, which implies that dFm ¼ dF 0
n if W

is a cogenerator ([19], (19.45)). In addition, dFm GD Fm and dFn GD F 0
n (under

multiplication by d), thus Fm GD F 0
n, which implies n ¼ m since any Noetherian

domain has invariant basis number. Thus, there exist two unimodular matrices U

and V belonging to D n�n such that Fn ¼ UD n and F 0
n ¼ VD n, hence dUD n ¼

dVD n. Therefore, UD n ¼ VD n since D is a domain, i.e. Fn ¼ F 0
n. This implies that

M � ¼ ðFnÞ� ¼ ðF 0
nÞ

� ¼ N �. r

2.2 Systems theory

2.2.1 Linear systems and their interconnections

Smooth linear systems. According to Fliess [8], a linear system is a module M A RM
f .

It has an equation of the form

BðqÞw ¼ 0;ð12Þ

similar to (8). This is a ‘‘cokernel representation’’, since M ¼ coker �BðqÞ. In the
context of this paper, this module M is called, more specifically, the smooth system

defined by (12) (or by the matrix BðqÞ). The ‘‘module of uncontrollable poles’’ of
M (also called its ‘‘module of input-decoupling zeros’’ [4]) is its torsion submodule
TðMÞ. The system M is said to be controllable if it is torsion-free [8]5. Considering
two R -submodules M1 and M2 of M, such that M1 HM2, one has

Q2 GR
Q1

M2=M1
;

where Q1 ¼ M=M1 and Q2 ¼ M=M2. Therefore, the following relation among pairs
of quotients of M is an order relation: Q2 aQ1 if (and only if ) Q2 is R -isomorphic to
a quotient of Q1. Let CðMÞ be the set of all quotients of M which are controllable
systems, ordered by the above relation; M=TðMÞ is the greatest element of CðMÞ.

Definition 6. The system M=TðMÞ is called the controllable quotient of M6.

5 There are di¤erent notions of controllability [10]; we are considering here ‘‘torsion-free con-
trollability’’. In cases (I) and (II) in §2.1.1, and all kinds of controllability are equivalent since
R is a principal ideal domain.
6 We do not specify: the greatest controllable quotient, for short.
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In cases (I) and (II) in §2.1.1, as R is a principal ideal domain, there exists a free
module F such that

M ¼ FlTðMÞ;ð13Þ

therefore FGR M=TðMÞ.

Interconnection of smooth linear systems. The interconnection of (smooth) linear sys-
tems is defined in [9]. In the case of several systems, one may first interconnect two
of them, then interconnect a third one with the system resulting from the intercon-
nection of the two first ones, etc. Therefore, it is su‰cient to consider the case of two
smooth linear systems M1 and M2. Their interconnection is a fibered sum [20]: let G

be a free module in RM
f and assume that there exist two morphisms hi : G ! Mi,

i ¼ 1; 2. Let H be the submodule of M ¼ M1 lM2 generated by the elements of the
form hðgÞ ¼ ðh1ðgÞ;�h2ðgÞÞ, g A G, i.e. H ¼ Im h, where h ¼ ðh1;�h2Þ. The quotient
module �MM ¼ M=H, written M1 tG M2, is the fibered sum of M1 and M2 over G

(with respect to the morphisms h1; h2); from the point of view of systems theory, it is
the interconnected smooth system.

Let x : M ! �MM be the canonical epimorphism and set �hh ¼ xh, so that

�hhðgÞ ¼ 0; g A G:ð14Þ

The system �MM is defined by an equation consisting of the equations of the subsystems
Mi, plus the interconnection equation (14). More specifically, let us assume that Mi

is defined by the equation BiðqÞwi ¼ 0 ði ¼ 1; 2Þ, where wi ¼ ðwi
1; . . . ;wi

ki
Þ. With

respect to these presentations, the interconnection equation can be written J1ðqÞ �ww1 ¼
J2ðqÞ �ww2, where J1ðqÞ and J2ðqÞ are matrices over R , with the same number of rows
and with, respectively, k1 and k2 columns. Therefore,

�MM ¼ coker �

2
64B1ðqÞ 0

0 B2ðqÞ
J1ðqÞ �J2ðqÞ

3
75ð15Þ

(see [9] for more details).

2.2.2 Behavioral theory

Behaviors. In the behavioral theory [39], [28], one is interested in the solutions of
(12) in a space of (generalized) functions or sequences W ; W is assumed to be an R -
module. Let E be the endomorphism ring of W and M ¼ coker �BðqÞ; as already
said, the set of all the above-mentioned solutions is an E-module, written ker BðqÞ�,
and identified with M � ¼ HomR ðM;WÞ. This E-module ker BðqÞ� is called the
behavior (or, more specifically, in the context of this paper, the smooth behavior)
associated with M in a product of copies of W [39]7.

7 The terminology used in [27], [11] for the same concepts is slightly di¤erent.
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Generally speaking, whereas a ‘‘system’’ M is a cokernel, the associated ‘‘behavior’’
M � is the corresponding kernel (in a product of copies of a specified ‘‘solution space’’
W ). Of course, M � can be determined from M; the converse is true if W is a co-
generator since, in that case, M � ¼ N � implies M ¼ N ([27], (2.47); [19], (19.45)). If
two behaviors N � and M � are such that N � HM �, N � is said to be a subbehavior of
M � ([27]).

Remark 7. Let Q ¼ M
N

be a quotient of M, and consider the short exact sequence

0 ! N ! M ! Q ! 0:ð16Þ

As the functor HomR ð: ;W Þ is contravariant and left exact, it yields the exact
sequence

0 ! Q� ! M � ! N �

so that Q� can be identified with an E-submodule (i.e. a subbehavior) of M �.
Assuming that W is injective, one obtains the short exact sequence

0 ! Q� ! M � ! N � ! 0;

thus N � GE
M �

Q � ; in other words, one has the correspondence quotient $ submodule

under W -duality.

A direct sum decomposition. In case (I) in §2.1.1, with W ¼ Cyð<;<Þ, consider-
ing the decomposition (13), there exist subbehaviors M �

c FF� F ðM=TðMÞÞ� and
M �

u F ðTðMÞÞ� of M � such that

M � ¼ M �
c lM �

uð17Þ

The subbehavior M �
c is unique and is called the ‘‘controllable subbehavior’’ of M �,

whereas the subbehavior M �
u (unique up to isomorphism) is ‘‘uncontrollable’’: see

[28], Sect. 5.2. This means that the elements of M �
c are ‘‘free’’ (i.e. subject to no

relation) whereas those of M �
u satisfy an autonomous di¤erential equation and are

completely determined by their initial conditions. The correspondence between the
decompositions (13) and (17) is partly explained by Remark 7, since the module
Cyð<;<Þ is injective. It is further explained below in a slightly di¤erent context (see
Proposition 18).

3 Case (I)

It is assumed in this section that K ¼ < (case (I) in §2.1.1). The endomorphism ring
E of the S-module ~DD is identified with S, according to Matlis’ theory (see §2.1.4).
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3.1 A key isomorphism

3.1.1 Continuous-time case

Interconnecting two continuous-time systems from time 0 only, consists, from the
analytic point of view, in multiplying a function, such as the function e in the first
row of (2), by 1 � 1, where 1 is the Heaviside function (i.e. 1ðtÞ ¼ 1 for t > 0 and 0
otherwise). Let W ¼ Cyð<;<Þ and set

D ¼
L
mb0

<dðmÞð18Þ

where d is the Dirac distribution. The R -module generated by S0 :¼ ð1 � 1ÞW is (as
<-vector space): S ¼ S0 lD. The operator q is an automorphism of the <-vector
space S, and s ¼ q�1 is the operator defined on S by: ðswÞðtÞ ¼

Ð t

þy wðvÞ dv. The
space S is an L-vector space (and thus an S-module which is an R -module, by
restriction of the ring of scalars), and S0 is a S-submodule of S. The R -module D is
not an S-module, but DG<

S
S0
:¼ D; D is clearly an L-vector space (and thus an R -

module which is an S-module). The nature of the above isomorphism, denoted as t,
can be further detailed:

Lemma 8. The isomorphism t, defined as: D C ld !@ ld A D, is R -linear.

Proof. First, notice that any element of D (resp. D) can be uniquely expressed in
the form ld (resp. ld) for some l A R , thus t is a well-defined Z-isomorphism. In
addition, for any x A D, such that x ¼ ld, l A R , and any m A R , tðmxÞ ¼ tðmldÞ ¼
mld ¼ mtðxÞ. r

Therefore,

DGR
S

S0
:¼ Dð19Þ

One has sd ¼ 1� 1; setting d ¼ tðdÞ, one obtains sd ¼ 0, thus ~dd and d can be iden-
tified, as well as the S-modules ~DD and D. As a result, by (18), (11)

~DD ¼ D ¼
L
mb0

< ~ddðmÞ:ð20Þ

In the remainder of this section, the canonical epimorphism S ! S
S0
¼ ~DD is denoted

as ~ff. Let y be the <-linear projection S0 lD ! D; the following diagram is commu-
tative:

S0 lD ���!~ff ~DD???yy
t

D

ð21Þ ������
��!
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3.1.2 Discrete-time case

Let 1 be the sequence defined by 1ðtÞ ¼ 1 for t > 0 and 0 otherwise. Interconnect-
ing a discrete-time system up to time 0 only, consists, from the analytic point of
view, in multiplying a sequence, such as the sequence e in (2), by 1. Let W ¼ <Z

and S0 ¼ 1W . Let D be defined as in (18), but where d :¼ q1 is the ‘‘Kronecker
sequence’’, such that dðtÞ ¼ 1 for t ¼ 0 and 0 otherwise (thus, D is the R -module
consisting of all sequences with left and finite support). The R -module generated by
S0 is (as <-vector space) S ¼ S0 lD. The operator q is an automorphism of the <-
vector space S, and s ¼ q�1 is the operator defined on S by: ðswÞðtÞ :¼

P t�1
j¼�y wð jÞ;

S is an L-vector space. The R -isomorphism (19) still holds; the same identifications as
in §3.1.1 can be made and the same notation can be used. Obviously, the discrete-
time case is completely analogous to the continuous-time one, and these two cases are
no longer distinguished in the remainder of this section.

3.2 Impulsive systems and behaviors

3.2.1 Impulsive and pseudo-impulsive behaviors

Consider the temporal system (2), where BðqÞ A R q�k.

Proposition 9. The following properties are equivalent: (i) For any e A S
q
0 , there exists

w A S k such that (2) is satisfied. (ii) The matrix BðqÞ is right regular, i.e. q ¼ r, where r

is the rank of BðqÞ over R .

Proof. (i) ) (ii): If the matrix BðqÞ is not right regular, �BðqÞ is not injective, i.e.
there exists a nonzero element hðqÞ A R q (considered as a 1 � q matrix with entries in
R ) such that hðqÞBðqÞ ¼ 0. Therefore, for w A S k and e A S

q
0 to satisfy (2), e must

satisfy the ‘‘compatibility condition’’ hðqÞe ¼ 0. (ii) ) (i): By (9), assuming that
q ¼ r, (2) is equivalent to

½diagfsnig1aiar 0�v ¼ hð22Þ

where v ¼ VðsÞw and h ¼ UðsÞe; (22) is equivalent to sni vi ¼ hi, 1a i a q. For any
ni A Z and any hi A S0, vi ¼ qni hi belongs to S. Therefore, (i) holds because h spans S

q
0

as e spans the same space (since S0 is an S-module). r

Remark 10. The compatibility condition in the above proof is equivalent to the nec-
essary and su‰cient condition given in ([18], Theorem 5) for (2) to have solutions.

In the remainder of this section, the matrix BðqÞ A R q�k is assumed to be right regular.

Notation 11. For any scalar operator o and any integer l b 1, oðlÞ denotes the oper-
ator diagðo; . . . ;oÞ, where o is repeated l times.

Definition 12. Let WHS k be the space spanned by the elements w satisfying (2) as e

spans S
q
0 . The impulsive behavior of (2) is: By ¼ yðkÞW.
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Definition 13. The pseudo-impulsive behavior of the temporal system (2) (or ‘‘asso-
ciated with the matrix BðqÞ’’) is: Ay ¼ tðkÞBy.

3.2.2 Impulsive system

Considering the Smith-MacMillan form at infinity (9) of BðqÞ (with q ¼ r),
set PðsÞ ¼ diagfspig1aiaq and SðsÞ ¼ diagfsmig1aiaq, so that diagfsnig1aiaq ¼
P�1ðsÞSðsÞ ¼ SðsÞP�1ðsÞ. By (9), BðqÞ ¼ A�1ðsÞBþðsÞ, where AðsÞ ¼ PðsÞUðsÞ
and BþðsÞ ¼ ½SðsÞ 0�VðsÞ. The following result is classic (see, e.g., [37], Sect. 4.1,
(43)):

Lemma 14. (i) The above pair ðAðsÞ;BþðsÞÞ is a left coprime factorization of BðqÞ over

S . (ii) Let ðA1ðsÞ;Bþ
1 ðsÞÞ and ðA2ðsÞ;Bþ

2 ðsÞÞ be two left coprime factorizations of

BðqÞ over S; then, there exists a unimodular matrix WðsÞ over S such that Bþ
2 ðsÞ ¼

WðsÞBþ
1 ðsÞ and A2ðsÞ ¼ WðsÞA1ðsÞ.

Let ðAðsÞ;BþðsÞÞ be any left coprime factorization of BðqÞ over S . By Lemma 14,
the module Mþ ¼ coker �BþðsÞ is uniquely defined from BðqÞ.

Definition 15. (i) The S-module Mþ ¼ coker �BþðsÞ is called the impulsive system

associated with BðqÞ. (ii) The torsion submodule of Mþ, written TðMþÞ, is called
the module of uncontrollable poles at infinity of the temporal system (2) (or associated
with the matrix BðqÞ) [5]8.

There exists a free module Fþ GS S k, k ¼ k � q, such that

Mþ ¼ Fþ lTðMþÞ:ð23Þ

The ascending chain of invariant factors of TðMþÞ (possibly empty) is
ðsmrÞH � � �H ðsm1Þ; thus TþðMþÞ has the direct sum decomposition into cyclic
indecomposable submodules:

TðMþÞGS

Lr
i¼1

~CCmi
:ð24Þ

The connection between the pseudo-impulsive behavior Ay and the impulsive system
Mþ is given by the following theorem, where ð:Þ� :¼ HomSð: ; ~DDÞ:

Theorem 16. Ay ¼ ðMþÞ�.

Proof. By Definition 13 and the commutativity of the diagram (21), Ay is the E-
module (or the S-module, since E and S are identified) consisting of all elements

8 It is called the module of input-decoupling zeros at infinity in the cited reference (in accor-
dance with the terminology introduced in [4]), but this denomination should be reserved to the
case where the inputs of the system have been chosen among its variables.
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~ww ¼ ~ffðkÞw for which there exists h A S
q
0 such that (22) is satisfied. With the notation

in the proof of Proposition 9, this equation is equivalent to sni vi ¼ hi, 1a i a q. For
any index i such that ni a 0, vi ¼ s�ni hi belongs to S0, thus ~vvi ¼ 0 (where ~vvi :¼ ~ffvi).
Therefore, Ay is the S-module consisting of all elements ~ww ¼ V�1ðsÞ~vv such that
~vv A ~DDk satisfies ½SðsÞ 0�~vv ¼ 0; as a result, Ay ¼ ker BþðsÞ�. r

Remark 17. According to Theorem 16, the space Ay is a ‘‘behavior’’ in the sense
specified in §2.2.2, i.e. a kernel, whereas the space By cannot be expressed in a so
simple way (in this sense, there is an abuse of language in the expression ‘‘impulsive
behavior’’). This is why the notion of ‘‘pseudo-impulsive behavior’’ is very useful.
The notion of ‘‘subbehavior’’ of a pseudo-impulsive behavior Ay is defined in
accordance with the general definition in §2.2.2.

3.2.3 Structure of impulsive behaviors

The following result is analogous to the direct sum decomposition in §2.2.2.

Proposition 18. (i) There exist subbehaviors Ay; c F ðFþÞ� and Ay;u F ðTðMþÞÞ� of

Ay such that Ay ¼ Ay; c lAy;u. (ii) The subbehavior Ay; c satisfying this property

is unique and such that Ay; c GS
~DDk (Ay; c is called the ‘‘controllable pseudo-impulsive

behavior’’). (iii) Ay;u GS

Qr
i¼1

~CCmi
(this subbehavior, unique up to S-isomorphism, is

said to be ‘‘uncontrollable’’).

Proof. (i): By (23), there exists a canonical Z-isomorphism j � : Ay ! ðFþÞ��
ðTðMþÞÞ� given by j �l ¼ ðlj1; lj2Þ, where j1 : Fþ ! Mþ and j2 : TðMþÞ ! Mþ

are the canonical injections ([29], Theorem 2.4). Set Ay; c ¼ j��1ððFþÞ� � 0Þ and
Ay;u ¼ j��1ð0 � ðTðMþÞÞ�Þ. Then, Ay ¼ Ay; c lAy;u and by Lemma 5(i),
Ay; c F ðFþÞ� and Ay;u F ðTðMþÞÞ�. (ii): As E ¼ S, Ay; c GS ðFþÞ� GS

~DDk. By
Lemma 5(iii), there exists a natural integer m such that smAy;u ¼ 0, thus smAy ¼
smAy; c. Assuming that there exist two other S-modules A 0

y; c F ðFþÞ� and A 0
y;u F

ðTðMþÞÞ� such that Ay ¼ A 0
y;u lA 0

y; c, one obtains smAy; c ¼ smA 0
y; c, thus

Ay; c ¼ A 0
y; c by Lemma 5(iv), since ~DD is a cogenerator (see §2.1.4). (iii):

Ay;u GS TððMþÞÞ� GS

Qr
i¼1

~CC �
mi

by (24) and ~CC �
mi
¼ ~CCmi

, according to Matlis’ theory.
r

For any integer mb 1, set

Cm ¼ t�1ð ~CCmÞ ¼
Lm
i¼1

<dði�1Þ:ð25Þ

The following theorem is an obvious consequence of Proposition 18:

Theorem 19. Let us consider the temporal system with matrix BðqÞ (assumed to be

right regular). Its impulsive behavior By can be expressed as: By ¼ By; c lBy;u,
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where By; c :¼ t�1
ðkÞAy; c G< Dk and By;u ¼ t�1

ðkÞAy;u G<
Qr

i¼1 Cmi
(the space By; c,

which is uniquely defined, is called the ‘‘controllable impulsive behavior’’, and the im-

pulsive behavior By;u, unique up to <-isomorphism, is said to be ‘‘uncontrollable’’).

3.2.4 Temporal interconnections

More details about temporal interconnections can now be given. Consider two tem-
poral systems

BiðqÞwiðtÞ ¼ eiðtÞ; t A T
eiðtÞ ¼ 0; t A T0

�

ði ¼ 1; 2Þ. They can be interconnected; the matrices J1 and J2 in (15) are assumed
to have their coe‰cients in <. According to Sect. 1 and §2.2.1, we are led to the
following definition:

Definition 20. The interconnected temporal system is defined by

BðqÞwðtÞ ¼ eðtÞ; t A T
eðtÞ ¼ 0; t A T0

�

where the matrix BðqÞ :¼

2
64B1ðqÞ 0

0 B2ðqÞ
J1 �J2

3
75 is assumed to be right regular; J1 and J2

are called the interconnection matrices.

One has the following result:

Theorem 21. The impulsive system Mþ of the interconnected temporal system is defined

as

Mþ ¼ coker �

2
64Bþ

1 ðsÞ 0

0 Bþ
2 ðsÞ

J1 �J2

3
75ð26Þ

where ðAiðsÞ;Bþ
i ðsÞÞ is any left coprime factorization over S of BiðqÞ ði ¼ 1; 2Þ.

Proof. Set

BþðsÞ ¼

2
64Bþ

1 ðsÞ 0

0 Bþ
2 ðsÞ

J1 �J2

3
75; AðsÞ ¼

2
64A1ðsÞ 0 0

0 A2ðsÞ 0

0 0 Ip

3
75
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where p is the number of rows of the matrices J1 and J2. Obviously, ðAðsÞ;BþðsÞÞ
is a left coprime factorization over S of BðqÞ; therefore, the proposition is proved,
according to Definition 15. r

Remark 22. By Theorem 21 and (15), Mþ can be written as a fibered sum of the
impulsive systems Mþ

i ¼ coker �Bþ
i . In other words, the impulsive system of the in-

terconnected temporal system is obtained by interconnecting the impulsive systems of
the temporal subsystems.

4 Case (II)

It is assumed in this section that the ‘‘coe‰cient ring’’ K is a field (case (II) in §2.1.1).
As said in Section 1, assuming that the coe‰cients are time-varying but belong to
a field amounts to discarding singularities. Nevertheless, there is no natural definition
of the impulsive behavior of a temporal system in the present case and the key iso-
morphism t in Lemma 8 is no longer valid. The results in this section are essentially
formal and may be viewed as an introduction to those in Section 5.

Let BðqÞ A R q�k be a right regular matrix. According to §§2.1.1, 2.1.3, the state-
ment in Lemma 14 remains valid. Therefore, the following definitions make sense
(the first one was already given in [5]):

Definition 23. The impulsive system and the module of uncontrollable poles at infinity

associated with the matrix BðqÞ are defined as in Definition 15, i.e. as Mþ and
TðMþÞ, respectively.

Definition 24. The pseudo-impulsive behavior Ay associated with BðqÞ is defined as:
Ay ¼ ðMþÞ�, where ð:Þ� :¼ HomSð: ; ~DDÞ.

Matlis’ theory does no longer apply in the present context, thus the ring S and the
endomorphism ring E of the S-module ~DD must be distinguished. However:

Proposition 25. For any natural integer m, ~CC �
m ¼ ~CCm.

Proof. For m ¼ 0, ~CCm ¼ ~CC �
m ¼ 0. For mb 1, ~CC �

m is the set of all elements x A ~DD such

that smx ¼ 0. Obviously, ~ddði�1Þ belongs to ~CC �
m if, and only if 1a i a m. By (10),

~CC �
m H ~CCm. Let us prove by induction the reverse inclusion. By (5), for any a A K ,

sa ~dd ¼ ðabs� sabgsÞ~dd ¼ 0, which implies that ~CC1 ¼ K ~ddH ~CC �
1 . Assuming that

~CCm H ~CC �
m , mb 1, let a A K ; then, smþ1a ~ddðmÞ ¼ smðab � sabgÞ~ddðm�1Þ; by hypothesis,

ab~ddðm�1Þ and sabg~ddðm�1Þ belong to ~CC �
m , thus smþ1a ~ddðmÞ ¼ 0, which implies that

~CCmþ1 H ~CC �
mþ1. r

The direct sum decompositions (23) and (24) are correct [5] and ~DD is a cogenerator
of SM. Therefore, by Proposition 25, one has the following result, in place of the
statement of Proposition 18:
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Proposition 26. (i) There exist subbehaviors Ay; c F ðFþÞ� and Ay;u F ðTðMþÞÞ� of

Ay such that Ay ¼ Ay; c lAy;u. (ii) The subbehavior Ay; c satisfying this property

is unique and such that Ay; c GE
~DDk (Ay; c is called the ‘‘controllable pseudo-impulsive

behavior’’). (iii) Ay;u GE

Qr
i¼1

~CCmi
(this subbehavior, unique up to E-isomorphism, is

said to be ‘‘uncontrollable’’).

5 Case (III)

5.1 Impulsive behavior of a temporal system with time-varying coe‰cients

The key isomorphism valid again. Case (III) in §2.1.1 is now considered. In the case of
continuous-time temporal systems, let us slightly modify the definition of the spaces
W , S0 and S in §3.1.1 (in the case of discrete-time temporal systems, their definition,
as given in §3.1.2, is left unchanged):

For any integer nb 1, let Wn ¼ CyðIn;<Þ, where In ¼ � 1
n
;þy

� �
. As Inþ1 H In,

W :¼ lim
�!

Wn is the space of germs of Cy functions on an open connected neigh-

borhood of ½0;þy½. Let S0 ¼ ð1 � 1ÞW and S ¼ S0 lD, where D is defined by (18).
The space S is still the R -module generated by S0, and the ‘‘continuous time deriva-
tive’’ q is an automorphism of the <-vector space S. For any w A S, there exists nb 1
such that w A ð1 � 1ÞWn lD, thus ðswÞðtÞ :¼

Ð t

þy wðvÞ dv is defined for any t A In; s
is an automorphism of S, and s ¼ q�1.

As in Section 3, in both the continuous- and discrete-time cases, S0 and S are
S-modules and S is an L-module (a property which was lost in Section 4). The
canonical S-linear epimorphism S ! S

S0
:¼ D is denoted as f.

Proposition 27. (i) For any natural integer m, the <-vector space Cm :¼
Lm

i¼1 K dði�1Þ

satisfies the following equality: Cm ¼
Lm

i¼1 <dði�1Þ. (ii) The <-vector space D defined

by (18) has a natural structure of R -module and D ¼
L

mb0 K dðmÞ. (iii) The quotient D
is an L-module (and thus an R -module which is an S-module, by restriction of the ring

of scalars), and it satisfies the following equality: D ¼
L

mb0 K d
ðmÞ ¼

L
mb0 <d

ðmÞ
.

(iv) The R -isomorphism t defined as in Lemma 8 and (19) still holds and, setting

Cm ¼ tðCmÞ, one has Cm ¼
Lm

i¼1 K d
ði�1Þ ¼

Lm
i¼1 <d

ði�1Þ
.

Proof. (i): Obviously,
Lm

i¼1 <dði�1Þ H
Lm

i¼1 K dði�1Þ. Let us prove the converse by
induction. Let a A K ; as ad ¼ að0Þd (in both the continuous- and discrete-time cases),
K d ¼ <d. Assuming that

Lm
i¼1 K dði�1Þ H

Lm
i¼1 <dði�1Þ, let a A K . One has adðmÞ ¼

aqdðm�1Þ; setting a ¼ ba, one obtains adðmÞ ¼ ðqb � bgÞdðm�1Þ by (4), and by hypothesis

bdðm�1Þ A
Lm

i¼1 <dði�1Þ, thus qbdðm�1Þ A
Lmþ1

i¼1 <dði�1Þ. Finally, adðmÞ A
Lmþ1

i¼1 <dði�1Þ,

thus
Lmþ1

i¼1 K dði�1Þ H
Lmþ1

i¼1 <dði�1Þ. (ii) is an obvious consequence of (i), since
D ¼ lim

�!
Cm. (iii) and (iv) are then clear, by the same rationale as in the proof of

Lemma 8. r

By Proposition 27, the diagram below (where the <-linear projection y is defined as in
§3.1.1) is commutative and, in the present section, must be considered in place of (21):
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S0 lD ���!f D???yy
t

D

ð27Þ ������
��!

Di‰culties. The structure of the ring S is not as simple as in Section 4, since S is
no longer a principal ideal domain. In addition, an important di¤erence with the
situation in Section 3 appears in the following proposition:

Proposition 28. Let c : ~DD ! D be defined as: cðl~ddÞ ¼ ld, where l A R . (i) c is an

S-epimorphism. (ii) 00 t ~CC1 H kerc.

Proof. (i): Any element of ~DD can be uniquely expressed in the form l~dd, l A R , and
every element of D can be expressed in the form ld for some l A R , thus c : ~DD ! D
is a well-defined Z-epimorphism. Let us show that c is S-linear. Let x ¼ l~dd A ~DD,
and (as a result of an Euclidean division by q) write l ¼ l0 þ ql1, where l0 A K and
l1 A R ; then, sx ¼ l1

~dd (since s is a left inverse of q: see §2.1.4). Therefore, cðsxÞ ¼
l1d ¼ scðxÞ. (ii): As t A K and ~CC1 GK K , t ~CC1 is nonzero. As already said in the proof
of Proposition 27(i), ad ¼ að0Þd, thus td ¼ 0, therefore cðt ~CC1Þ ¼ 0 since ~CC1 ¼ K ~dd.

r

By Proposition 28(i), DGS
~DD=kerc, and by Proposition 28(ii), kerc is nonzero.

Therefore, D and ~DD cannot be identified, and (20) is no longer true.

Impulsive behavior of a semiregular temporal system

Definition 29. (i) The temporal system (2) is said to be semiregular if, for any e A S
q
0 ,

there exists w A S k such that (2) holds. (ii) The impulsive behavior By of a semi-
regular temporal system is defined as in Definition 12.

For the temporal system (2) to be semiregular, BðqÞ must be right regular, as shown
by the proof of Proposition 9. Let us further study semiregularity, assuming that
K ¼ <½t�. Let BðqÞ A R q�k be the matrix of the temporal system (2). According
to Lemma 1, there exist two unimodular matrices Uðt; sÞ and Vðt; sÞ over L ¼
<ððsÞÞ½t; 1; e� and a nonzero element $ðt; sÞ A L such that

Uðt; sÞBðqÞV�1ðt; sÞ ¼ diagf1; . . . ; 1;$ðt; sÞg 0

0 0

� �
:

The matrix in the right-hand side of the above equality is the Smith form of BðqÞ over
L ([7], §8.1, Corollary 1.2).

Theorem 30. Assuming that K ¼ <½t�, the temporal system (2) is semiregular if, and

only if its matrix BðqÞ is right regular and Uqðt; sÞS q
0 H$ðt; sÞS, where Uqðt; sÞ is the

last row of Uðt; sÞ.
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Proof. Assuming that BðqÞ is right regular, (2) is equivalent to diagf1; . . . ; 1; $ðt; sÞgv

¼ Uðt; sÞe, where v is the vector formed from the q first rows of Vðt; sÞw. The only
problem is with the last component vq of v. The equation $ðt; sÞvq ¼ Uqðt; sÞe has a
solution vq A S for any e A S

q
0 , if, and only if Uqðt; sÞS q

0 H$ðt; sÞS. r

Corollary 31. In the continuous-time case with K ¼ <½t�, let BðqÞ A R q�k be the matrix

of a temporal system, and assume that BðqÞ is right regular. If the coe‰cient of least

order of $ðt; sÞ (where $ðt; sÞ is considered as an element of K s; 1; d
dt

� �� �
) does not

vanish at t ¼ 0, then the temporal system is semiregular.

Proof. The element $ðt; sÞ can be written as: $ðt; sÞ ¼
P

ibN fiðtÞs i, where N A Z,
every fiðtÞ belongs to K ¼ <½t� and fNðtÞ0 0; fNðtÞ is the coe‰cient of least order
of $ðt; sÞ. Let us assume that fNð0Þ0 0, and set $ðt; sÞ ¼ fNðtÞuðt; sÞsN ,
where uðt; sÞ ¼ 1 � gðt; sÞ and gðt; sÞ ¼ �

P
ibNþ1ð fiðtÞ=fNðtÞÞs i�N . The elements

uðt; sÞ and fNðtÞ are units of the ring W s; 1; d
dt

� �� �
(the former with inverse

1 þ
P

jb0ðgðt; sÞÞ
j). In addition, sNS ¼ S. Finally, as S is a W s; 1; d

dt

� �� �
-module,

$ðt; sÞS ¼ S, and Uqðt; sÞS q
0 HS. r

Example 32. Let us consider the temporal system with matrix

BðqÞ ¼

2
64 qþ t t 0

0 0 1

1 0 1

3
75:

The Smith form of BðqÞ over L is diagð1; 1; tÞ, and U3ðt; sÞ ¼ ½1 q � q�; thus,
U3ðt; sÞS3

0 ¼ S0 l<d. As S0 l<d is not included in tS, this temporal system is non-
semiregular.

5.2 Regular temporal systems

5.2.1 Definition and properties of regularity

Definition 33. The temporal system (2) is said to be regular if the matrix BðqÞ A R q�k

is right regular and has a Smith-MacMillan form at infinity, i.e. if there exist unim-
odular matrices UðsÞ A S q�q, VðsÞ A S k�k, as well as integers n1; . . . ; nr, n1 a � � �a nr,
such that (9) holds with r ¼ q. The structural indexes of the zeros at infinity of such a
matrix BðqÞ are the integers mi ð1a i a rÞ as defined in Section 2.1.3.

The following result is clear (by the same rationale as in the proof of Proposition 9):

Proposition 34. A regular temporal system is semiregular.

Definition 35. SM
struc is the full subcategory of SM

f whose objects are the modules
Mþ of the form (23), where TðMþÞ is zero or is such that there exist natural integers
r and mi, 1a ia r, 1a m1 a � � �a mr, for which (24) holds.
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Proposition 36. Let BðqÞ A R q�k be the matrix of definition of a regular temporal sys-

tem. (i) The matrix BðqÞ has a CLCF ðAðsÞ;BþðsÞÞ over S . (ii) Let ðAðsÞ;BþðsÞÞ be

any CLCF of BðqÞ over S; Mþ :¼ coker �BþðsÞ is uniquely defined from BðqÞ and is

an object of SM
struc.

Proof. (i): Let PðsÞ and SðsÞ be the matrices as defined in the beginning of §3.2.2.
The pair ðPðsÞ; ½SðsÞ 0�Þ is completely left coprime over <½½s��HS . Thus, there
exist matrices XðsÞ;YðsÞ over <½½s�� such that the following matrix QðsÞ is unim-
odular over <½½s��:

QðsÞ ¼ PðsÞ SðsÞ 0½ �
X ðsÞ YðsÞ

� �
:

With the notation in the beginning of §3.2.2, BðqÞ ¼ A�1ðsÞBþðsÞ, where AðsÞ ¼
PðsÞUðsÞ, BþðsÞ ¼ ½SðsÞ 0�VðsÞ, and where the matrices UðsÞ and VðsÞ are un-
imodular over S. Now,

QðsÞ UðsÞ 0

0 VðsÞ

� �
¼ AðsÞ BþðsÞ

� �

� �

(where each ‘‘�’’ denotes a non specified submatrix). As the matrix in the left-hand
side of the above equality is unimodular over S , ðAðsÞ;BþðsÞÞ is a CLCF of BðqÞ
over S . (ii): For the above CLCF, coker �BþðsÞGS coker �½SðsÞ 0�; in addition,
statement (ii) of Lemma 14 is still correct (by the same rationale as in, e.g., [37], Sect.
4.1, (43)). r

5.2.2 Impulsive modules and behaviors of regular temporal systems

Proposition 37. The S-module ~DD is a cogenerator for the subcategory SM
struc.

Proof. 1) This statement means that for every nonzero f : Mþ ! Nþ, Mþ AS Mstruc,
Nþ AS M struc, there exists g : Nþ ! ~DD such that gf 0 0. As S AS Mstruc, this property
is equivalent to the following one: for any Nþ AS Mstruc and any 00 x A Nþ, there
exists an S-morphism h : Nþ ! ~DD such that hðxÞ0 0 (see [19], Proposition (19.6)
and the proof of this proposition)9. 2) If Nþ ¼ ~CCm, mb 1, and 00 x A Nþ,
lmðxÞ ¼ x0 0, where lm : ~CCm ! ~DD is the canonical injection. 3) Let us prove that for
any 00 x A S , there exists an S-morphism f : S ! ~DD such that f ðxÞ0 0. Let m be

any natural integer; the morphism ~ffm : S ! ~DD, defined as ~ffmðyÞ ¼ y~ddðmÞ, is S-linear.

Writing y ¼
P

ib0 yis
i, yi A K , one obtains ~ffmðyÞ ¼

P
ib0 yi

~ddðm�iÞ. Since 00 x ¼P
ib0 xis

i, there exists a nonzero xj A K , thus ~ffjðxÞ0 0, and 3) is proved. 4) As any
Nþ AS M struc is a direct sum of cyclic modules, by 2) and 3), for any Nþ AS Mstruc

and any 00 x A Nþ, there exists an S-morphism h : Nþ ! ~DD such that hðxÞ0 0.
r

9 Notice that ~DD BS Mstruc. Similarly, one can prove that the module ~DD is injective for the sub-
category M struc.
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By Proposition 36, the following definition is relevant:

Definition 38. The impulsive system and the module of uncontrollable poles at infinity

of a regular temporal system are defined as in Definition 15, i.e. as Mþ and TðMþÞ,
respectively. Its pseudo-impulsive behavior Ay is defined as in Definition 24.

Proposition 39. For a regular temporal system, the statements of Propositions 25 and

26 are valid.

Proof. The proofs of the above propositions are still valid, using Proposition 37 for
the latter. r

The structure of the impulsive behavior of a regular temporal system is now com-
pletely elucidated:

Theorem 40. Let us consider a regular temporal system with matrix BðqÞ A R q�k. Let

Ay and Ay; c be its pseudo-impulsive behavior and its controllable pseudo-impulsive

behavior, respectively, and let Ay;u be an uncontrollable pseudo-impulsive behavior

such as in Proposition 26. (i) The impulsive behavior By of the temporal system is

expressed as: By ¼ t�1
ðkÞcðkÞAy (where c is as defined in Proposition 28). (ii) The fol-

lowing decomposition holds: By ¼ By; c lBy;u, where By; c :¼ t�1
ðkÞcðkÞAy; c G< Dk

and By;u ¼ t�1
ðkÞcðkÞAy;u G<

Qr
i¼1 Cmi

(the space By; c, which is uniquely defined, is

called the ‘‘controllable impulsive behavior’’ and the impulsive behavior By;u, unique

up to <-isomorphism, is said to be ‘‘uncontrollable’’).

Proof. (i): By the commutative diagram (27), tðkÞBy is the set of all elements
w ¼ fðkÞw such that BþðsÞw ¼ 0 (as shown by the proof of Theorem 16), thus
tðkÞBy ¼ cðkÞAy. (ii) is an obvious consequence of Proposition 39. r

Regarding interconnected temporal systems, Definition 20 is relevant. However:

Lemma 41. The temporal system resulting from the temporal interconnection of two

regular temporal systems can be non-semiregular.

Proof. Consider the temporal systems defined by B1ðqÞ ¼ ½qþ t t� and B2ðqÞ ¼ 1,
which are regular, and assume that the interconnection matrices are J1 ¼ ½1 0�
and J2 ¼ 1. The resulting temporal system, which is the one in Example 32, is non-
semiregular. r

Therefore, the statement of Theorem 21 must be modified as follows:

Theorem 42. Consider two regular temporal systems, interconnected as in Definition 20.

Assuming that the interconnected temporal system is regular, its impulsive system Mþ

is given by (26), where ðAiðsÞ;Bþ
i ðsÞÞ is any CLCF over S of BiðqÞ ði ¼ 1; 2Þ.
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5.3 Examples

5.3.1 A regular example

Consider the following example (in the continuous- or discrete-time case):

BðqÞ ¼
�1 q2 þ t 0 0

0 0 q2 �1

0 1 �1 0

2
64

3
75ð28Þ

and write w ¼ ½u1 y1 u2 y2�T . This system can be viewed as the series intercon-
nection of System 1, with input u1, output y1 and equation €yy1 þ ty1 � u1 ¼ 0, with
System 2 with input u2, output y2 and equation €uu2 � y2 ¼ 0; the interconnection
equation is u2 ¼ y1. Assuming that the interconnection is temporal, in the resulting
interconnected temporal system with input u1 and output y2, the two derivatives
are ‘‘hidden’’. It is easy to check that this temporal system is impulsively regular;
in addition, one has the following CLCF: BðqÞ ¼ A�1ðsÞBþðsÞ with AðsÞ ¼
diagðs2; s2; 1Þ and

BþðsÞ ¼
�s2 1 þ s2t 0 0

0 0 1 �s2

0 1 �1 0

2
64

3
75

The matrix BþðsÞ is equivalent over S to ½S 0� with S ¼ diagð1; 1; s2Þ, thus
Mþ GS S l S

ðs2Þ . This impulsive system Mþ is defined by the following equations:

ð1 þ s2tÞyþ
1 � s2uþ

1 ¼ 0; uþ
2 � s2yþ

2 ¼ 0; yþ
1 ¼ uþ

2

and TðMþÞ ¼ ½vþ�S where

s2ðvþÞ ¼ 0; vþ ¼ tyþ1 þ yþ
2 � uþ

1 :ð29Þ

The space Ay;u is the set of all elements ~vv A ~DD such that s2~vv ¼ 0 and Ay ¼ ðMþÞ�
is the set of all elements ~ww ¼ ½ ~yy1 ~uu1 ~yy2 ~uu2�T A ~DD4 such that BþðsÞ~ww ¼ 0. By (29),
one may write ~vv ¼ t~yy1 þ ~yy2 � ~uu1, and by Proposition 39, Ay;u is the space spanned
by ~vv ¼ a1

~ddþ a0q~dd as ða0; a1Þ spans R2. The space By;u is given by the relation
By;u ¼ t�1cAy;u. These calculations can also be made using Theorem 42.

In this rather simple example, the space By;u can be analytically calculated. One
obtains: for tb 0 in the continuous-time case10, and for ta 0 in the discrete-time
one,

ty1ðtÞ þ y2ðtÞ � u1ðtÞ ¼ a1dðtÞ þ a0
_ddðtÞ :¼ vðtÞð30Þ

10 With a mild abuse of language since the signals involved here are distributions; but as they
belong to the signal space S, this notation can be justified.
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where a0 :¼ q0
0ðy1 � u2Þ and a1 :¼ q1

0ðy1 � u2Þ, which is in accordance with the above
result.

In the algebraic method we are proposing, the expression (29) of TðMþÞ and of
the generator vþ of TðMþÞ in the generators yþ

1 ; yþ
2 ; uþ

1 and uþ
2 of Mþ has been

found using unimodular matrices, i.e. with elementary row and column operations, in
a systematic way, as usual (secondary row and column operations are unnecessary
[5]). This method can be computerized and then applied to large-scale systems. This
seems much more di‰cult, if not impossible, with any analytic method.

This example illustrates the fact that, for impulsively regular time-varying tempo-
ral systems as for time-invariant ones, impulsive motions occur due to ‘‘inconsistent
initial conditions’’ in the continuous-time case and to ‘‘inconsistent final conditions’’
in the discrete-time one.

5.3.2 Non-regular example

The following lemma will be useful:

Lemma 43. For any a A K and any integer nb 0,

adðnÞ ¼
Pn

i¼0

ð�1Þ i n

i

	 

ag ib n

ð0Þdðn�iÞð31Þ

Proof. Noticing that gb ¼ bg, (31) can be easily proved by induction. Note that in the
continuous-time case, this formula is classic ([31], (V, 3; 4)). r

Consider the following example:

BðqÞ ¼
"
�ðt þ lÞq4 q �t

1 0 0

#
ð32Þ

where l ¼ 0 (resp. l ¼ 4) in the continuous- (resp. discrete-) time case. By Corollary
31, the associated temporal system is semiregular since the Smith form of BðqÞ over L
is ½I 0�. The variable w1 is discontinuous at t ¼ 0 due to the second row, and its 4th
order derivative in the first row generates elements of D; the latter are annihilated or
modified according to (31) by the left multiplication by t þ l, which explains that the
temporal system is non-regular. By (31), this temporal system has the same impulsive
behavior as the temporal system with matrix

B1ðqÞ ¼
"

4q3 q �t

1 0 0

#
;

which is regular; B1ðqÞ has the following CLCF over S :

B1ðqÞ ¼
"
s3 0

0 1

#�1"
4 s2 �s3t

1 0 0

#
:
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For this ‘‘regularized temporal system’’, Mþ ¼ Fþ lTðMþÞ where Fþ GS S and
TðMþÞ ¼ ½vþ�S , with

s2ðvþÞ ¼ 0; vþ ¼ wþ
2 � stwþ

3 :ð33Þ

Therefore, By;u is the <-subspace of D spanned by d and _dd.

6 Concluding remarks

In this paper, impulsive behaviors of ‘‘temporal systems’’ with constant or time-
varying coe‰cients have been studied in a general framework which includes the
continuous- and discrete-time cases.

In the existing literature, tedious calculations revealed the structure of impulsive
behaviors in the case of constant coe‰cients. These calculations are avoided here
using the key isomorphism (19), the commutative diagram (21), and the ‘‘pseudo-
impulsive behavior’’ Ay, whose structure is deduced by duality from the structure of
a finitely generated module over the ring S (Theorem 16 and Remark 17). Theorem
19 is the main structure theorem in the case of constant coe‰cients; the expression of
By;u was already known, but its connection with the structure of the zeros at infinity
of BðqÞ (§2.1.3) is now much clearer; the direct sum decomposition of By is new.
Theorem 21 is new and facilitates the calculation of the impulsive behavior of an
interconnected temporal system.

In the case of time-varying coe‰cients, the results of this paper are new. The
impulsive behavior is defined only for a ‘‘semiregular temporal system’’, and, based
on Lemma 1, a necessary and su‰cient condition for a temporal system to be semi-
regular has been given when the coe‰cient ring is <½t� (Theorem 30). However, the
structure of the impulsive behavior of a temporal system is easily determined only
when this temporal system is ‘‘regular’’ (§5.2). Most of the results previously obtained
in the case of constant coe‰cients are then valid, with slight modifications when
necessary. The isomorphism (19) is still valid, as shown by Proposition 27, but the
commutative diagram (27) replaces (21). Theorems 40 and 42, which are the gen-
eralizations of Theorems 19 and 21, respectively, are the main results. Theorem 40
completely elucidates the structure of the impulsive behavior of a regular temporal
system. The theory is illustrated through two examples; the first one (in §5.3.1) shows
the connection between the generation of uncontrollable impulsive motions and
‘‘temporal interconnections’’. The second one (in §5.3.2) shows that a regularization
procedure (based on Lemma 43) can be used to calculate the impulsive behavior of a
semiregular temporal system which is non-regular.
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