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Impulsive systems and behaviors in the theory of
linear dynamical systems

Henri Bourlées

(Communicated by Michel Fliess)

Abstract. A linear dynamical system resulting from the interconnection of subsystems is con-
sidered. Assuming that this interconnection is “‘temporal”, i.e. starting at a given initial time
in the continuous-time case and ending at a given final time in the discrete-time case, such a
system is also said to be “temporal”. Temporal interconnections generate ‘“‘uncontrollable im-
pulsive behaviors” which are not found in the classical theory, though they have been studied
for more than 20 years in the case of systems with constant coefficients. Determining the struc-
ture of the impulsive behavior of a temporal system is a key problem in the theory of linear
dynamical systems. It is addressed here, using module theory, for systems with time-varying
coefficients, in both the continuous- and discrete-time cases. These two cases are merged into
a general framework. The impulsive behavior of a temporal system satisfying a suitable regu-
larity condition has a structure which is fully elucidated. It turns out that the determination of
this structure in practice is an algebraic—not an analytic—problem, which makes the calcu-
lations simpler and easier to computerize. The theory is illustrated through several examples.

2000 Mathematics Subject Classification: 93.

1 Introduction

Continuous- or discrete-time systems exhibit “impulsive motions”, i.e., in the
continuous-time case, linear combinations of the Dirac distribution ¢ and its
derivatives [35], [36], and in the discrete-time case, backward solutions with finite
support [21], [24]. The space spanned by all impulsive motions of a system is called
its “impulsive behavior” and is denoted as 4,,. The purpose of this paper is to study
the structure of 4., for a system with constant or time-varying coefficients. Let us
explain the importance of this structure.

Consider the following continuous-time system with constant coefficients, in
“descriptor form” [32]:

(1) (E0— A)x = Bu, teT

where the function u is the “system input”, assumed to be known, x is the “descriptor
vector” and ¢ is the “continuous-time derivative”, i.e. the distributional derivative
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with respect to time #; E, A and B are matrices belonging to 387*7, ®9*7 and R,
respectively. Suppose that Ty = [0, +oo[, which means that the system is formed at
time ¢ = 0 (as a result, for example, of switching or of component failure in some
other system [35]; such events are frequent in electrical circuits, mechanics, hydraulics,
etc. [13]). Therefore, let us call (1) a “temporal system” (to point out the difference
with the classic situation where Ty = R, and where system (1) is thus perpetually
existing). Assume that the matrix pencil Es — A is regular (i.e. that the polynomial
|Es — A| is nonzero [12]) for (1) to have solutions [18]. If E is singular, the restrictions
to Ty of the components x; of x contain impulsive motions with coefficients only
depending on the “initial values” x;(0~), when the latter are incompatible with the
equation (E0 — A)x = Bu. These impulsive motions, which are said to be “uncon-
trollable” due to their complete dependence on initial conditions, span the “uncon-
trollable part” %, , of #.,. To know what event arose at time ¢ = 0, the values of the
above-mentioned coefficients are not significant, as opposed to the structure of %, .
Setting T = &, the temporal system (1) can be written in the more general form

5 B(O)w(t) =e(t), teT
@) {e(z):o, teT

where B(0) is a ¢ x k matrix (k = ¢ + m) with entries in R[] and w is the column-
matrix whose entries are the system variables (here the components x; and u; of x and
u, respectively); the function e has any restriction to the complement T\, of Ty in
T. It is known that the structure of %, , is completely determined by the structure of
the “zeros at infinity” of the matrix B(0) ([33], [18])—a notion which is explained
below. Therefore, the characterization of the structure of %4, , is not an analytic
problem (involving derivations, integrations, etc., in the framework of the theory of
distributions), but an algebraic one, which makes the calculations much simpler and
easier to computerize.

A similar problem is posed by discrete-time systems [21], [22]. The variables are
now sequences (denoted as functions defined on the set of integers Z). Let q be the
usual “shift forward operator” w(z) — w(t+ 1), define the “discrete-time derivative”
0 = q — 1, and with this notation consider the discrete-time system with constant
coefficients (1). Assume that the sequence u (again called the “input™) is known and
that the matrix pencil Ez — A is regular. Suppose that the matrix E is singular (which
means that the system is noncausal) and that Ty = {..., —2,—1,0}, i.e. that the sys-
tem exists only up to the “final time” # = 0 (a phenomenon which arises in various
fields: for example the “Leontief model”, in economy, describes the time pattern of
production in several interrelated production sectors; it is of the form (1), possibly
noncausal, and valid up to a finite final time [23]). For the same reason as above, let
us call (1) (or (2) which is the most general form) a “temporal system”. Due to the
fact that (1) is noncausal, the restrictions to Ty of the variables x; contain backward
solutions with finite support (i.e. impulsive motions), with coefficients only depending
on the “final values” x;(1). As in the continuous-time case, these impulsive motions,
said to be uncontrollable due to their complete dependence on final conditions, span
the “uncontrollable part” %, , of %.,. Considering the temporal system (2), where
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T = Z and where the sequence e has any restriction to T\, the structure of %, , is
a key problem. One can deduce from recent results of the literature that this structure
is determined by the “‘structure at infinity”” of the matrix B(2) ([1], [16], [L7]); more
specifically, it is shown below that the structure of %4, , reflects the structure of the
zeros at infinity of B(0), exactly as in the continuous-time case.

In the existing literature, only the case of systems with constant coefficients has
been treated, and two distinct theories have been developed to prove the above-
mentioned connection between the structure of 4., , and that of the zeros at infinity
of B(0): one for the continuous-time, using the Laplace transform, and the other for
the discrete-time, using the Z-transform. In both cases, complicated calculations yield
a very simple structure theorem, without really explaining it. These calculations
become inextricable in the case of systems with time-varying coefficients, although
these systems raise the same problem ([24], [6], [38]); therefore, no general result on
the structure of impulsive behaviors has been obtained in that case.

The problem of determining the structure of the impulsive behavior %, (and of its
uncontrollable part %, ,) of a linear temporal system with constant or time-varying
coefficients is solved here using an algebraic approach based on module theory. The
continuous- and discrete-time cases are merged into a general framework. In the case
of constant coefficients, complicated calculations are avoided, and the existing theory
is both clarified and completed. In the case of time-varying coefficients, one difficulty
arises from singularities which may occur, typically whenever a system coefficient
annihilates a part of an impulsive motion when vanishing (e.g., in the continuous-time
case, an impulsive motion proportional to J is annihilated by a nonzero coefficient a
such that a(0) = 0). A temporal system with no such problem is said to be “regular”.
We show that, for regular temporal systems, the structure of 4., , is still completely
determined by the structure of the zeros at infinity of the matrix B(0) (once this notion
has suitably been generalized [5], [25]).

The notion of “temporal interconnection” is useful for the sequel. Any system
may be considered as resulting from the interconnection of subsystems [30]. In the
continuous-time case, a switching, a component failure, etc., as mentioned above, are
interconnections starting at a given initial time (assumed to be zero without loss of
generality, since the origin of time can be freely chosen), i.e. only effective on Ty =
[0,400[ = T; such an interconnection is said to be “temporal’” in what follows. In the
discrete-time case, a temporal interconnection is an interconnection valid up to a given
final time (also assumed to be zero), i.e. only effective on Ty = {...,—2,—1,0} < T.
A temporal system results from the temporal interconnection of subsystems. This is
clear when considering (2) which is obtained by interconnecting the system B(0)w = e
with the trivial system ¢ = 0 through the temporal interconnection e(z) = é(7), t € Ty.

The paper is organized as follows. Preliminaries are collected in Section 2: first the
mathematical tools, and then the basic notions of system theory. Temporal systems
with constant coefficients (case (I)) are studied in Section 3: using a key isomorphism,
it is shown that the structure of 4., is identical to the structure of a space .«7,,, easier
to study than %.,, and whose construction is classic in homological algebra. The
space .«Z,, is also studied in Section 4 in the case when the system coeflicients are time-
varying though belonging to a field (case (II)). The assumption that the coefficients
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belong to a field, amounts to discarding singularities (since coefficients which are not
identically zero cannot vanish). However, to properly define and study the impulsive
behavior 4., of a temporal system with time-varying coefficients, one must assume
that these coeflicients belong to a ring of functions (case (II1)). This case is studied in
Section 5. Most of the results in Section 3 are extended to case (III) under a suitable
regularity condition. Section 6 includes the concluding remarks and summarizes the
main results. Preliminary results have already been published [2], [3].

2 Preliminaries

2.1 Some algebra
2.1.1 Differential polynomials and formal power series

A general framework. Using general differential polynomials, one can study
continuous- and discrete-time systems with constant or time-varying coefficients in a
unique framework.

Consider first the continuous-time case. Let K be a commutative Noetherian
domain equipped with the continuous-time derivative a — a = % (a € K), which is
assumed to be an endomorphism of K; K is the ring to which the coefficients of the
system under study belong (and is called the “coefficient ring”, for short). The ele-
ments of K[d] (where 0 is the indeterminate introduced in Section 1) are operators on
the system variables. Let w be such a variable and a € K. From the Leibniz rule:

d(aw) = adw + aw; this yields the “commutation rule”
(3) O0a = ad + a.

Consider now the discrete-time case. The coefficient ring K is a commutative
Noetherian domain equipped with the derivative ¢ — a” = a* — a, where a*(t) =
a(t+ 1), assuming that o is an automorphism of K. Let w be a system variable and
consider the indeterminate 0 = g — 1, as in Section 1. One has [15]: d(aw)(t) =
a(t+ Dw(t+1) —a(®)w(t) = a(t+ 1)(w(t+ 1) —w(2)) + (a(t + 1) — a(r))w(z), which
yields the commutation rule

(4) da=a"0+a.

A derivation y for which the commutation rule (4) holds is called an “«-derivation”
[7]. Clearly, (3) is of the form (4) with o = 1 (i.e. identity). Thus, the continuous- and
discrete-time cases are merged into a unique general framework, assuming that K is
a commutative Noetherian domain equipped with an «-derivation y where o is an
automorphism of K. The subring of constants of K (consisting of all elements a such
that a” = 0) is denoted as k; in everything that follows, k is a field, and, except when
explicitly stated, ““space’ means ‘“‘k-vector space”.

The ring of differential polynomials with coefficients in K and indeterminate ¢,
equipped with the commutation rule (4), is denoted by K[0; o, 7], as usual [7], and we
set R = K[0; 0, 7].
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Three cases. Let us specify the cases considered in the sequel:
(I) K = R (case of constant coefficients);
(I) K is a field;

(IIT) K =R[7] (in the continuous- or discrete-time case) or K =R{r} (in the
continuous-time case only). The ring R[7] is identified with the ring of polyno-
mial functions on the real line, and R{¢} denotes the ring of convergent power
series with real coefficients.

Cases (1), (II) and (III) are studied in Sections 3, 4 and 5, respectively.

Formal power and Laurent series. Set ¢ = 1/0 and = o~ '; 8§ := K|[o; 8, 7]] denotes
the ring of formal power series in o, equipped with the commutation rule [7]

(5) oa = da’o — od o,

deduced from (4). Similarly, L = K((;f,7)) is the ring of formal Laurent series
in g, equipped with the commutation rule (5). The rings R and S can be embedded
in L=K((o;8,7)); all these rings are domains (i.e. integral rings) and are non-
commutative, except if K = k. As 68 = So, this two-sided ideal is denoted by (0);
the units of S are the power series whose constant term is a unit of K. The ring L is
obtained from R by “localization at infinity”” (which yields K0, o a, 7], the ring of
skew Laurent polynomials [26]) and then “completion at infinity” (i.e. completion
with respect to the (¢)-adic topology).

Properties of the rings. The domains R and S are Noetherian since so is K ([26],
§§1.2.9, 1.4.5), therefore they are Ore ([7], §0.8)'. In case (III), one has the following
result:

Lemma 1. Let us assume that K =R[t]. (i) Any element of L is of the form
D20, finite bi(a)t', bi(c) € R((0)), i.e. L is a polynomial ring with coefficients in R((c)).
(i) Setting & =0 in the continuous-time case and £ =1 in the discrete-time one, L
is equipped with the commutation rule ta = at+ a®, where a e R((g)) and a®:=
—(£0+ 1) 4% (iii) The ring L = R((0))[1;1,¢] is a simple principal ideal domain.

Proof. (i) is obvious. (ii): By induction, for any i€ Z, 10" =0"t— (o +1)i0"" =
't — (E0+1) d%) . Using (i), it is easy to obtain (ii). (iii): As ¢ is a 1-derivation of the
field R((0)), L = R((0))[t; 1,¢] is a principal ideal domain ([7], §8.3). An element f of
L is right invariant if, and only if properties (a) and (b) below are satisfied ([7], §8.3,

Proposition 3.2): (a) ¢f = ft, which implies f € R[f], according to the commutation

! In what follows, ‘“noncommutative” means ‘“possibly noncommutative”. In addition, and
with this understanding, “field” means “noncommutative field” (also called “skew field”” or
“division ring” by many authors), “Ore” means “left and right Ore”, “Noetherian” means
“left and right Noetherian™, etc.
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rule in (ii). (b) For any c € R((0)), ¢f = fc; with ¢ = o, this implies /" € R by (5).
Therefore, L is simple ([7], §8.3, Corollary 3.6). ]

In cases (I) and (II), R and S are principal ideal domains, S is local with maximal
ideal (¢), and L is the quotient field of S. All these rings are commutative in case (I).
k = R in cases (I) and (III).

2.1.2 Modules

Let D be a Noetherian domain with quotient field Q; p.# (resp. p M ) denotes the
category of all left (resp. finitely generated left) D-modules. Due to the Noetherian
property of D, any M e p./ is finitely presented, i.e. it has a presentation

6 ELFLM—o

where, e.g., E=D? F = D" (q<k) and where ¢ : F — coker f is the canonical
epimorphism. Let M be defined by (6), let (&), ., and (w;),_,, be bases of £ and
F, respectively, and assume that the elements of £ and F are represented by row-
matrices in those bases, as usual in the theory of “D-modules” [14]. Let B e D7 be
the matrix representing f; f is the right multiplication by B (written eB in the liter-
ature). Setting ¢; = f(&), | <i < g, one has ¢; = &B, thus

(7) Bw=e¢

where e = ey, ... ,eq]T and w = [wy,... ,yk]T. The module M = cokereB (i.e.
the module with “matrix of definition” B) is generated by the elements w; = ¢(w;),
1 <i <k (written M = [w]p, where w = [wy,...,w]"), such that

(8) Bw =0.

This module M is said to be defined by generators (the elements w;) and relations
(the rows of (8)) [29].
As D is an Ore domain, the set of torsion elements of M is a submodule of M [7].

2.1.3 Matrices

Completely left coprime factorizations. Let 77 be a matrix with entries in D (or “a
matrix over D, for short). Assume that V" is right regular; 7 is said to be complet-
able if there exists a matrix W over D, having the same number of columns as V/,

V. . . . .
such that [ W] is unimodular [7]. Left coprimeness of matrices over D is not an

ambiguous notion when D is a principal ideal domain. In more general cases, several
kinds of left coprimeness may be defined. In this paper, the following notion will be
useful:
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Definition 2. Let D and N be two matrices over D, having the same number of rows,
and assume that 7 :=[D N] is right regular. The pair (D, N) is said to be com-
pletely left coprime if V' is completable.

Let Be Q7*F. There exist matrices D € D?*? and N € D such that D is of rank ¢
(i.e. invertible over @)% and B= D~'N.

Definition 3. The above pair (D, N) is said to be a completely left coprime factoriza-
tion (CLCF) of B over D, if this pair is completely left coprime.

Remark 4. As is well known, a left coprime factorization of any matrix B € vk
over D exists if D is a principal ideal domain, as a consequence of the Smith form
([7], Chap. 8). If D is more general, e.g., a Noetherian domain, a completely left
coprime factorization of B over D does not necessarily exist.

Smith-MacMillan form at infinity. Let us consider the rings R and S, as defined in
§2.1.1, and let B(d) € R”* be a matrix of rank r. The following result is classic in
case (I) [32] and has been extended to case (II) in [5]: there exist two unimodular
matrices U(o) € 877 and V(o) € 8°*F, as well as integers vi,..., v, v < -+ < vy,
such that

(9) U(O_)B(a)V—I(O_) — dlag{UOI}ISiSr 8 ,

The matrix in the right-hand member of (9) is called the Smith-MacMillan form at
infinity of B(0) ([34], [32]). Define the finite sequences (4;),.;., and (7;),_;_, as:
f; = max(0,v;) and 7; = max(0, —v;). Among the integers z; (resp. 7;), those which
are nonzero (if any) are called the structural indexes of the zeros at infinity (resp. of
the poles at infinity) of the matrix B(0) ([5], [25]); they are put in increasing (resp.
decreasing) order and denoted by y; (1 <i < p) (resp. 7; (1 <i <y)).

2.1.4 Duality

Kernels. Let D be the ring R or § in §2.1.1; D is a k-algebra. Let W € p.#, and let
M e p.#/' be the module presented by (6), i.e. M = cokereB. The abelian group
Homp (M, W) consisting of all homomorphisms M — W has a canonical structure
of k-vector space and of left E-module, where E is the endomorphism ring of W,
since W is a left (E, D)-bimodule®; Homp(M, W) is called the “W-dual”* of M

2 Recall that over an Ore domain D, the row and column ranks of a matrix are equal and
coincide with the rank of this matrix over the quotient field Q: see, e.g., ([7], §5.4, exerc. 11).

3 An (E,D)-bimodule is a left E-module which is a right D-module (with an associative law
relating the two actions). In this paper, where all modules are left modules a “left (E, D)-
bimodule™ is a left E-module which is a left D-module provided that the rings E and D are
compatible, i.e. such that ed = de, Ve € E, Vd € D (with an obvious associative law).

* Tt should not be confused with the “algebraic dual” Homp (M, D), which will not be used in
this paper.
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([19], §19D) and is denoted as M*. This module is E-isomorphic to the set of all ele-
ments w e W such that Bw = 0, and is identified with this set assuming that the
generators chosen for M are those in §2.1.2. Therefore, M* is the kernel in W* of the
left multiplication by B (written Be in the literature); denoting this kernel as ker Be,
one can write M* = ker Be. In what follows, the class of all E-modules of the form
M*, where M € p.//, is denoted as (p.#")".

The module A. Let D = S in any case cons1dered in §2.1.1. For any p e N (where N
denotes the set of natural integers), set C,= (aﬂ) (thus Co=0) and let 6“7V be
the canonical image of 1 € § in C,. The S-module C, is isomorphic to a submodule
of C;4+1, under rlght multiplication by o, and 0o =g+ (a"*1) = 66'¥; identifying
oY with go¥) , C, is embedded in C,;1, and

~ Ja ~
(10)  C, =K.
i=1

Set

(1) A= é:@

lim
—
u

The left S-module A becomes a left L-module, setting 616" = 5**1) and thus a left
R-module by restriction of the ring of scalars. Considering o and ¢ as operators on A,
o is a left inverse of d, but ¢ has no left inverse since gé = 0.

Assuming that K is a field (case (II)), the only simple S-module is (), and the S-
module A is the canonical cogenerator of g.# ([19], §3).

Assuming that K = R (case (1)), § is commutative. According to Matlis’ theory
([19], §3I), as S is complete (for the ()-adic topology), S and the endomorphism ring
E of A are isomorphic (as rings), thus these two rings are identified.

A useful lemma. In the lemma below, D is a Noetherian domain, W is a D-module
and E is the endomorphism ring of W.

Lemma 5. (i) Consider the following relation, denoted as ~, between two elements of
(p#")*: M" ~ N' if (and only if ) there exist two D-modules M and N in p.4’ such
that M' = M*, N' = N* and M ~p N; it is an equivalence relation, and M' ~ N’
implies M’ ~g N'. (ii) Let d € D be such that dD = Dd, and let M € p.#'. The set
dM is a submodule of M and dM* = (dM)*. (iii) Let d be as in (i) and M € p.4’ . If
M is such that dM = 0, then dM* = 0. Conversely, assuming that W is a cogenerator,
if dM* =0, then dM = 0. (iv) Let 0 # d be as in (ii), and let n and m be natural
integers such that M* ~ W™ N* ~ W" and dM* = dN*, if W is a cogenerator, then
M*=N"*.

Proof. (i): The relation ~ is obviously an equivalence relation. Assuming that
M* ~ N*, there exists a D-isomorphism j: M — N. Let j*: N* — M* be defined
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as: j*A:=Jj, Ae N*; j* is an E-isomorphism. (ii): As dD = Dd, dM is an S-
submodule of M. Let A€ (dM)*; for any me M, A(dM) = dA(m) = (d1)(m). The
mapping (dM)" 3 A — di e dM* is a canonical E-isomorphism under which the E-
modules (dM)™ and dM* are identified. (iii) is an obvious consequence of (ii). (iv):
There exist two free D-modules ®,, ~p D" and ®] ~p D" such M* = (®,,)" and
N*=(®,)". By (i), d(®,)" = (d®,,)" and d(P,)" = (d®,)"; therefore, assuming
that dM* = dN*, one obtains (d®,,)" = (d®,)", which implies that d®,, = d®,, if W
is a cogenerator ([19], (19.45)). In addition, d®,, ~p ®,, and d®, ~p ®, (under
multiplication by d), thus ®,, =~p ®,, which implies n = m since any Noetherian
domain has invariant basis number. Thus, there exist two unimodular matrices U
and V' belonging to D" such that ®, = UD" and ®, = VD", hence dUD" =
dVD". Therefore, UD" = VD" since D is a domain, i.e. ®, = ®@,. This implies that
M* = (D,)" = ()" =N". O

2.2 Systems theory
2.2.1 Linear systems and their interconnections

Smooth linear systems. According to Fliess [8], a linear system is a module M e g4’ .
It has an equation of the form

(12)  B(@)w =0,

similar to (8). This is a “‘cokernel representation”, since M = coker eB(0). In the
context of this paper, this module M is called, more specifically, the smooth system
defined by (12) (or by the matrix B(d)). The “module of uncontrollable poles” of
M (also called its “module of input-decoupling zeros™ [4]) is its torsion submodule
T (M). The system M is said to be controllable if it is torsion-free [8]°. Considering
two R-submodules M| and M, of M, such that M, = M,, one has

. O
MZ/M17

i

O, =

where Q1 = M /M, and Q, = M /M,. Therefore, the following relation among pairs
of quotients of M is an order relation: O, < Q; if (and only if) Q5 is R-isomorphic to
a quotient of Q. Let C(M) be the set of all quotients of M which are controllable
systems, ordered by the above relation; M /7 (M) is the greatest element of C(M).

Definition 6. The system M /7 (M) is called the controllable quotient of M°.

> There are different notions of controllability [10]; we are considering here “torsion-free con-
trollability”. In cases (I) and (IT) in §2.1.1, and all kinds of controllability are equivalent since
R is a principal ideal domain.

¢ We do not specify: the greatest controllable quotient, for short.
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In cases (I) and (IT) in §2.1.1, as R is a principal ideal domain, there exists a free
module @ such that

(13) M=007 (M),
therefore ® ~g M /7 (M).

Interconnection of smooth linear systems. The interconnection of (smooth) linear sys-
tems is defined in [9]. In the case of several systems, one may first interconnect two
of them, then interconnect a third one with the system resulting from the intercon-
nection of the two first ones, etc. Therefore, it is sufficient to consider the case of two
smooth linear systems M; and M,. Their interconnection is a fibered sum [20]: let G
be a free module in g.#/ and assume that there exist two morphisms %; : G — M;,
i=1,2. Let H be the submodule of M = M| @ M, generated by the elements of the
form h(g) = (hi(g),—h2(g9)), g € G, i.e. H = Imh, where h = (h;, —h,). The quotient
module M = M /H, written M, Ug M5, is the fibered sum of M, and M, over G
(with respect to the morphisms /1, 4,); from the point of view of systems theory, it is
the interconnected smooth system.
Let £ : M — M be the canonical epimorphism and set h = &h, so that

(14)  h(9) =0, geG.

The system M is defined by an equation consisting of the equations of the subsystems
M;, plus the interconnection equation (14). More specifically, let us assume that M;
is defined by the equation B;(d)w' =0 (i =1,2), where w'= (wf,...,w; ). With
respect to these presentations, the interconnection equation can be written J; (0)w! =
J>(0)w?, where J;(0) and J,(0) are matrices over R, with the same number of rows
and with, respectively, k; and k, columns. Therefore,

Bi(&) 0
(15) M =cokere| 0  By(d)
Ji(0)  —J2(0)

(see [9] for more details).
2.2.2 Behavioral theory

Behaviors. In the behavioral theory [39], [28], one is interested in the solutions of
(12) in a space of (generalized) functions or sequences W; W is assumed to be an R-
module. Let E be the endomorphism ring of W and M = coker eB(d); as already
said, the set of all the above-mentioned solutions is an E-module, written ker B(0)e,
and identified with M* = Hompg(M, W). This E-module ker B(d)e is called the
behavior (or, more specifically, in the context of this paper, the smooth behavior)
associated with M in a product of copies of W [39]".

7 The terminology used in [27], [11] for the same concepts is slightly different.
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Generally speaking, whereas a ““system’ M is a cokernel, the associated ““behavior”
M* is the corresponding kernel (in a product of copies of a specified “solution space”
W). Of course, M* can be determined from M; the converse is true if W is a co-
generator since, in that case, M* = N* implies M = N ([27], (2.47); [19], (19.45)). If
two behaviors N* and M * are such that N* =« M*, N* is said to be a subbehavior of
M ((27).
Remark 7. Let Q = % be a quotient of M, and consider the short exact sequence

(l6) 0—->N—-M—Q—0.

As the functor Homg(., W) is contravariant and left exact, it yields the exact
sequence

0—-Q"—>M"— N~

so that Q* can be identified with an E-submodule (i.e. a subbehavior) of M*.
Assuming that W is injective, one obtains the short exact sequence

0—-Q0"—>M"—N"—0,

thus N* =g AQI ; in other words, one has the correspondence quotient < submodule
under W-duality.

A direct sum decomposition. In case (I) in §2.1.1, with W =% (R;R), consider-
ing the decomposition (13), there exist subbehaviors M} ~ ®* ~ (M /7 (M))" and
M; ~ (7 (M))" of M* such that

(17)  M*=M;® M,

The subbehavior M is unique and is called the “controllable subbehavior” of M*,
whereas the subbehavior M, (unique up to isomorphism) is “‘uncontrollable”: see
(28], Sect. 5.2. This means that the elements of M are “free” (i.e. subject to no
relation) whereas those of M, satisty an autonomous differential equation and are
completely determined by their initial conditions. The correspondence between the
decompositions (13) and (17) is partly explained by Remark 7, since the module
€ (R; R) is injective. It is further explained below in a slightly different context (see
Proposition 18).

3 Case (I)

It is assumed in this section that K = R (case (I) in §2.1.1). The endomorphism ring
E of the S-module A is identified with S, according to Matlis’ theory (see §2.1.4).
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3.1 A key isomorphism

3.1.1 Continuous-time case

Interconnecting two continuous-time systems from time 0 only, consists, from the
analytic point of view, in multiplying a function, such as the function e in the first
row of (2), by 1 — Y, where Y is the Heaviside function (i.e. Y(¢) = 1 for t > 0 and 0
otherwise). Let W = ¢“(R; i) and set

(18) A= @ RoW

n=0

where ¢ is the Dirac distribution. The R-module generated by Sy := (1 — Y)W is (as
R-vector space): S = Sy @ A. The operator 0 is an automorphism of the R-vector
space S, and o = @~ is the operator defined on S by: (ow)(r) = L[rw w(g) dg. The
space S is an L-vector space (and thus an S-module which is an R-module, by
restriction of the ring of scalars), and Sj is a S-submodule of S. The R-module A is
not an S-module, but A =~y S% :=A; A is clearly an L-vector space (and thus an R-
module which is an S-module). The nature of the above isomorphism, denoted as ,
can be further detailed:

Lemma 8. The isomorphism t, defined as: A3 A0 — 10 € A, is R-linear.
Proof. First, notice that any element of A (resp. A) can be uniquely expressed in

the form Ad (resp. A0) for some A€ R, thus 7 is a well-defined Z-isomorphism. In
addition, for any x € A, such that x = 10, A€ R, and any u € R, 7(ux) = t(uld) =

wio = pr(x). ]
Therefore,
s
19 A~p—:=A
(19) RS

One has 60 = Y — 1; setting § = (), one obtains 60 = 0, thus 6 and J can be iden-
tified, as well as the S-modules A and A. As a result, by (18), (11)

(20) A=A= @ R6"W.

n=0

In the remainder of this section, the canonical epimorphism § — S% = A is denoted
as ¢. Let 0 be the R-linear projection Sy ® A — A; the following diagram is commu-
tative:

So® A L A
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3.1.2 Discrete-time case

Let Y be the sequence defined by Y(7) = 1 for # > 0 and 0 otherwise. Interconnect-
ing a discrete-time system up to time O only, consists, from the analytic point of
view, in multiplying a sequence, such as the sequence e in (2), by Y. Let W = R%
and S) = YW. Let A be defined as in (18), but where ¢ := dY is the “Kronecker
sequence”, such that d(7) =1 for + =0 and 0 otherwise (thus, A is the R-module
consisting of all sequences with left and finite support). The R-module generated by
So is (as R-vector space) S = Sy @ A. The operator ¢ is an automorphism of the R-
vector space S, and ¢ = 8! is the operator defined on S by: (aw)(z) := 3 /.’:% w(j);
S is an L-vector space. The R-isomorphism (19) still holds; the same identifications as
in §3.1.1 can be made and the same notation can be used. Obviously, the discrete-
time case is completely analogous to the continuous-time one, and these two cases are

no longer distinguished in the remainder of this section.

3.2 Impulsive systems and behaviors

3.2.1 Impulsive and pseudo-impulsive behaviors

Consider the temporal system (2), where B(0) € R7**.

Proposition 9. The following properties are equivalent: (i) For any e € S{, there exists
w e S* such that (2) is satisfied. (ii) The matrix B(0) is right regular, i.e. ¢ = r, where r
is the rank of B(0) over R.

Proof. (i) = (ii): If the matrix B(?) is not right regular, eB(0) is not injective, i.e.
there exists a nonzero element #(0) € R (considered as a 1 x ¢ matrix with entries in
R) such that #7(0)B(0) = 0. Therefore, for we S* and e e S/ to satisfy (2), e must
satisfy the “compatibility condition” #(d)e = 0. (ii) = (i): By (9), assuming that
g =r, (2) is equivalent to

(22)  [diag{c"},_,, Olv=nh

where v = V' (o)w and h = U(o)e; (22) is equivalent to ¢'v; = h;, 1| < i < ¢q. For any
v; € Z and any h; € Sy, v; = 0"'h; belongs to S. Therefore, (i) holds because 4 spans S/
as e spans the same space (since Sy is an S-module). O

Remark 10. The compatibility condition in the above proof is equivalent to the nec-
essary and sufficient condition given in ([18], Theorem 5) for (2) to have solutions.

In the remainder of this section, the matrix B(d) € R?* is assumed to be right regular.

Notation 11. For any scalar operator @ and any integer / > 1, w(; denotes the oper-
ator diag(w, ..., ), where  is repeated / times.

Definition 12. Let #~ = S* be the space spanned by the elements w satisfying (2) as e
spans S¢. The impulsive behavior of (2) is: B, = Oy W
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Definition 13. The pseudo-impulsive behavior of the temporal system (2) (or “asso-
ciated with the matrix B(0)”) is: .7, = 7() B0

3.2.2 Impulsive system

Considering the Smith-MacMillan form at infinity (9) of B(J) (with g =r),
set I(o) = diag{c™},_,, and X(0) = dlag{a Fi<icy so that diag{c"},_,_, =
I (0)(0) = ()11 (0). By (9), B(@) = A" '(2)B" (6), where A(g) = Tl(c)U0)
and Bt (o) = [Z(a) 0]V (o). The following result is classic (see, e.g., [37], Sect. 4.1,

(43)):

Lemma 14. (i) The above pair (A(a), B (0)) is a left coprime factorization of B(d) over
S. (ii) Let (41(0), B (0)) and (A2(0), By (a)) be two left coprime factorizations of
B(0) over S, then, there exists a unimodular matrix W (o) over 8 such that By (o) =

W (o)B| (0) and Ay() = W(0)A1(0).

Let (A(a), B™(0)) be any left coprime factorization of B(d) over S. By Lemma 14,
the module M ™ = coker e B* () is uniquely defined from B(9).

Definition 15. (i) The S-module M = coker eB™ (q) is called the impulsive system
associated with B(d). (ii) The torsion submodule of M, written 7 (M), is called
the module of uncontrollable poles at infinity of the temporal system (2) (or associated
with the matrix B(9)) [5]®.

There exists a free module ®* ~g 8", k¥ = k — ¢, such that
23) MT=0"@®T(M™").
The ascending chain of invariant factors of 7 (M™) (possibly empty) is

() = -+ = (oM); thus 7 (M™) has the direct sum decomposition into cyclic
indecomposable submodules:

@4 T s @C,

The connection between the pseudo-impulsive behavior .7, and the impulsive system
M is given by the following theorem, where (.)" := Homg(.,A):

Theorem 16. o7, = (M™)".

Proof. By Definition 13 and the commutativity of the diagram (21), o7, is the E-
module (or the S-module, since E and S are identified) consisting of all elements

8 1t is called the module of input-decoupling zeros at infinity in the cited reference (in accor-
dance with the terminology introduced in [4]), but this denomination should be reserved to the
case where the inputs of the system have been chosen among its variables.
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W= (;;(k)w for which there exists 4 € S such that (22) is satisfied. With the notation
in the proof of Proposition 9, this equation is equivalent to ¢"v; = h;, 1 <i < gq. For
any index i such that v; <0, v; = ¢~"h; belongs to Sy, thus o, = 0 (where ; := ¢v;).
Therefore, .«Z,, is the S-module consisting of all elements w = V~!(¢)s such that
¥ € A satisfies [2() 0]5 = 0; as a result, .7, = ker B*(g)e. O

Remark 17. According to Theorem 16, the space .7, is a “behavior’” in the sense
specified in §2.2.2, i.e. a kernel, whereas the space %,, cannot be expressed in a so
simple way (in this sense, there is an abuse of language in the expression “impulsive
behavior”). This is why the notion of “pseudo-impulsive behavior” is very useful.
The notion of ‘“‘subbehavior” of a pseudo-impulsive behavior .«Z,, is defined in
accordance with the general definition in §2.2.2.

3.2.3 Structure of impulsive behaviors

The following result is analogous to the direct sum decomposition in §2.2.2.

Proposition 18. (i) There exist subbehaviors <, . ~ (O1)" and A, , ~ (T (M*1))" of
Ay such that ot = Ay o @ Ay y. (1) The subbehavior <7, . satisfying this property
is unique and such that </, . ~g A" (Lo 1s called the “controllable pseudo-impulsive
behavior”). (iil) ., =g 17, (j’ﬂ‘ (this subbehavior, unique up to S-isomorphism, is
said to be “‘uncontrollable” ).

Proof. (i): By (23), there exists a canonical Z-isomorphism j* : .7, — (®)"x
(7 (M™))" given by j*A = (A1, 42), where ji : ®" — M* and j,: T (M*) — M+
are the canonical injections ([29], Theorem 2.4). Set <7, . = j* '((®")" x 0) and
Apu =" O0x (T (M"))"). Then, oL, =L ® Ay, and by Lemma 5(i),
Ao~ (OF) and Ay ~ (T(M))". (ii): As E =S, o/, =g (0)" =gA*. By
Lemma 5(iii), there exists a natural integer x such that o”.«Z, , = 0, thus o”.oZ,, =
ol .. Assuming that there exist two other S-modules .7, . ~ (®")" and o/ , ~

(7(M*))" such that o/, =/, , @/, , one obtains o'/, =o'/, thus
Ay =), . by Lemma 5(iv), since A is a cogenerator (see §2.1.4). (iii):
Apu=s T (M7))" =s [[, C; by (24) and C; = C,,, according to Matlis’ theory.

O

For any integer x> 1, set
1§ K i1
(25)  Ci=7 (G =PRI,
i=1

The following theorem is an obvious consequence of Proposition 18:

Theorem 19. Let us consider the temporal system with matrix B(0) (assumed to be
right regular). Its impulsive behavior %., can be expressed as: B, = Bo,c ® B, us
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where B, o = r(kl)&/w,c ~p A" and B, = r(‘kl)tsz/@u >y [17, C,, (the space B .,
which is uniquely defined, is called the “controllable impulsive behavior”, and the im-
pulsive behavior $., ., unique up to R-isomorphism, is said to be “‘uncontrollable” ).

3.2.4 Temporal interconnections

More details about temporal interconnections can now be given. Consider two tem-
poral systems

{Bi(a)w"(t) =ei(t), teT
ei(t)=0, teTy

(i=1,2). They can be interconnected; the matrices J; and J, in (15) are assumed
to have their coefficients in . According to Sect. 1 and §2.2.1, we are led to the
following definition:

Definition 20. The interconnected temporal system is defined by

B(O)w(t) =e(t), teT
{e(l) =0, teT,

By (0) 0
where the matrix B(0) := 0 B,(0) | is assumed to be right regular; J; and J,
Ji —J>

are called the interconnection matrices.
One has the following result:

Theorem 21. The impulsive system M of the interconnected temporal system is defined

as
B (o) 0
(26) M* =cokere| 0  Bf(0)
Ji —J>

where (A;(c), Bi (¢)) is any left coprime factorization over 8 of B;(0) (i = 1,2).

Proof. Set

oS O

=~
|

S
o
=

=~
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where p is the number of rows of the matrices J; and J,. Obviously, (4(a), B™(a))
is a left coprime factorization over S of B(0); therefore, the proposition is proved,
according to Definition 15. O

Remark 22. By Theorem 21 and (15), M can be written as a fibered sum of the
impulsive systems M,” = coker eB;". In other words, the impulsive system of the in-
terconnected temporal system is obtained by interconnecting the impulsive systems of
the temporal subsystems.

4 Case (II)

It is assumed in this section that the “coefficient ring” K is a field (case (II) in §2.1.1).
As said in Section 1, assuming that the coefficients are time-varying but belong to
a field amounts to discarding singularities. Nevertheless, there is no natural definition
of the impulsive behavior of a temporal system in the present case and the key iso-
morphism 7 in Lemma 8 is no longer valid. The results in this section are essentially
formal and may be viewed as an introduction to those in Section 5.

Let B(0) € R be a right regular matrix. According to §§2.1.1, 2.1.3, the state-
ment in Lemma 14 remains valid. Therefore, the following definitions make sense
(the first one was already given in [5]):

Definition 23. The impulsive system and the module of uncontrollable poles at infinity
associated with the matrix B(0) are defined as in Definition 15, i.e. as M and
T (M), respectively.

Definition 24. The pseudo-impulsive behavior .7, associated with B(0) is defined as:
A, = (MT)", where (.)" := Homg(.,A).

Matlis’” theory does no longer apply in the present context, thus the ring S and the
endomorphism ring E of the S-module A must be distinguished. However:

Proposition 25. For any natural integer u, C'; = C,.

Proof. For 1 =0, C',, = C’; =0. For u>1, C’; is the set of all elements x € A such
that ¢/x = 0. Obviously, 5~ belongs to C; if, and only if 1 <i < u. By (10),
o= C!, Let us prove by induction the reverse inclusion. By (5), for any a € K,
oad = (afo - 0al’¢)5 =0, which implies that C, = Kd = C;. Assuming that
C, c C , u>1, let aeK; then, otad™ = a/‘(aﬂ—aaﬁy)éw U: by hypothesis,
alolr 0 ~and ca?8"~V belong to C;, thus o#*1ad® =0, Wthh implies that
Cur1 = C;H- O

The direct sum decompositions (23) and (24) are correct [5] and A is a cogenerator
of g.Z. Therefore, by Proposition 25, one has the following result, in place of the
statement of Proposition 18:
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Proposition 26. (i) There exist subbehaviors Z., . ~ (®")" and 4., , ~ (T (M™))" of
oLy, such that o, = oAy o @ A y. (1) The subbehavior <., . satisfying this property
is unique and such that /.. . ~g A* (ot . is called the ““controllable pseudo-impulsive
behavior”). (i) .., =g []/, C~'ﬂl, (this subbehavior, unique up to E-isomorphism, is
said to be “‘uncontrollable”).

5 Case (1II)

5.1 Impulsive behavior of a temporal system with time-varying coefficients

The key isomorphism valid again. Case (III) in §2.1.1 is now considered. In the case of
continuous-time temporal systems, let us slightly modify the definition of the spaces
W, Sy and S in §3.1.1 (in the case of discrete-time temporal systems, their definition,
as given in §3.1.2, is left unchanged):

For any integer n > 1, let W, = ¢*(I,;;R), where I, = |1 +o0[. As I, = I,
W :=lim W, is the space of germs of ¥~ functions on an open connected neigh-
borhood of [0,+o0[. Let So = (I — Y)W and S = Sy @ A, where A is defined by (18).
The space S is still the R-module generated by Sy, and the “continuous time deriva-
tive” 0 is an automorphism of the R-vector space S. For any w € S, there exists n > 1
such that we (1 — Y)W, @ A, thus (ow)(?) := Jﬂim w(¢) dg is defined for any r € I; o
is an automorphism of S, and ¢ = ™!,

As in Section 3, in both the continuous- and discrete-time cases, Sy and S are
S-modules and S is an L-module (a property which was lost in Section 4). The
canonical S-linear epimorphism S — 2 := A is denoted as ¢.

Proposition 27. (i) For any natural znleqer 1, the R-vector space C, := P, KotV

satisfies the following equality: C, = §R5 . (11) The R- vector space A defined
by (18) has a natural structure of R-module and A =P, Ko (iii) The quotient A
is an L-module (and thus an R-module which is an S-module by restriction of the ring
of scalars), and it satisfies the following equality: A = ®t>0K5<#) =®D,>0 R

(iv) The R-isomorphism t© deﬁned as in Lemma 8 and (19) still holds and, setting
C, = 1(C,), one has C,, = K6 - =L, R

Proof. (i): Obviously, @, RV = @, K5V, Let us prove the converse by
induction. Let ¢ € K; as ad = a(O) (m both the contmuous— and discrete-time cases),
Ko = Ro. Assuming that @" R0~V let a € K. One has ad'”) =
add" Y, setting a = b*, one obtalns ad” (ab by)é #) by (4), and by hypothesis
bV e @, R, thus apo EB,“:]' RV, Finally, ad™ e @' ®otY,
thus @' KoV < @' Ro""V. (i) is an obvious consequence of (i), since
A =1im C,. (iii) and (iv) are then clear, by the same rationale as in the proof of
Lemma 8. O

By Proposition 27, the diagram below (where the R-linear projection 6 is defined as in
§3.1.1) is commutative and, in the present section, must be considered in place of (21):
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S DA — A

Difficulties. The structure of the ring S is not as simple as in Section 4, since S is
no longer a principal ideal domain. In addition, an important difference with the
situation in Section 3 appears in the following proposition:

Proposition 28. Let y : A — A be defined as: y(i0) = 15, where e R. (i) ¥ is an
S-epimorphism. (ii) 0 # 1Cy < ker ).

Proof. (1): Any element of A can be uniquely expressed in the form 29, A e R, and
every element of A can be expressed in the form A6 for some A € R, thus y : A—A
is a well-defined Z-epimorphism. Let us show that  is S-linear. Let x = 16 € A,
and (as a result of an Euclidean division by 0) write 4 = Ao + 041, where o € K and
/1 € R; then, ox = 4,0 (since ¢ is a left inverse of 0: see §2.1.4). Therefore, y(ox) =
210 = a(x). (ii): As t € K and C = K, tCy is nonzero. As already said in the proof
of Proposition 27(i), ad = a(0)d, thus 0 = 0, therefore (C;) = 0 since C; = K.

[

By Proposition 28(i), A ~sA/kery, and by Proposition 28(ii), kery is nonzero.
Therefore, A and A cannot be identified, and (20) is no longer true.

Impulsive behavior of a semiregular temporal system

Definition 29. (i) The temporal system (2) is said to be semiregular if, for any e € S,
there exists w € S* such that (2) holds. (ii) The impulsive behavior %, of a semi-
regular temporal system is defined as in Definition 12.

For the temporal system (2) to be semiregular, B(J) must be right regular, as shown
by the proof of Proposition 9. Let us further study semiregularity, assuming that
K = R[1]. Let B(0) € R” be the matrix of the temporal system (2). According
to Lemma 1, there exist two unimodular matrices U(z,¢) and V(t,6) over L =
R((a))[t; 1, ¢] and a nonzero element w(z, o) € L such that

_ —_ diag{l,..., 1, (¢ 0

U(t,0)B@) 7 (1,0) = | M8 L=t o)} 0
0 0

The matrix in the right-hand side of the above equality is the Smith form of B(0) over

L ([7], §8.1, Corollary 1.2).

Theorem 30. Assuming that K = R[t], the temporal system (2) is semiregular if, and
only if its matrix B(0) is right regular and U,(t,0)S{ = w(t,0)S, where U,(t,0) is the
last row of U(t,0).
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Proof. Assuming that B(0) is right regular, (2) is equivalent to diag{1,...,1,w(¢,0)}0
= U(t,0)e, where © is the vector formed from the ¢ first rows of V(t a)w. The only
problem is with the last component &, of o. The equation w(t,)d, = U,(t,0)e has a
solution ¢, € S for any e € S¢, if, and only if U,(t,0)S{ = @(1,0)S. O

Corollary 31. In the continuous-time case with K = R[1], let B(0) € R"** be the matrix
of a temporal system, and assume that B(0) is right regular. If the coefficient of least
order of w(t,a) (where w(t,o) is considered as an element of K((a, 1, dt))) does not
vanish at t = 0, then the temporal system is semiregular.

Proof. The element w(z,0) can be written as: w(t,0) =Y, v fi({)a’, where N € Z,
every fi(1) belongs to K = R[z] and fy(¢) # 0; fy(¢) is the coefficient of least order
of w(f,0). Let us assume that fy(0) #0, and set w(s,0) = fy(0)u(t, a)al,
where u(t,0) =1—g(t,0) and g(t,0) = = >, v (fi(t)/fn(1))a" V. The elements

u(t,o) and fy(t ) are units of the ring W{[o;1,4]] (the former with inverse
14+320(g(2,0))7). In addition, ¢V = S. Finally, as S is a W |[o; 1,4]]-module,
w(t, J)S =S, and U,(t,0)S{ < S.

Example 32. Let us consider the temporal system with matrix
t 0
Bo)y=| 0 0 1
0 1

The Smith form of B(d) over L is diag(1,1,7), and U;3(t,6) =[l @ — dJ; thus,
Us(t, O’)Sg = Sp ® RJ. As Sy @ R is not included in zS, this temporal system is non-
semiregular.

5.2 Regular temporal systems
5.2.1 Definition and properties of regularity

Definition 33. The temporal system (2) is said to be regular if the matrix B(d) € R
is right regular and has a Smith-MacMillan form at infinity, i.e. if there exist unim-
odular matrices U(a) € 8, V(5) € 8% aswell asintegers vi, ..., v, v < -+ < vy,
such that (9) holds with r = q. The structural indexes of the zeros at infinity of such a
matrix B(0) are the integers 4, (1 < i < p) as defined in Section 2.1.3.

The following result is clear (by the same rationale as in the proof of Proposition 9):
Proposition 34. A regular temporal system is semiregular.

Definition 35. g./#*" is the full subcategory of s.#/ whose objects are the modules
M of the form (23), where .7 (M) is zero or is such that there exist natural integers
pand p;, 1 <i<p, 1 <p <--- <p, for which (24) holds.
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Proposition 36. Let B(0) e R K be the matrix of definition of a regular temporal sys-
tem. (i) The matrix B(0) has a CLCF (A(a), B* (o)) over S. (ii) Let (A(c), B (a)) be
any CLCF of B(0) over 8; M+ := coker @B (o) is uniquely defined from B(0) and is
an object of g M.

Proof. (i): Let I1(o) and Z(o) be the matrices as defined in the beginning of §3.2.2.
The pair (Il1(0), [2(g) 0]) is completely left coprime over ®[[g]] = S. Thus, there
exist matrices X (o), Y (o) over R[[o]] such that the following matrix Q(¢) is unim-
odular over R[[a]]:

With the notation in the beginning of §3.2.2, B(0) = A~'(¢)B*(5), where A(c) =
II(o)U(a), Bt (o) = [X(6) 0]V (o), and where the matrices U(cs) and V(o) are un-
imodular over . Now,

oal! ][40 7

(where each “«” denotes a non specified submatrix). As the matrix in the left-hand
side of the above equality is unimodular over S, (4(a), B*(v)) is a CLCF of B(é)
over 8. (ii): For the above CLCF, coker eB™(g) ~gcokere[%(s) 0]; in addition,
statement (ii) of Lemma 14 is still correct (by the same rationale as in, e.g., [37], Sect.
4.1, (43)). O

5.2.2 Impulsive modules and behaviors of regular temporal systems

Proposition 37. The S-module A is a cogenerator for the subcategory g/ *™™.

Proof. 1) This statement means that for every nonzero f : M+ — N*, M* eg.//*"™,
NT eg . /*™, there exists g : NT — A such that gf # 0. As S €g .#*"™°, this property
is equivalent to the following one: for any N* eg.#*"™ and any 0 # x € N*, there
exists an S-morphism /i : N* — A such that i(x) # 0 (see [19], Proposition (19.6)
and the proof of this proposition) 2) If Nt = éﬂ, u>1 and 0#xe N,
Ju(x) = x # 0, where 4, : C, — A'is the canonical injection. 3) Let us prove that for
any 0 # x € §, there exists an S-morphism f : § — A such that f(x ) ;é 0. Let m be
any natural integer; the morphism £, : 8§ — A, defined as £, (y )= y& ™ is S-linear.
Writing y =", »io', y;i € K, one obtains fm( ) =S iag yi0" 9 Slnce 0+#x=
> i Xio', there exists a nonzero x; € K, thus f}( x) # 0, and 3) is proved. 4) As any
NT es 4™ is a direct sum of cyclic modules, by 2) and 3), for any N eg .#*"™¢
and any 0 # x € N*, there exists an S-morphism / : N* — A such that i(x) # 0.

a

° Notice that A ¢g.#*". Similarly, one can prove that the module A is injective for the sub-
category /4",
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By Proposition 36, the following definition is relevant:

Definition 38. The impulsive system and the module of uncontrollable poles at infinity
of a regular temporal system are defined as in Definition 15, i.e. as M and 7 (M),
respectively. Its pseudo-impulsive behavior <7, is defined as in Definition 24.

Proposition 39. For a regular temporal system, the statements of Propositions 25 and
26 are valid.

Proof. The proofs of the above propositions are still valid, using Proposition 37 for
the latter. O

The structure of the impulsive behavior of a regular temporal system is now com-
pletely elucidated:

Theorem 40. Let us consider a regular temporal system with matrix B(0) € R7*. Let
Ay and oy . be its pseudo-impulsive behavior and its controllable pseudo-impulsive
behavior, respectively, and let </, , be an uncontrollable pseudo-impulsive behavior
such as in Proposition 26. (1) The impulsive behavior %., of the temporal system is
expressed as: B, = Tk )lp oA, (where Y is as defined in Proposmon 28). (i) The fol-
lowing decomposztton holds By = Beo.c ® B u, Where By, o := 1, *) Ly ) Lo c = A*
and By, =T, ) Ly () Loo,u =R H, 1 Cu, (the space B, ., whlch is umquely defined, is
called the * controllable impulsive behavzor and the impulsive behavior %, ,, unique
up to R-isomorphism, is said to be “uncontrollable” ).

Proaf (i): By the commutative diagram (27), T)#B is the set of all elements
=g W such that B*(c)w =0 (as shown by the proof of Theorem 16), thus
r(k),%’v = Y1)/ (il) is an obvious consequence of Proposition 39. ]

Regarding interconnected temporal systems, Definition 20 is relevant. However:

Lemma 41. The temporal system resulting from the temporal interconnection of two
regular temporal systems can be non-semiregular.

Proof. Consider the temporal systems defined by B;(0) = [0 +¢ ] and B,(0) = 1,
which are regular, and assume that the interconnection matrices are J; = [l 0]
and J, = 1. The resulting temporal system, which is the one in Example 32, is non-
semiregular. O

Therefore, the statement of Theorem 21 must be modified as follows:
Theorem 42. Consider two regular temporal systems, interconnected as in Definition 20.

Assuming that the interconnected temporal system is regular, its impulsive system M
is given by (26), where (A;(c), B;* (0)) is any CLCF over S of B;(9) (i = 1,2).
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5.3 Examples

5.3.1 A regular example

Consider the following example (in the continuous- or discrete-time case):

-1 &+t 0 0
(28) B =] 0 0 o -1
0 1 -1 0

and write w=[u; 1 yz]T. This system can be viewed as the series intercon-
nection of System 1, with input u;, output y; and equation y, + ty; — u; = 0, with
System 2 with input u,, output y, and equation i, — y, = 0; the interconnection
equation is uy = y;. Assuming that the interconnection is temporal, in the resulting
interconnected temporal system with input u; and output y;, the two derivatives
are “hidden”. It is easy to check that this temporal system is impulsively regular;
in addition, one has the following CLCF: B(0) = A~'(¢)B*(s) with A(c) =
diag(s?,6%,1) and

- l+a’t 0 0
Bf(a)=1| 0 0 1 —a
0 1 -1 0

The matrix BT (o) is equivalent over S§ to [E 0] with T = diag(1,1,0?), thus
Mt =sS® % This impulsive system M is defined by the following equations:

(1+a’)yl —c’uf =0, uj —a’yi =0; ¥/ =uj
and 7 (M*) = [v"]g where
(29) ") =0, o' =0+ —u.

The space o7, , is the set of all elements ¢ € A such that o’o=0and 7, = (M*)"
is the set of all elements w = [j, @ J, i)' € A*such that BT (o) = 0. By (29),
one may write ¢ = y; + y, — u;, and by Proposition 39, .« , is the space spanned
by © = a0+ 0o as (o, o) spans R2. The space B u 1s given by the relation
B = rfllp;zim,u. These calculations can also be made using Theorem 42.

In this rather simple example, the space %, , can be analytically calculated. One
obtains: for ¢ > 0 in the continuous-time case'®, and for # < 0 in the discrete-time
one,

(30)  ty1(0) + ya(t) — wi (1) = ud(£) + 200(2) := v(z)

10 With a mild abuse of language since the signals involved here are distributions; but as they
belong to the signal space S, this notation can be justified.
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where o := 68( y1—up)and o := aé( ¥1 — up), which is in accordance with the above
result.

In the algebraic method we are proposing, the expression (29) of 7 (M) and of
the generator vt of 7 (M™) in the generators y{, y3,u{ and u; of M* has been
found using unimodular matrices, i.e. with elementary row and column operations, in
a systematic way, as usual (secondary row and column operations are unnecessary
[5]). This method can be computerized and then applied to large-scale systems. This
seems much more difficult, if not impossible, with any analytic method.

This example illustrates the fact that, for impulsively regular time-varying tempo-
ral systems as for time-invariant ones, impulsive motions occur due to ‘“‘inconsistent
initial conditions” in the continuous-time case and to “inconsistent final conditions”
in the discrete-time one.

5.3.2 Non-regular example

The following lemma will be useful:

Lemma 43. For any a € K and any integer n > 0,

1

(31) ag(n)i(l),-<4> P )9

Proof. Noticing that yf = Sy, (31) can be easily proved by induction. Note that in the
continuous-time case, this formula is classic ([31], (V, 3; 4)). ]

Consider the following example:

(32)  B(d) =

—(t+ 20" 0 -t
1 0 0

where 1 = 0 (resp. 4 = 4) in the continuous- (resp. discrete-) time case. By Corollary
31, the associated temporal system is semiregular since the Smith form of B(¢) over L
is [I  0]. The variable w) is discontinuous at z = 0 due to the second row, and its 4th
order derivative in the first row generates elements of A; the latter are annihilated or
modified according to (31) by the left multiplication by ¢ + A, which explains that the
temporal system is non-regular. By (31), this temporal system has the same impulsive
behavior as the temporal system with matrix

By(0) = L 0 o0

4 0 —z]
which is regular; B;(0) has the following CLCF over S:

-1
a0 4 g2 —gt
B@=1, 1] [1 0 0 ]
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For this “regularized temporal system”, M+ = ®" @ 7 (M") where ®* ~g 8 and
T (M") = [v]g, with

(33) (") =0, v =wy —awi.

Therefore, %, , is the R-subspace of A spanned by ¢ and 8.

6 Concluding remarks

In this paper, impulsive behaviors of “temporal systems” with constant or time-
varying coefficients have been studied in a general framework which includes the
continuous- and discrete-time cases.

In the existing literature, tedious calculations revealed the structure of impulsive
behaviors in the case of constant coefficients. These calculations are avoided here
using the key isomorphism (19), the commutative diagram (21), and the “pseudo-
impulsive behavior” .«Z,,, whose structure is deduced by duality from the structure of
a finitely generated module over the ring S8 (Theorem 16 and Remark 17). Theorem
19 is the main structure theorem in the case of constant coefficients; the expression of
A, was already known, but its connection with the structure of the zeros at infinity
of B(d) (§2.1.3) is now much clearer; the direct sum decomposition of %, is new.
Theorem 21 is new and facilitates the calculation of the impulsive behavior of an
interconnected temporal system.

In the case of time-varying coefficients, the results of this paper are new. The
impulsive behavior is defined only for a “semiregular temporal system”, and, based
on Lemma 1, a necessary and sufficient condition for a temporal system to be semi-
regular has been given when the coefficient ring is R[¢|] (Theorem 30). However, the
structure of the impulsive behavior of a temporal system is easily determined only
when this temporal system is “regular’ (§5.2). Most of the results previously obtained
in the case of constant coefficients are then valid, with slight modifications when
necessary. The isomorphism (19) is still valid, as shown by Proposition 27, but the
commutative diagram (27) replaces (21). Theorems 40 and 42, which are the gen-
eralizations of Theorems 19 and 21, respectively, are the main results. Theorem 40
completely elucidates the structure of the impulsive behavior of a regular temporal
system. The theory is illustrated through two examples; the first one (in §5.3.1) shows
the connection between the generation of uncontrollable impulsive motions and
“temporal interconnections’. The second one (in §5.3.2) shows that a regularization
procedure (based on Lemma 43) can be used to calculate the impulsive behavior of a
semiregular temporal system which is non-regular.
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