N

N

Screaming in the I0 Monad A Realtime Audio
Processing and Control Experiment in Haskell

David Janin

» To cite this version:

David Janin. Screaming in the IO Monad A Realtime Audio Processing and Control Experiment
in Haskell. 7th ACM SIGPLAN International Workshop on Functional Art, Music, Modeling, and
Design (FARM), Aug 2019, Berlin, Germany. 10.1145/3331543.3342585 . hal-02368138

HAL Id: hal-02368138
https://hal.science/hal-02368138
Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02368138
https://hal.archives-ouvertes.fr

Screaming in the 10 Monad

A Realtime Audio Processing and Control Experiment in Haskell

David Janin
Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800
France
janin@labri.fr

Abstract

We investigate in this paper the applicability of the notion
monad streams to media stream programming, and, more
specifically, audio processing and control. Simply said, a
monad stream is sort of a list guarded by a monad action that
returns either nothing when the stream is over, or, otherwise,
just the current value of the stream and the guarding action
of its continuation.

Applied to the IO monad, it appears that monad streams
can be used for modeling both input streams and output
streams, with full control of the possibly synchronism be-
tween input and output streams in stream functions. This
allows for defining both synchronous or asynchronous func-
tions, or any combination of both notions.

In the abstract, this opens quite intriguing and generic
solutions towards programming systems that are globally
asynchronous and locally synchronous (GALS). In the con-
crete, applied to real-time audio, this allows for combining,
in a fairly simple and unified way, both (synchronous) audio
processing and (asynchronous) audio control.

As far as performance are concerned, our proposal allows
non-trivial transformation of audio streams at 44100 Hz with
a 10 ms latency, a performance comparable to functional pro-
graming languages dedicated to real-time audio processing
such as Faust.

CCS Concepts + Software and its engineering — Se-
mantics; Domain specific languages; « Applied com-
puting — Media arts;

Keywords Realtime Programming, Monad Streams, Syn-
chronous Audio Processing, Asynchronous Audio Control

1 Introduction

Motivation and Problems. Music programing with audio
processing is a matter of streaming signals from inputs through
various programmed transformation and control devices,
possibly with feedback loops, towards outputs.

While audio transformation devices are generally syn-
chronous, say governed by some fixed sampling rate, control
devices may well be asynchronous, control parameters being
produced by, say, human interactions. The resulting pro-
graming style, sometimes called globally asynchronous and
locally synchronous (GALS), was identified a while ago [22].

For this kind of programing, we consider the possibil-
ity of using a lazy functional programing language such
as Haskell [7] — a possibility often regarded as irrelevant,
the garbage collector of Haskell preventing, a priori, high-
frequency IO processing.

It occurs that, a posteriori, this is not only feasible, but
with performances comparable to dedicated real-time audio
processing and control languages such as Faust [16], still
preserving many features of Haskell language: its laziness
and its polymorphic types.

Main Result. More precisely, we consider some simple no-
tion of monad streams that allow for defining both input and
output stream in a single and simple formalism, in such a
way that both synchronous and asynchronous stream trans-
formation functions, and their combinations, can easily be
implemented.

As a result, we obtain a fairly flexible library for audio
processing and control, fully implemented in Haskell, that
only uses the external Jack audio connection kit for defining
connection with the underlying system. Experiments show
that non trivial audio processing and control with 44100
Hz audio signals can be achieved with a 10ms latency — a
latency considered to be unnoticeable by a general audience.

Overview of the Main Ideas. A monad stream is essentially
defined as a monad action that, when executed, returns either
nothing, when the stream is over, or the current value of
the stream and a monad action that guards the access to the
remainder of that same stream.

Thanks to the capacity offered by monad programing to
execute and/or produce monad actions (see below), a monad
stream can thus be viewed, depending on the way monad
actions are handled in a function from stream to stream, as
one of the following:

(1) an input stream when the execution of each monad stream
action allows for accessing to the stream of input values,

(2) an output stream, when the production of each monad
stream action tells how the associated output value shall
be accessed later on.

Saying so, we follow the somewhat naive but fruitful point
of view that a bind expression m = f is both a monad action
produced by binding m with f, as well as the action describing
the execution of action m with its returned value passed to



f as argument. Of course, such a point of view is just false
with an arbitrary monad, but it does make sense in monads
such as the I0 monad where the bind is strict.

As we shall see later in the text, applied to the IO monad,
programming a synchronous IO function between streams
is then simply a matter of (inductively) describing how each
input monad stream action is transformed into a correspond-
ing output monad stream action, much like in a synchro-
nous Mealy machine [15] (see also [4] p 299). The fact that
the monad stream type constructor is a functor provides
examples of one state Mealy machines. Multi-state Mealy
machines are also easily definable thanks to a loop operators.

Quite strikingly, such a principle is applicable both to
lazy or eager functional programing languages. Indeed, a
monad stream is (essentially) an action to be executed, not
an executed action. In other words, monad stream can also
be understood as a way to encode lazy stream, as implicitly
defined in Haskell, into an eager programming language
such as, say, OCaml [20].

Moreover, as such a laziness is explicitly encoded in monad
stream, the programmer keeps full control on the synchrony
between input and output streams when defining a (recur-
sive) function over streams. There is no forced correspon-
dence between the rank (or rather the nesting depth) of
input monad stream actions performed in some recurrence
step and the rank (or rather the nesting depth) of the out-
put monad stream actions produced in that same recurrence
step.

As a consequence, monad streams also allow for defining a
wide range of partially asynchronous functions over streams
in the sense that:

(1) the input streams are not necessarily red at the same
rate,

(2) the output stream is produced at a rate that may depend
on all, some or none of the rate at which the input streams
are received.

As a typical example of a fully synchronous stream function,
one can zip two input streams into a single one. On the oppo-
site side, as a typical example of a fully asynchronous stream
function, one can merge two monad streams into a single
one by sorting their values according to their availability,
thanks to some simple concurrency features extending our
proposal.

For convenience, most utility functions we shall define in
this paper are illustrated by block diagrams of the form de-
picted in Figure 1. More precisely, we shall define functions
over streams whose output stream is (essentially) produced
at the same rate as the rate of its synchronous inputs, the pro-
duced values possibly depending on some parameter values
received from its asynchronous inputs.

Also, it must be mentioned that most discussed types and
transformations are detailed throughout with (essentially)
complete Haskell code. This first illustrates the simplicity

David Janin

[

Figure 1. The block diagram of a typical stream function
with horizontal (left) synchronous input of as, vertical (top)
asynchronous input of c¢s and horizontal (right) output of bs.

of our proposal. Moreover, as the proposed code is detailed
in non-compact form, this code shall still be understood by
readers not familiar with Haskell and its numerous libraries
— libraries that we essentially do not use, aside from Haskell
prelude, so that we keep full control on performance issues.

Organization of the Paper. Monad streams are briefly pre-
sented in Section 2. Basic examples of standard input and
output turned into streams are detailed. The notion of syn-
chronous functions we consider is defined in Section 3 to-
gether with various examples.

The notions of monad and monad stream references are
presented in Section 4. This first allows for freely and safely
duplicating monad streams. This also yield some examples
of function over streams with asynchronous features in Sec-
tion 5.

Examples of typical audio processing and control func-
tions are presented and discussed in Section 6, and connec-
tion to the audio connection kit (Jack) is then described in
Section 7. This essentially amounts to transforming the syn-
chronous stream functions we wish to play into the transition
function of its underlying Mealy machine operational model
— a transition function used as a callback by the audio driver.
Performance issues and tuning are eventually discussed.

Connections with related works are then discussed in
Section & before concluding in Section 9.



Screaming in the |O Monad

2 Basics on Monad Streams

In this paper we shall use a parameterized notion of streams

that essentially yields two kind of streams:

(1) the monad streams parameterized by a monad type con-
structor m (in this section),

(2) the monad reference streams parameterized by a monad
reference type constructor Ref m (see Section 4).

More precisely the parametrized stream type is defined by:

newtype Stream f a
= Stream ({ next :: f (Maybe (a, Stream f a))})

with a type function f :: * — * and a type a: * as parameters.
Defining the length of a parameterized stream as the num-
ber of nested next action that defines it, we shall soon ob-
serve, with stdinStream example below, that such a length is
not only a dynamic value but it may be infinite as well.
Although the evaluation of next s for some stream s de-
pends on the choice of the type function f, it shall return, in
all cases, the immediate future of the stream, defined by:
(1) either Nothing when stream s terminates,
(2) or Just (a, sc) when stream s produces value a and con-
tinues as stream sc.
A monad stream is then defined as any stream parameterized
by a monad functor.

Standard Input Output Example. As a simple stream pro-
gramming example, reading a stream from the standard input
('stdin) can be written as follows:

stdinStream :: Stream IO Char
stdinStream = Stream $ do
¢ < hISEOF stdin
if c then return Nothing
else do
a « getChar
return $ Just (a, stdinStream)

In this example, the stream terminates when EOF is received
from the standard input.

Conversely, printing a stream to the standard output (stdout)
can be written as follows:

streamStdout :: Stream IO Char — 10 ()
streamStdout (Stream m) = do
ce—m
case c of
Nothing — return ()
Fust (a,s) — do
putChar a
streamStdout s

Observe that its the execution of the IO monad action
streamStdout s that will make the monad action in stream

s to be performed. In other words, following Elliot’s termi-
nology [6], monad streams must be pulled for they are lazy
data structures. This constrasts with synchronous language
families with push semantics of functions over signals.

Continuing our IO examples, echoing the standard input
on the standard output can then be defined by:

echoStdIO :: 10 ()
echoStdIO = streamStdout stdinStream

It is worth noting that the above IO action runs in constant
space when compiled with ghc. In other words, although
a monad stream computation may be non terminating as
above, on-the-fly processing can be defined over streams
without any memory leaks.

Functor Instance. As another simple programing example
over a monad stream, the following functor instance allows
application of a function to every element of a stream given
as input:

instance Monad m = Functor (Stream m) where
fmap f (Stream m) = Stream $ do
ce—m
case c of
Nothing — return Nothing
Fust (a, me) — return $ Just (f a, fmap f mc)

Observe that every input action is mapped to an output ac-
tion. Such a kind of function will later be called synchronous.
The behavior of fmap is conveniently described by the block

f

Figure 2. The fmap f block diagram

diagram depicted in Figure 2.
Observe that!, the weaker constraint Functor m suffices
for turning Stream m into a functor. Indeed, one can put

fmap f (Stream m) = Stream $ fmap (fmap (A(a, sc) —
(f a fmap f sc))) m
The proposed version, within the monad m, also aims at
illustrating the notion of synchronous stream function we
shall see in the next section.

Monad Streams vs Monad Actions. An interesting feature
of monad streams is that they can be retrieved from monad
actions. More precisely, there is the function:

toStream :: Monad m = m (Stream m a) — Stream m a
toStream m = Stream $ m >= next

1 As noticed by one anonymous referee



that shows monad streams are closed under monad actions.
This implies, for instance, that any function:

fa— m(Stream m b)

that produces a monad stream via some monadic computa-
tion can be turned into the function

toStreamo f :: a — Stream m b

that stays within monad stream types. As a consequence,
although monad streams are (deeply) built with monad ac-
tions, most functions acting on monad streams can be defined
within monad streams as illustrated by the various (pure)
stream combinators defined throughout.

Horizontal Monoid Structure. Monad streams can be com-
bined one after the other in the following manner, yielding
a monoid instance.

instance Monad m = Monoid (Stream m a) where
mempty = Stream (return Nothing)
(©) (Stream m) s = Stream $ do
ce—m
case c of
Nothing — next s
FJust (a, sc) — return'$ Just (a, sc O s)

Observe that the second monad stream is necessarily delayed
until the first monad stream terminates. In other words, the
second stream is implicitly buffered. This says that, in most
cases, such a horizontal product shall only be used with a
finite and bounded length first argument.

With a left stream ¢ of constant length d, the mapping
As = ¢ O sis still synchronous in some sense made precise
in the next section. The resulting block diagram is depicted
in Figure 3.

delay,

Figure 3. The delay block diagram

Monad Stream vs Lazy Lists. The monoid instance above
illustrates the fact that monad streams can be seen as an al-
ternative encoding of lazy lists. In particular, monad streams
can be infinite.

Observe however that such a encoding of laziness does
not rely on the underlying programing language semantics.
Indeed, similar monad stream types can be defined in a pro-
graming language with eager evaluation such as OCaml, the
monad action type m a simply replaced by, say, the function
type s — (s, a) for some (monad) state type s.

3 Synchronous Monad Stream Processing

Here, we review some more function examples over streams
that we call synchronous.

David Janin

Synchronous Stream Functions. There are various ways
to define synchronous functions, as for instance done the
Synchronous language family[1, 21] or as detailed by the
author when developing the notion of timed domains [9].

In this paper, we shall rely on the rather intuitive (and
special case) definition that a synchronous function over
streams shall essentially behave like a Mealy machine, that
is, a function that reads in a synchronized way all its (stream)
inputs and produces its (stream) output at the same rate.

As streams have to be “pulled” for their actions to be
executed and their values to be read, the above intuition can
be rephrased as follows: a function over streams is said to be
synchronous when, for every input and for every possible
rank n, the execution of the nth monad action in the output
stream of that function implies the execution of the nth
actions of each of its input streams (therefore all preceding
actions as well) and no more.

Additionally, a stream function obtained from a synchro-
nous function by delaying its output by a stream of constant
length d as above is called d-synchronous.

Simple Synchronous Function Examples. Both stream func-
tions id and fmap f are synchronous in the sense above.
Moreover, in both these cases, the output stream terminates
when the input stream terminates. The function As = ¢ < s
with a monad stream ¢ of known length d is d-synchronous.

Synchronous Zip. Another typical example of a synchro-
nous function is the zip function defined over streams by:

zipStream :: Monad m =
Stream m a — Stream m b — Stream m (a, b)
zipStream = zipStreamWith (Aa — Ab — (a, b))

with

zipStreamWith :: Monad m = (a > b — ¢) —
Stream m a — Stream m b — Stream m c
zipStreamWith f (Stream my) (Stream my)
= Stream $ do
Cl < my
Cy < my
case (¢, ¢y) of
(Fust (ay, scl), Just (ag, sc2)) —
return $ Just (f ay ap, zipStreamWith f scl sc2)
_ — return Nothing

The block diagram of the function zipStreamWith f is de-
picted in Figure 4. Observe that, in such a zip, the output

a

b f

Figure 4. The zipStreamWith f block diagram.



Screaming in the |O Monad

terminates, whenever on the input stream terminates. This
is indeed allowed by our definition of synchronicity.

Constant Streaming. As a simple application example of
the synchronous zip, the function constSync takes two streams
as input and returns the first one.

constSync :: Monad m =
Stream m a — Stream m b — Stream m a
constSync = zipStreamWith const

Given a monad stream s, one may think that constSync s
essentially behave like const s. However, the later makes no
synchronization between the input and the output stream,
and, even worse, does not execute the monad actions of the
second stream at all, therefore its side-effects. These two
functions truly have distinct behaviors.

a
b const

Figure 5. The zipStreamWith const block diagram.

More on (implicit) Monad Stream Clocks. Every monad
stream induces a clock, the clock ticks being defined by the
execution of the nested monad actions embedded in that
stream.

In the zipStreamWith code given above, one can observe
that streams are zipped by waiting each time on the slowest
action to terminate. This waiting is even biased by waiting
first for the action m; to terminate before running the second
action m;. It follows that the implicit clock of the resulting
stream is the (element wise) upper bound of the implicit
clocks of the input streams.

In other words, when defining synchronous processing,
we somehow assume that all inputs streams are essentially
synchronized on the same clock. However, strictly speaking,
this assumption is false as illustrated by the following stream
functions:

repeatN :: Monad m = Int — a — Stream m a
repeatN n a = Stream o return $

if (n < 0) then Nothing

else Just (a, repeatN (naLS 1) a)
takeN :: Monad m = Int — Stream m a — Stream m a
takeN n s = zipStreamWith cons s (repeatN n ())

that takes , somehow in a synchronous way, the first n val-
ues of an input stream with, say, any input governed clock,
while the clock of the stream produced by repeatN n () only
depends on how fast it is read.

A aresult, with monad streams, there is no explicit system
clock synchronizing all streams. This apparently quite differs
from the notion of synchronicity proposed and implemented

in the synchronous language family [21], even though the
resulting global behaviors are quite similar.

Stream Loops. Much like in the state monad, there is a loop
function that allows for defining arbitrary synchronous func-
tion defined as a Mealy machine.

loopStream :: Monad m = s —
((a,s) = m (b,s)) — Stream m a — Stream m b
loopStream s f (Stream m) = Stream $ do
ce—m
case ¢ of
Nothing — return Nothing
FJust (a, sc) — do
(b)) — f (a5)

return $ Just (b, loopStream s’ f sc)

More precisely, given a Mealy machine defined via state
type s, input type a, output type b, initial state s :: s, and
(deterministic) transition function delta :: (a, s) — (b, s), the
stream function loopStream sy (return o delta) just encodes
such a Mealy machine depicted in Figure 6. with delayBy

4+ H

s s
a delta b

delayBy s,

Figure 6. The loopStream sy (return o delta) block diagram.

delaying its input stream by the one value stream defined by
its argument.

Observe that in loopStream type, we more generally de-
fine transition function with type (a,s) — m (b, s). In the IO
(concurrent) monad, this allows for defining more efficient
implementation of transition functions. A non-trivial appli-
cation of such a possibility is illustrated in Section 7 when
transforming any synchronous IO stream function into its
(implicit) transition function.

4 Monad Stream References

When handling IO with monad streams, as with stdinStream
defined above, an important issue is that, a priori, such a
stream should not be shared by two (threaded) independant
10 monad action. Indeed, two running actions sharing a copy
of stdinStream will not share the same sequence of inputs
but, instead, will receive one of the subsequence resulting
from the distribution of the original sequence between these
two actions.

The notions of monad references and monad stream refer-
ences define in this section offer a fairly generic way to cope
with such an issue.



Monad Reference. Simply said, a monad reference is a ref-
erence to a location, uniquely associated to a running monad
action, that, upon termination of that action, shall contain
the value returned by that action and shall be freely read by
any action possessing that reference.

Such a notion is conveniently described by the following
class type:

class Monad m = MonadRef m where
type Ref m: % —
forkToRef :: m a — m (Ref m a)
readRef :: Ref ma — ma
tryReadRef :: Ref m a — m (Maybe a)
parReadRef :: Ref m a — Ref m b — m (Either a b)

where:

(1) Ref mis the type of references to running action,

(2) forkToRef forks an action and (immediately) returns a
reference to that action,

(3) readRef returns (and possibly waits for) the value re-
turned by a referenced action,

(4) tryReadRef immediately returns nothing if the refer-
enced action is not terminated or just its returned value
otherwise,

(5) and parReadRef returns the value of one of the first ter-
minated referenced actions.

In the case that the two actions are already terminated or
are terminating at the same time, the output of parReadRef
may be non deterministic.

Conditional Cut. As a first application example of monad
references, the following function runs a monad action and
a monad stream, the termination of the action yielding a cut
of the input stream.

takeStreamUntil :: MonadRef m =
m ¢ — Stream m a — Stream m a
takeStreamUntil m s = Stream $ do
r « forkToRef m
takeStreamUntilRef r s
where
takeStreamUntilRef r (Stream ms) = do
rs « forkToRef ms
¢ < parReadRef r rs
case c of
Left _ — return Nothing
Right Nothing — return Nothing
Right (Just (b, sc)) — return’$
Fust (b, Stream $ takeStreamUntilRef r sc)

Such an action can be used for conditionally stopping a
stream processing function upon some external termination
condition. Observe that, when running takeStreamUntil, the

David Janin

—_—— % takeUntil m S

Figure 7. The block diagram of takeStreamUntil m.

output stream rate equals the input stream rate. Such a trans-
formation is synchronous.

Monad Stream References. The notion of monad references
immediately lifts to monad stream by writing:

type StreamRef m = Stream (Ref m)

with the auxiliary functions

forkStreamToRef :: MonadRef m =
Stream m a — m (StreamRef m a)
forkStreamToRef s = do
r « forkToRef (evalAndFork s)
return $ Stream r
where
evalAndFork (Stream m) = do
ce—m
case c of
Nothing — return Nothing
FJust (a, sc) — do
rc < forkToRef (evalAndFork sc)
return $ Just (a, Stream rc)

and

readStreamRef :: MonadRef m =
StreamRef m a — Stream m a
readStreamRef (Stream v) = Stream $ do
¢ « readRef v
return $ case ¢ of
Nothing — Nothing
FJust (a,rc) — FJust $ (a, readStreamRef rc)

Clearly, while a stream s shall not be shared by indepen-
dent actions, for it may contain monad actions with non
sharable side effects, the stream readStreamRef r obtained
after forking the stream s can be freely shared. Indeed, read-
ing a stream reference has no side effect on the referenced
stream value.

Standard Input Output Example Continued. There are
various ways of defining a MonadRef instance for the IO
monad. Haskell’s async library defined by Simon Marlow [14]
gives one possibility.

The following instance, simply obtained by defining ref-
erences to IO actions as mutable variables containing their
returned value, is simple enough to be described in full detail.



Screaming in the |O Monad

instance MonadRef 10 where
type Ref 10 = MVar
forkToRef m = do
v <« newEmptyMVar
_ « forkIO (m >= putMVar v)
return v
readRef = readMVar
tryReadRef = tryReadMVar
parReadRef r; r, = do
v «— newEmptyMVar
_ « forkIO (readRef ry >= return o Left
>= tryPutMVar v > return ())
_ « forkIO (readRef r;
>= return o Right >= tryPutMVar v
> return ())
takeMVar v

Then, continuing our standard IO example, one can check
that the action:

echoStdIOviaRef :: IO ()
echoStdIOviaRef = do
r « forkStreamToRef stdinStream
streamStdout (readStreamRef r)

that echoes the standard input to the standard output much
like echoStdIO defined above still runs with constant memory
space even though it is now defined via the forking of the
input stream.

Such an example illustrate the power of monad streams
and monad references that, when properly used, fully pre-
serve the garbage collector capacity to avoid any memory
leaks.

5 Asynchronous Monad Stream Control

Aside synchronous stream processing, there is also the need
for asynchronous stream control: series of control values
(or events) that are received at a much lower and irregular
frequency than the synchronous stream to be processed.
Thanks to the notion of monad references defined above,
various asynchronous functions over stream are definable.

Asynchronous Control. A first, quite involved example is
a function that transforms an input stream depending on a
parameter received asynchronously.

streamMap :: MonadRef m = (a > m b) —
Stream m (a —» m b) — Stream m a — Stream m b
streamMap f (Stream mf) (Stream m) = Stream $ do
rf « forkToRef mf
r « forkToRef m
¢ « parReadRef rf r
case ¢ of
Left (Fust (g, sf)) — next$
streamMap g sf (Stream $ readRef r)
Right (Just (a,s)) — do
be—fa
return $
FJust (b, streamMap f (Stream $ readRef rf) s)
_ — return Nothing

Observe that the output stream ends whenever one of the
two input stream ends. The corresponding block diagram
is depicted in Figure 8. Observe that, as already done for

a—>mb

L b
a streamMap f

Figure 8. The block diagram of streamMap f sf.

loopStream function, we allow ourselves transformation func-
tions of type a — m b. Again, this allows for using more
efficient implementations of stream transformation func-
tions.

Vertical Monoid Structure. Perhaps the most striking ex-
ample of an asynchronous function is the following function
that merges two streams according to the termination time
of the underlying actions.

merge :: MonadRef m =
Stream m a — Stream m a — Stream m a
merge (Stream my) (Stream my) = Stream $ do
r1 < forkToRef my
ry « forkToRef my
¢ « parReadRef ry 1
case ¢ of
Left Nothing — readRef r,
Right Nothing — readRef r
Left (Fust (a, mc1)) — return’$
Just (a, merge mc1 (Stream $ readRef 1,))
Right (Just (a, mc2)) — return $
Just (a, merge (Stream $ readRef r1) mc2)

Clearly, the outcome of such a function is possibly nonde-
terministic since each execution of parReadRef r; r, may
induce a race with nondeterministic outcome.



Of course, such a function is of no use for synchronous
programing as required with audio processing. What could
be the meaning of the merge of two audio signal ? However,
such a merge function can be used below for merging two
independent streams of control values.

mergeStream :: MonadRef m =
Stream m a — Stream m b — Stream m (Either a b)
mergeStream s; s;

= merge (fmap Left s;) (fmap Right s,)

*—

Either a b

merge

Figure 9. The block diagram of mergeStream.

6 Audio Processing and Control

We are now ready to define functions more specifically ded-
icated to audio processing and control. Below, we review
several archetypal examples of this.

Oscillators. As a first example, one can define an sinusoidal
signal at a given period described in number of samples by

osc :: Int — Stream IO Sample
oscn=o0scN 0 n
where
oscN :: Int — Int — Stream 10 Sample
oscN n k = Stream $ do
let v = sin (2 * pi * fromIntegral (mod n k)
/ fromIntegral n)
return $ Just (v, oscN (n+ 1) k)

where Sample is in Jack interface just a type synonim for
CFloat. Observe that the actual frequency in Hz of such an
sinusoidal shall only be defined by the reading speed of the
resulting stream.

Forward Action. A delay line followed by some summing
of samples is a typical device for defining (simple) low cut
or high cut filter. They can be defined as follows:

feedForward :: Int » a — (a > a — b) —
Stream IO a — Stream 10 b
feedForward n ay f s = toStream $ do
ch < newChan
writeList2Chan ch (take n (repeat ay))
let delta (u, ch) = do
v « readChan ch

David Janin

writeChan ch u

letw=fuv

seq w$ return (f u v, ch)
return $ loopStream ch delta s

f

ot
¢ delayByN n ay +—‘

Figure 10. The block diagram of feedForward n a.

Retro Action. A retro action (or retro feedback) is another
typical device for defining a pass band filter.

feedBack ::Int > b— (a—> b— b) —
Stream IO a — Stream IO b
feedBack n by f s = toStream $ do
ch < newChan
writeList2Chan ch (take n (repeat b))
let delta (u, ch) = do
v « readChan ch
letw=fuv
seq w $ writeChan ch w
return (w, ch)
return $ loopStream ch delta s

Observe that such a code is essentially the same as above up
to the fact that, in this case, it is the output value w that is
re-injected into the FIFO parameter ch.

In both case, the content of the channel is used as the state
of the underlying Mealy machine defined by the transition
function delta. Worth being noticed, we use the type Chan
in this function instead of the type List for it appears it is
way more efficient as far as performance are concerned. This
fully justifies the choice made in function loopStream to have
a transition function of type (a,s) = m (a, s).

f

b

—+ delayByN n b, +—

Figure 11. The block diagram of feedBackward n a.

Stereo vs Mono Streams. Turning two mono streams into a
stereo streams is simply achieved by the zipStream function
already described above.



Screaming in the |O Monad

7 Connecting with Driver Interfaces

Last, we need to connect our stream function to the under-
lying system. For such a purpose, we shall use the Haskell
interface to the fairly flexible and cross-plateform Jack audio
connection Kkit.

For audio processing programs, we expect to use stream
function, that is, synchronous functions of the form:

g Stream m a — Stream m b

with input sample type a and output sample type b. However,
the Haskell interface to Jack expects instead step functions
of the form:

fra—->mb
that shall maps every (new) input sample a to the action f a
that returns the corresponding output sample b.

The purpose of this section is to shows that, in the IO
monad, one can actually converts any synchronous function
into such a step function, hiding its underlying memory state
into the IO monad.

From Step Functions to Synchronous Functions. Observe
that the other direction, defining a synchronous stream func-
tion from a step function, is easy. Indeed, this can be achieved

by:

mapToStream :: Monad m = (a > m b) —
Stream m a — Stream m b
mapToStream f (Stream m) = Stream $ do
ce—m
case ¢ of
Nothing — return Nothing
Fust (a, sc) — do
b—fa
return $ Just (b, mapToStream f sc)

Clearly, the resulting function is synchronous.

FIFO vs Monad Streams. In the I0 monad, converting any
synchronous stream function into its corresponding step
function is achieved by means of creating two communica-
tion channels:

(1) one from the step function input to the stream given as
argument to the stream function,

(2) one from the stream resulting from that application, to
the output of the step function.

These communication channels are conveniently and effi-
ciently encoded by means of FIFO channels (Chan). The
connection diagram induced by such a translation of stream
functions into step functions is depicted in Figure 12. The
difficulty in drawing such a picture is that the IO monad is
(almost) everywhere around, the snake-like arrow describ-
ing not functions, but, instead, IO communication between
certain typed value.

g
Stream IO a —— Stream IO b

readChang § writeChan
Chan a Chan b
writeChan§ § readChan
a—— > mb

f

Figure 12. A stream function g and its step function f cre-
ated via FIFO channels.

From FIFOs to Input Streams. Turning a FIFO into a stream
can simply be done as follows.

makeStreamFromChan :: Chan a — Stream IO a
makeStreamFromChan ch = Stream $ do

a « readChan ch

return $ Just (a, makeStreamFromChan ch)

Observe that the frequency of the produced infinite stream
depends on the frequency at which values are put in the
FIFO.

From Output Streams to FIFOs. Conversely, turning an
output stream into a FIFO can be done by:

makeChanFromStream :: Int — a —
Stream IO a — 10 (Chan a)
makeChanFromStream n ia s = do
ch « newChan
writeList2Chan ch (take n (repeat ia))
_ « forkIO $ dropStreamToChan ch s
return ch
where
dropStreamToChan ch (Stream m) = do
ce—m
case c of
Nothing — return ()
Fust (a, me) — seq a$ (writeChan ch a)
> dropStreamToChan ch mc

In the above signature, we also take an integer n and an
initial value a in order to initialize the FIFO with n times the
initial value n. This allows for inserting some delay buffering
to the expected function.

Observe that, after such an initial delay, the frequency at
which the argument stream will be traversed depends on
the frequency at which the returned FIFO will be read by a
readChan action.

Observe also that the function dropStreamToChan is forked
so that, when used, feeding and reading the FIFO channel
are mostly desynchronized actions.



Extracting Step Function. Last, turning a stream synchro-
nous function into its corresponding step function can be
done as follows:

streamToMapN :: Int — b —
(Stream I0 a — Stream IO b) — IO (a — IO b)
streamToMapN n b f = do
inChan < newChan
outChan < makeChanFromStream n b $
f (makeStreamFromChan inChan)
return (Aa — seq a $ writeChan inChan a
> readChan outChan)

The first integer argument is the length of the buffer (in
number of samples).

It is quite a striking fact that streamToMapN manages to
re-create and handle the implicit Mealy machine state of its
stream function argument. Making an explicit extraction of
the Mealy machine induced by a streaming function would
be fairly involved and would necessitate both the code of
that function and a precise operational model.

Connection with Jack. Last, connection with Jack audio
connection Kkit, via the Jack Haskell interface implemented
by Thielemann et al., is simply achieved by:

playWithJack :: Int —

(AudioSStream — AudioSStream) — IO ()
playWithjack n f =

streamToMapN n (0,0) f >= mainStereo

where AudioSStream is just a type synonym of IO streams
of stereo samples and mainStereo is one the main function
provided by the interface to connect a Haskell defined audio
transformation to Jack audio server.

Performance Issues and Parameter Tuning. The integer
parameter in playWithjack defines the size of the delay
buffer, internal to our Haskell code, between sample inputs
and sample outputs. Such a buffering is essential for achiev-
ing good performance. Indeed, it allows for desynchronizing
input-reading from Jack server and output-writing to Jack
server. Experiments shows that, at 44100 Hz, a 128 samples
buffer length suffices.

An additional buffer size is defined on Jack server. It de-
fines the frequency at which Jack server is calling a Haskell
function as a callback. Again, experiments show that, at
44100 Hz, a 128 samples buffer length suffices.

Together, this eventually yields to running audio process-
ing and control programs written is Haskell, essentially with
no loss of samples, with a cumulative latency of 11.6 ms,
twice the 5.8 ms latencies induced by the two buffers of 128
samples size.

10

David Janin

To the best of our knowledge, no existing library written
in Haskell yet reaches such a performance level together
while offering such a level of abstraction.

8 Related Works

In this paper, we use the presentation of monad stream de-
fined by the author [10] that develop the notion of timed
extension of a monad. The present paper can be seen as an
experiment in using that notion in the untimed case.

One can observe that such a type Stream m a is isomor-
phic to the type ListT m a where ListT is the Haskell (non-
deprecated) monad transformer defined in List package. Al-
though isomorphic, our treatment of that type is fairly dis-
tinct. Indeed, the flavor of sequentiality induced by guarding
the list tail by monad actions (especially in the IO monad) is
essentially ignored in the above package that relies on the
horizontal monoid structure induced by appending lists.

More precisely, in both synchronous or asynchronous
settings, appending two input monad streams hardly make
any sense. In the synchronous setting, delays, zips and maps
covers most of our need and, in the asynchronous setting, it
is rather the vertical monoid structure of streams, induced
by the function merge, that is useful.

Compared to more generic proposals, as already observed
by Perez et al. [18], stream monads provide a efficient way to
instanciate FRP approaches [3, 5, 6]. Programing with stream
monads is also quite related with FRPNow [19].

It shall be mentioned that Perez et al. use a version of
monad streams distinct from ours, defined by
data Stream’ m a

= Stream’ {next’ :: m (a, (Stream’ m a))}
Their proposal is more general than ours since our notion of
streams can be recovered from theirs by composing Maybe
with m. However, with our specialization, we stress on the
fact that streams may terminate: a feature that may lead to
delicate issue when not properly addressed.

Comparing our proposal to the general FRP approaches,
it must be mentioned that the API induced by our approach
strongly differ from the one defined in FRP [5, 6]. Indeed, in
our approach, we make no distinction between stream values
and events. Instead, it is more a matter of distinguishing
synchronous and asynchronous treatments in functions over
streams, and distinguishing streams that shall be treated as
synchronous or asynchronous ones.

One advantage of such our approach, though not yet se-
cured by any typing constraints, is that one is not tempted
to define asynchronous treatments on streams that are sup-
posed to be run in a synchronous way. As an illustrative
example, functions zipStream and mergeStream shall never
be used on the same kind of streams.

A long standing approach for handling asynchronism
amounts to encoding an asynchronous stream Stream m a



Screaming in the |O Monad

by a synchronous one Stream m (Maybe a) that yields Just a
when there is a change of control value, of Nothing when
there is not.

This is an approach classically followed in synchronous
systems governed by one global clock [1, 21] as well as, to
the best of our understanding, in recent FRP approaches [18].
While such an approach is unavoidable at circuit (or OS
kernel) level, it may yield an unnecessary load of processing
at system level, control signal mostly containing the value
Nothing.

Worth being mentioned, as a generalization of the above,
there is the wormholes approach [23, 24] where every stream
Stream m a can be lifted to a stream of type Stream m [a].
While preserving inputs arrival order, this fairly flexible ap-
proach allows for contracting or expanding data depending
on the frequency one aim at achieving. However, the stream-
ing the empty list may also yield an unnecessary load of data
at system level.

Our proposal extends the alternative for encoding asyn-
chronous functions by relaying on the notion of monad refer-
ences and concurrent wait. Asynchronism is then efficiently
handled by ghc runtime.

A type quite similar to our notion monad stream refer-
ences, that is, our type Stream MVAR a, is already defined
and used pretty much in the same way by Marlow when
defining unbounded FIFO communication channel [14].

The efficiency of the resulting compiled code seems to rely
on the fact that ghc optimizes quite efficiently programs that
uses (even implicit) continuations : a programing style that
arises fairly often when handling monad streams or monad
stream references.

Worth being mentioned, our desire to achieve efficient
and fully understood audio processing prevents us from
reusing existing Haskell libraries. As a matter of fact, aside
the Jack/Haskell interface package, we essentially use basic
features that are available in Haskell’s prelude, and some
of its concurrent features: multithreading capacity (forkIO),
mutable variables (MVar) and FIFO channels (Chan).

As far as audio is concerned, the main and most efficient
functional programming language for realtime audio pro-
cessing available nowadays is probably Faust [16]. This lan-
guage is thus the most relevant yardstick for examining the
qualities of our proposal.

In terms of performance, Faust is, a priori, way more ef-
ficient than our proposal for it is currently compiled into
optimized C code. Experiments show that audio processing
we performed in Haskell is more expensive by some (small)
factor compared to Faust.

Still, thanks to our multithreaded implementation, audio
processing is performed on a dedicated core, the resulting
cost of connecting audio streams with audio drivers being
comparable with the one achieved with Faust. Moreover,
thanks to Haskell language, our monad stream approach is

11

polymorphic and can probably be applicable to many other
media types. Observe that audio processing is probably the
most demanding media type both in terms of frequency and
admissible latency.

In terms of programing API, Faust eases the programmer
task by offering a rather abstract view on signals, promot-
ing a data flow programing style based of some number of
primitive blocks to be assembled at will. Non programmer
experts can use it quite easily.

On the contrary, yet in its infancy, our approach still neces-
sitates explicit description of monad stream traversal. This
clearly requires more expertise in programming. However, as
illustrated by the simplicity of the numerous function code
examples given throughout our paper, such an expertise may
remain quite low.

9 Conclusion

We have thus proposed and implemented a version of monad
streams that allows for combining both high-frequency syn-
chronous transforms, as needed in audio processing, as well
as asynchronous low-frequency parameterization of these
synchronous transforms, as needed in audio system control.

The notion of monad streams induces a fairly versatile in-
terface for both synchronous and asynchronous programing.
It is even quite striking how efficient the resulting library is.
This is due to both the fact that, despite our functions being
pure and defined in safe Haskell, we make a rather heavy
though quite transparent use of the IO monad, and the ghc
compiler optimizes especially well continuation programing
style.

The Haskell library resulting from the present paper shall
eventually be available with open source license on some
publicly accessible platform.

However, as far as software engineering is concerned,
our proposal is truly at an early stage. For instance, as al-
ready mentioned, it would probably be worth distinguish-
ing streams that are to be used in a synchronous way from
streams that are to be used in an asynchronous way. For such
a purpose, one could define a generic data type for stream
functions that, as depicted in block diagrams throughout our
presentation, have explicit synchronous and/or asynchro-
nous inputs.

Such a distinction could open a way towards an extension
of arrow programing [8]. Indeed, the basic operator (x * ) in
Arrow class suggests that, when applied to signal processing,
arrows are acting synchronously on signals. On the contrary,
the basic operator (+ + +) in the ArrowChoice class suggests
that, when applied to signal processing, arrows are acting
asynchronously on signals. Adding explicit distinction be-
tween synchronous and asynchronous inputs might lead to
the definition of a finer model of streams programing.



Anyhow, nothing yet ensures in our proposal that a given
function input stream is treated in a synchronous or asyn-
chronous way, and, in both cases, that the function does not
encode a behavior with intrinsic memory leaks. There clearly
lays the possibility of designing a type system for functions
over streams that would enforce adequate synchronous or
asynchronous usage and traversal of monad streams inputs.

Temporal logic typing as already proposed for FRP [11-13]
might be a starting point for such a purpose. However, we
also suspect that linear types could be of some interest [2, 17].
Indeed, as already discussed in Section 4, monad streams
shall not be shared in general as input. On the contrary,
monad stream references can be freely shared. A linear type
system could accurately model such a distinction.

Acknowledgments

This work has benefited from many discussions with Simon
Archipoff and Bernard Serpette, and some help from Donya
Quick, who all deserve our great thanks. We also feel deeply
in debts towards anonymous referees for their tolerance
and open mind in reviewing a first quickly written draft
that eventually got considerably improved thanks to their
numerous, accurate and fruitful remarks.

References

[1] A.Benveniste, P. Caspi, S. A. Edwards, P. Le Guernic N. Halbwachs,
and R. de Simone. 2002. The Synchronous Languages Twelve Years
Later. Proc. IEEE (2002).

[2] J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones, and A.
Spiwack. 2017. Linear Haskell: Practical Linearity in a Higher-order
Polymorphic Language. Proc. ACM Program. Lang. 2, POPL (Dec. 2017),
5:1-5:29.

[3] A. Courtney, H. Nilsson, and J. Peterson. 2003. The Yampa arcade. In
Workshop on Haskell. ACM, 7-18.

[4] S. Eilenberg. 1973. Automata, Languages and Machines, Volume 1.
Academic Press.

[5] C.Elliott and P. Hudak. 1997. Functional Reactive Animation. In Int.
Conf. Func. Prog. (ICFP). ACM.

[6] C. M. Elliott. 2009. Push-pull functional reactive programming. In
Symp. on Haskell. ACM, 25-36.

[7] P.Hudak, J. Hugues, S. Peyton Jones, and P. Wadler. 2007. A History
of Haskell: Being Lazy With Class. In Third ACM SIGPLAN History of
Programming Languages (HOPL). ACM Press.

12

David Janin

[8] J. Hughes. 2005. Programming with Arrows. In Advanced Functional
Programming (AFP) (LNCS), Vol. 3622. Springer, 73-129.

D. Janin. 2018. Spatio-temporal domains: an overview. In Int. Col. on
Theor. Aspects of Comp. (ICTAC) (LNCS), Vol. 11187. Springer-Verlag,
231-251.

D. Janin. 2019. A Timed IO monad. Technical Report. LaBRI, Université
de Bordeaux.

A. Jeffrey. 2012. LTL Types FRP: Linear-time Temporal Logic Proposi-
tions As Types, Proofs As Functional Reactive Programs. In Proceedings
of the Sixth Workshop on Programming Languages Meets Program Veri-
fication. ACM, 49-60.

W. Jeltsch. 2014. Categorical Semantics for Functional Reactive Pro-
gramming with Temporal Recursion and Corecursion. In Mathemat-
ically Structured Functional Programming (MSFP) (EPTCS), Vol. 153.
127-142.

N.R. Krishnaswami. 2013. Higher-Order Functional Reactive Program-
ming without Spacetime Leaks. In Int. Conf. Func. Prog. (ICFP).

S. Marlow. 2012. Parallel and Concurrent Programming in Haskell.
In 4th Summer School Conference on Central European Functional Pro-
gramming School (CEFP’11). Springer-Verlag, 339-401.

G. H. Mealy. 1955. A Method for Synthesizing Sequential Circuits. Bell
System Technical Journal (1955), 1045 —1079.

Y. Orlarey, D. Fober, and S. Letz. 2009. Faust: an Efficient Functional
Approach to DSP Programming. In New Computationals Paradigms for
Computer Music. Editions Delatour France.

[17] J. Paykin and S. Zdancewic. 2017. The Linearity Monad. In Haskell
Symposium. ACM.

1. Perez, M. Barenz, and H. Nilsson. 2016. Functional Reactive Program-
ming, Refactored. In Proceedings of the 9th International Symposium on
Haskell. ACM, 33-44.

A.van der Ploeg and K. Claessen. 2015. Practical principled FRP: forget
the past, change the future, FRPNow!. In Int. Conf. Func. Prog. (ICFP).
ACM, 302-314.

D. Rémy. 2002. Using, Understanding, and Unraveling the OCaml Lan-
guage From Practice to Theory and Vice Versa. In Applied Semantics,
G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva (Eds.). LNCS, Vol. 2395.
Springer, 413-536.

R. de Simone, J.-P. Talpin, and D. Potop-Butucaru. 2005. The Synchro-
nous Hypothesis and Synchronous Languages. In Embedded Systems
Handbook. CRC Press.

P. Teehan, M. R. Greenstreet, and G. G. Lemieux. 2007. A Survey and
Taxonomy of GALS Design Styles. IEEE Design & Test of Computers
24, 5 (2007), 418-428.

D. Winograd-Cort. 2015. Effects, Asynchrony, and Choice in Arrowized
Functional Reactive Programming. Ph.D. Dissertation. Yale University.
D. Winograd-Cort and P. Hudak. 2014. Settable and non-interfering
signal functions for FRP: how a first-order switch is more than enough.
In Int. Conf. Func. Prog. (ICFP). ACM, 213-225.

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(18]

[19]

[20]

[21]

[22]

[23]

[24]



	Abstract
	1 Introduction
	2 Basics on Monad Streams
	3 Synchronous Monad Stream Processing
	4 Monad Stream References
	5 Asynchronous Monad Stream Control
	6 Audio Processing and Control
	7 Connecting with Driver Interfaces
	8 Related Works
	9 Conclusion
	Acknowledgments
	References

