
HAL Id: hal-02368110
https://hal.science/hal-02368110

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local spot noise for procedural surface details synthesis
Arthur Cavalier, Guillaume Gilet, Djamchid Ghazanfarpour

To cite this version:
Arthur Cavalier, Guillaume Gilet, Djamchid Ghazanfarpour. Local spot noise for procedural surface
details synthesis. Computers and Graphics, 2019, 85, pp.92-99. �10.1016/j.cag.2019.10.003�. �hal-
02368110�

https://hal.science/hal-02368110
https://hal.archives-ouvertes.fr

Computers & Graphics (2019)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Local Spot Noise for Procedural Surface Details Synthesis

Arthur Cavalier, Guillaume Gilet, Djamchid Ghazanfarpour

Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France

A R T I C L E I N F O

Article history:

Received 27 May 2019

Accepted 12 October 2019

Keywords: Procedural texturing, proce-

dural noise, antialiasing, image synthesis

A B S T R A C T

To deal with the increasing demand for complex visual details in virtual worlds, pro-

cedural methods for content authoring are an expanding field in Computer Graphics.

Focusing on on-the-fly texture generation, we present in this paper a content authoring

process based on Locally Controlled Spot Noise. Through the control of both the im-

pulses distribution and the spatially-defined kernel, this process can cover a wide range

of appearances. In this context, we introduce a new kernel formulation that provides

an efficient anisotropic filtering of the generated texture. Furthermore, our method al-

lows users to interactively create the desired appearance by controlling both albedo and

meso-geometry of the underlying surface, tackling on-the-fly normal map generation.

Our method can be used as an artist friendly tool to model high-quality surface details

with direct control over the final appearance in real-time.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Procedural content generation is a widely studied field in

Computer Graphics to alleviate the problem of complex scene

authoring. We focus in this work on interactive procedural tex-

turing, as it is a well known method to synthesize a high amount

of details onto surfaces during rendering while remaining mem-

ory compact and suited to modern GPU implementations. The

goal of this approach is to fill a target surface with a desired

pattern resulting from the evaluation of a procedural function.

Several methods, such as noises or patch based method [1, 2, 3],

can be devised to generate complex patterns. To overcome the

traditional difficulty of correlating the targeted visual appear-

ance with arbitrary function parameters, most recent works fo-

cus on texture generation by precomputing the parameters of

the procedural function using a by-example approach. How-

ever, results are highly dependent on the content of the input

example and control over the final result remains unintuitive.

e-mail: arthur.cavalier@unilim.fr (Arthur Cavalier),

guillaume.gilet@unilim.fr (Guillaume Gilet),

djamchid.ghazanfarpour@unilim.fr (Djamchid Ghazanfarpour)

It often requires editing the discrete input or manually tweak-

ing the function parameters. In particular, finely controlling the

visual variety of the final result remains a challenging task for

most methods.

Another approach to solve the difficulty of appearance / pro-

cedural function parameters matching is to provide a definition

relying on intuitive parameters. Spot noise, as introduced by

van Wijk [4], relies on a small user-defined kernel distributed

over the target surface and presents easy to understand parame-

ters. As shown by Pavie et al. [5], locally controlled spot noise

yields fine controls over a wide range of appearances by con-

trolling both kernel function and distribution. However, this

method did not address filtering issues which are essential to

achieve high quality visual results during rendering of complex

scenes. Furthermore, most visually appealing appearances ex-

hibit subtle variations in shading and are not limited to albedo.

Thus, procedural methods generating details should consider

surface normal as well as surface color.

This paper presents how to overcome these limitations by

extending the locally controlled spot noise formalization. Our

main contributions are :

• A new kernel formulation relying on a lighter parameteri-

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review /Computers & Graphics (2019)

zation while preserving intuitive geometric parameters.

• An anisotropic filtering scheme to achieve high-quality re-

sults during rendering.

• An analytic normal map generation process while main-

taining user control and preventing aliasing issues.

The remaining parts of the paper is organized as follows: in

the next section we propose a brief overview of procedural pat-

terns and noise generation methods. Before presenting our new

kernel formulation and its filtering capabilities, we recall the

previously introduced definition [5]. Finally, we discuss vari-

ous applications and limitations of our spot noise model such

as stylized rendering and non-stationary texture generation.

2. Related Work

Tackling the creation of procedural patterns over an arbitrary

surface is commonly achieved by filling the target surface space

with smaller primitives. These primitives could be discrete, us-

ing small texture elements (or patches), or procedurally gener-

ated. Patterns are usually distributed onto surface space using

a distribution function ranging from totally periodic and regu-

lar to purely random, according to the desired regularity of the

target.

2.1. Patch based methods and Tiling

Patch-based methods are commonly used to create structured

or semi-structured procedural textures, leveraging the inherent

visual structure of the discrete patches. In such approach, the

procedural pattern is evaluated by regularly tiling the target sur-

face with patches [6, 7], or by precomputing Wang tiles[8, 9]

to fill the synthesis domain. Patches are randomly arranged to

break repetitions, but results may lack of details variety : the

same tiles / patches (i.e. rigorously identical contents) are re-

peated over and over again even for irregular textures. This

is particularly visible in case of entirely periodic tiling, where

patches with identifiable visual characteristics can cause un-

pleasant repetitions. Attenuating these repetition artifacts can

be done by increasing the number of patches, at the cost of

memory consumption, or by carefully choosing patches with

very similar visual characteristics [10], thus reducing the vari-

ety of the result.

To break alignment effects or add more randomness in the

result, patches can be distributed over the target surface accord-

ing to a procedural distribution function to create an infinite set

of random positions. Point jittering is often used as distribu-

tion function for its simplicity and evaluation speed [11]. How-

ever, it does not take into account spatial dependencies (distance

threshold between objects) so distributed objects may overlap,

introducing the need for a blending operator. Direct Stochastic

tiling [12] can produce some distance dependencies, to create

for instance an infinite set of Poisson-disks, but still requires

some tiles to be precomputed and stored. Rectilinear tessel-

lation of the surface can be considered [13] to improve point

jittering using a different instance of an object per cell with a

random position computed on-the-fly. Fully procedural semi-

structured pattern can be produced using both procedural ob-

ject definitions and procedural distribution functions, but very

few techniques propose to extract such objects directly from an

input sample.

2.2. Procedural noise

Procedurals noises have been widely studied in the past near-

four-decades. We refer to the survey of Lagae et al. [1] for

a more thorough overview of noise-based procedural textur-

ing. Two types of approaches are commonly considered: lat-

tice gradient noises and sparse convolution noises. The former

are based on the interpolation of randomly oriented gradients

evaluated on the vertices of a regular grid. Sparse convolution

noises are based on the convolution of randomly distributed im-

pulses by a spatial filter function (kernel). As uniform random

distribution processes result in white noise in the frequency do-

main, control over sparse convolution noises is achieved by

controlling the kernel function. As first introduced by Lewis

[14, 15, 16], convolution kernels were originally designed in

the spectral domain. Several parameterization were proposed,

such as Gabor [17] or sinc [18] kernels. Such kernel functions

have well-known properties in the spectral domain, can be eval-

uated in the spatial domain at a low computational cost and thus

provide efficient control on the final appearance of the noise

process.

Nonetheless, textures generated by sparse convolution meth-

ods suffer from loss of contrast as highlighted by Neyret and

Heitz [19]. They introduced the spectrum of variance as a more

relevant tool to remove the constrast oscillation issue than the

Power Spectral Density (PSD). It was recently investigated by

Tavernier et al. [20] who studied various components of Gabor

noise [17] to optimize and normalize the evaluation process.

However, controlling noise through the spectral definition of

a kernel is quite non-intuitive for artists and often requires a

time-consuming trial and error process. To alleviate this, a first

solution is to use some spatial informations to influence spec-

tral parameters. Charpenay et al. [21] studied how to influence

Gabor noise parameters through the use of control maps. An-

other solution is to automatically extract the parameters of the

kernel functions through spectral analysis of an input exem-

plar. The main idea of these by-example methods relies on the

fact that, for a limited class of unstructured textures, a noise

process having the equivalent PSD of an input exemplar will

have the same visual statistical properties and generate a vi-

sually similar result. To achieve this, an approximated cover-

age of the target PSD is computed using the spectral definition

of the convolution kernels, like Gabor [17, 22] or sinc kernels

[18]. As the convolution kernel reproducing the entire target

PSD can be quite complex, these methods lower the computa-

tional complexity of the noise process by randomly choosing

each convolution kernel as a subset of the ideal kernel, relying

on the random distribution of impulses to approximate the re-

sult. Galerne et al. [23] introduced the Texton Noise to correct

this approximation, by using a single discrete precomputed im-

age as kernel function. This image is the spatial definition of the

ideal kernel offering the best approximation of the target PSD.

Preprint Submitted for review /Computers & Graphics (2019) 3

Fig. 1: Pavie et al. [5] proposed a spot noise with a fully controllable kernel, modelled by a sum of Gaussian functions. By constraining distribution, their method

can generate various types of patterns, from stochastic to near-regular kernel distribution, changing the final appearance of the texture.

This method, relying for each pixel on 30 texture fetches of this

shifted kernel, enables fast evaluation of a by-example random

phase noise.

As these methods tackle only textures solely defined by their

power spectrum, Gilet et al. [24] proposed to store some phase

information of the input exemplar obtained during the spec-

tral analysis and re-introduce them during noise evaluation.

By using complex kernels with fixed phase information convo-

luted with regularly distributed impulses, some structural pat-

terns of the input example can be reproduced, thus widening

the range of by-example based procedural methods. Nonethe-

less, by fixing phase information, this method introduces a peri-

odic structural component of the example. Authors used spatial

deformations and turbulence on the output to break periodic-

ity. Instead of using phase information to reproduced the input

example structure, Guingo et al. [25] proposed to separately

model the structural component by using spatial methods like

patch-based methods and the stochastic component with ran-

dom phase noises.

As stated above, by-example noise textures synthesis are a

well suited method for fast texture synthesis without heavy

memory consumption, though these methods, even Texton

Noise [23], are too time consuming during evaluation in order

to be used in critical real-time applications. Recently, Heitz

and Neyret [26] introduced an efficient method for computing

a by-example texture on-the-fly. By combining Patch-Based

texture synthesis and triangle lattice evaluation, this noise re-

quires computing and blending of only three contributions per

pixels. This method proposed a blending scheme based on a

precomputed “gaussianized” version of the input texture and a

variance-preserving blending of three contributions computed

on a triangle grid. Yielding high quality fast texturing, this

method nonetheless has the same drawbacks of patch-based

methods and works mostly for tile-able stochastic input tex-

tures. Finally, by rewriting Gabor noise as a single sine wave

using a sum of phasors and studying its spectrum of variance,

Tricard et al. [27] addressed the contrast oscillation problem

and introduced a new tool for pattern synthesis, providing fine

controls over the final appearance by editing the profile func-

tion. However, the generated patterns may contain visual sin-

gularities and the method does not tackle filtering issues.

Another method to solve direct visual control on the final

result of the noise process is to define kernels in the spatial do-

main. Van Wijk [4] introduced a Spot Noise method relying

on small user defined kernels convolved with random impulses,

providing an intuitive noise process exhibiting micro-structured

patterns. To increase user control on structured textures gen-

eration process, Pavie et al. [5] further extended this work by

defining kernels as a sum of Gaussian functions and controlling

the distribution of impulses to reintroduce large scale alignment

of micro-structured patterns.

However, this previous work has some limitations, as it does

not address filtering issues, which are relevant for high quality

texture synthesis, and remains limited to the generation of color

information. In this paper, we propose several improvements of

this method such as anisotropic filtering, a more efficient defini-

tion of the kernel function and the conjoint generation of normal

maps.

3. Locally controlled spot noise

As presented by van Wijk [4], the spot noise model consists

in the summation of the same kernel at random positions in tex-

ture space. This model can produce a large variety of textures

by changing the input kernel, as shown in Fig.1. The Locally

Controlled Spot Noise (or LCSN), introduced by Pavie et al.

[5], consists in a spot noise formulation based on a kernel de-

fined as a sum of elliptical Gaussian functions. This definition

provides intuitive control of the final texture, as each kernel can

be explicitly authored by setting up the corresponding Gaussian

functions using simple geometric controls (translation, rotation

and scaling). Finally, control over large scale structures and the

overall appearance of the result can be achieved by controlling

the distribution of impulses. We recall the spot noise model as

a sum of M kernels weighted by wi evaluated at impulses pi

lcsn(p) =

M
∑

i=1

wik(p − pi) (1)

where p is expressed in homogeneous coordinates for point

x in texture space (i.e. p = (x, 1)T). Each kernel function

k is defined as a sum of N elliptical D-dimensional Gaussian

functions with arbitrary orientation and scale defined by:

k(p) =

N
∑

j=1

λ je
− 1

2
pT V−1

j
p (2)

where λ is the Gaussian magnitude and Vj is a (D+1)×(D+1)

matrix such that Vj
−1 = (MjRjSj)

−T (MjRjSj)
−1. Here Mj,Rj

4 Preprint Submitted for review /Computers & Graphics (2019)

Pavie et al. (1 spp)ReferenceOurs (1 spp)

Fig. 2: We compare our anisotropic filtering with Pavie et al. method. Regular patterns are usually prone to aliasing issues. By analytically prefiltering the spot

noise with our kernel formulation, we achieve high quality results matching the brute force reference.

and Sj are respectively shift, rotation and scaling matrices, us-

ing homogeneous coordinates. To achieve structured patterns,

LCSN relies on an uniform distribution of impulses constrained

by a Kronecker delta function δ
(

ξ(pj) < d(pj)
)

where d is a

scalar field represented by a probability. This parameter allows

the user to control the density of impulses in given regions and

can be defined using an arbitrary discrete or analytic function.

In practice, this procedural function is built on-top of a reg-

ular grid for acceleration purposes. The finite impulses process

is generally a constrained jittered sampling of kernel shots us-

ing a by-cell seeding strategy to ensure continuity. The evalu-

ation procedure consists in a sum of each kernel from the cur-

rent cell and the neighboring ones computed at the considered

pixel/fragment, similarly to sparse convolution methods. By

definition, the main bottleneck of this spot noise formulation is

the kernel complexity (i.e. number of Gaussians used) and the

number of impulses chosen.

4. Improved kernel formulation

As seen in the previous section, Pavie et al. [5] uses a double-

sum formulation for their spot noise, as each kernel is the sum

of multiple Gaussian functions. In the paper, the authors do not

discuss other types of Gaussian function parameterizations.

The need of homogeneous coordinates can easily be removed

while maintaining a purely geometric parametrization. The

Gaussian “shape” is independent of the translation, and directly

depends on the rotation and the scale information. A common

unnormalized Gaussian function with a scalar magnitude λ, a

mean vector µ and a covariance matrix Σ can be used as a sub-

stitute. A Gaussian kernel can thus be defined as :

g(x; λ, µ,Σ) = λe−
1
2

(x−µ)T
Σ
−1(x−µ) (3)

yielding :

lcsn(x) =

M
∑

i=1

wi

N
∑

j=1

g(x − xi; λ j, µ j,Σj) (4)

The iso-contour of the kernel is still determined by (x −

µ)T
Σ
−1(x − µ), but does not rely anymore on homogeneous co-

ordinates, keeping the dimension to D. The chosen covariance

matrix Σj can be expressed with a rotation matrix Rj and a scale

matrix Sj, with the relation Σj = RjSjSjRj
T . It enables the user

to rely on purely geometric parameters, a rotation angle, a scale

vector and a shift vector.

As stated in Section 3, the complexity of the method is di-

rectly dependent of the number of Gaussians used to construct

the kernel and the number of kernel shots. By changing the pa-

rameterization, we slightly enhance the performance of the spot

noise model. This is further discussed in Section 7.

5. Anisotropic Filtering

In their first work, Pavie et al. [5] did not take into account

filtering for their 2D noise. However, they did consider it when

they extended their formulation in 3D ellipsoids for their shell

textures synthesis [28]. To prefilter our new kernel formulation,

we model our pixel footprint by a Gaussian function similar to

Heckbert [29]. A Gaussian pixel footprint is a rather standard

choice in the literature as it often provides closed-form solu-

tions to computations with the appropriate kernel as in [17]. In

texture space, this results in a normalized Gaussian centered in

the projected pixel, without shift, using the Jacobian matrix J of

the texture mapping as a covariance matrix and σ as the width

of the pixel footprint in image space (i.e. σ = 0.5).

kP(x) =
1

2π
√

|JJT |
e−

1
2

[

xT (JJT)−1x
]

(5)

with

J = σ













du
dx

du
dy

dv
dx

dv
dy













In practice the Jacobian matrix is built using screen-space

derivatives, in the rasterization pipeline, or ray differentials.

Due to the formulation of the spot noise, the prefiltered noise

is the sum of the prefiltered kernels, resulting in our case, in

the sum of prefiltered Gaussians. In texture space, we need to

compute the convolution of the Gaussian pixel footprint with

each Gaussian of the kernel during the evaluation process. Be-

cause Gaussians are closed under convolution (please refer to

the Appendix), it allows us to analytically compute the pre-

filtered Gaussian function.

g(x; λ1, µ1,Σ1) ⊛ g(x; λ2, µ2,Σ2) = g(x; λ3, µ3,Σ3) (6)

Preprint Submitted for review /Computers & Graphics (2019) 5

with

Σ3 = Σ1 + Σ2

µ3 = µ1 + µ2

λ3 = (2π)D/2|(Σ1
−1 + Σ2

−1)−1|1/2λ1λ2

As seen in figure 2, we achieve high quality filtering results

for a few more calculations during each Gaussian evaluation.

However, the projected pixel footprint may degenerate into

extreme shapes depending on the view angle, the scene and

parameters. It means that the projected pixel footprint may

overlap more neighboring cells than the ones considered during

evaluation, resulting in an over-filtering artifact (see the dark

regions in the top row of Figure (3)). This problem occurs in

extreme situations like high texture space scaling, grazing an-

gle, high grid resolution or at vanishing points.

𝑈
𝑉

𝑈
𝑉

𝑈
𝑉

𝑈
𝑉

Fig. 3: Top row : In extremes cases, the pixel footprint (in red) may be larger

than the neighborhood region considered during evaluation (in gray). If the

missing cells are not taken into account, the convolution is biased (dark regions

at the sphere boundary). Second row : Considering all the cells within the pixel

footprint leads to the correct solution. However, this quickly becomes impracti-

cal in a real-time context. Third row : In practice, the pixel footprint is usually

clamped to the considered neighborhood (in blue), reintroducing aliasing. Last

row : A better practical solution is to precompute a mipmapped representa-

tive tile of a neighborhood region and smoothly transition between analytical

filtering and this representation.

Adressing this problem requires to increase the number of

cells being considered according to the pixel footprint. This has

the drawback of increasing the calculations for the concerned

pixels. Furthermore, when the pixel footprint degenerates to a

flat and elongated shape, the number of cells to be considered

becomes impractical for on-the-fly evaluation.

However, an assumption can be made for color textures as the

resulting pixel intensity tends toward a mean color. So a first

practical solution is to limit the pixel footprint to the consid-

ered neighborhood. This works well in most practical cases but

at highly grazing angles and high texture space scaling, alias-

ing is reintroduced. Finally, another practical solution for the

on-the-fly filtered evaluation is to precompute a representative

tile of the spot noise and fade out between analytical filtering

and hardware mipmapping (Figure 3 last row). However, effi-

ciently filtering of on-the-fly procedural functions in these ex-

treme cases still remains an open issue.

6. Analytic Normal Mapping

Normal mapping is a common technique used to simulate the

presence of geometric details during shading without explicitly

generating the actual geometry. We propose to create such maps

with our method by taking advantage of the formulation of our

spot noise.

Creating normal maps from procedural functions is usually

achieved by considering the noise process as a heightfield on

the surface and computing its derivatives [30, 31]. They can

be computed using finite differences, thus requiring multiple

evaluations of the function for each pixel and hampering per-

formance of the process, or analytically. We chose to define

our noise as a height field in the tangent frame of the underly-

ing surface and use our formulation to compute the slopes of

the heightfield in texture space. By applying the sum rule to

the spot noise formulation, we can compute the final slope by

adding the partial derivatives of each kernel, and by extension,

of each Gaussian. Because of the spot noise formulation, we

can directly compute partial derivatives during the evaluation

of our procedural function:

∂lcsn(x)

∂x
=

M
∑

i=1

wi

N
∑

j=1

∂g(x − xi; λ j, µ j,Σj)

∂x
(7)

with
∂g(x; λ, µ,Σ)

∂x
= g(x; λ, µ,Σ)(−Σ−1(x − µ)) (8)

to finally obtain the partial derivatives of our procedural tex-

ture according to x and y. During shading, as shown in Fig 4,

we can use these scalars to compute the perturbed normal ωp

by using the following transformation :

ωp =

(

−
∂lcsn(x)

∂x
,−
∂lcsn(x)

∂y
, 1

)T

√

(
∂lcsn(x)

x
)2 + (

∂lcsn(x)

y
)2 + 1

(9)

Alternatively, during the evaluation of the BRDF, we can di-

rectly use the computed slope as a shift in a non-centered nor-

mal distribution function similar to the formulation proposed

by Olano and Baker [32] (Equation (1)) and Dupuy et al. [33]

(Equation (8) & (10)).

We remind that normal map filtering is still an open problem

in Computer Graphics. Indeed, discrete normal map textures

are usually used during shading computation and naively fil-

tered using hardware mipmapping. This has the drawback of

changing the appearance of the object when filtered (i.e. incor-

rect shading). Several approaches have been studied to over-

come this issue [34, 32]. For example, moments-based ap-

proaches like [32, 33] compute second moments from partial

6 Preprint Submitted for review /Computers & Graphics (2019)

derivatives. In our case, we need to compute
∂lcsn(x)

∂x

2
,
∂lcsn(x)

∂y

2

and
∂lcsn(x)

∂x

∂lcsn(x)

∂y
. Because the partial derivatives are computed

through a weighted sum, analytically computing moments re-

quires the calculations of the squared sum and each crossed

term. This is therefore not suited for on-the-fly evaluation. This

specific problem isn’t tackled in this paper and is left open for

future works.

Fig. 4: Using the partial derivatives of the height function (left) we compute

the normal map (middle) to generate subtle variations in shading at runtime.

However, Equation 8 admits a closed-form when convolved

with a Gaussian footprint. Indeed, when the partial derivative

of a Gaussian g1(x) = g(x; λ1, µ1,Σ1) is convolved by another

Gaussian g2(x) = g(x; λ2, µ2,Σ2), it results in :

∫

R2

∂g1(x − t)

∂x
g2(t)dt = −(a, b)T · (x − (µ1 + µ3))λ3(2π)|Σ3|

1/2

∫

R2

∂g1(x − t)

∂y
g2(t)dt = −(b, c)T · (x − (µ1 + µ3))λ3(2π)|Σ3|

1/2

where

Σ
−1
1 =

(

a b

b c

)

Σ3 = (Σ1
−1 + Σ2

−1)−1

µ3 = Σ3(Σ1
−1µ1 + Σ2

−1µ2)

λ3 = g(µ1; λ1λ2, µ2,Σ1 + Σ2)

We refer the reader to the full derivation that could be found

in the supplementary material. This allows us to directly com-

pute the filtered slope of our spot noise at runtime, yielding a

mean slope in the projected pixel footprint. By replacing par-

tial derivatives in Equation 9 or by directly using it for shifting

non-centered distribution function, we obtain a smooth approx-

imation of the underlying bump surface.

7. Results

In this section, we show results of our spot noise model.

First, we compare the performance of our new parameteriza-

tion against the previous model as seen in Figure 5. For the

same quality, performances are slightly improved by removing

the homogeneous coordinates. We can also compute the par-

tial derivatives while remaining a little bit faster than the previ-

ous parameterization (generating only color). However, prop-

erly filtering the spot noise requires extra computations, thus

slightly lowering performance compared to the aliased previ-

ous version.

0 20 40 60 80 100
Gaussians / Pixel

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(m

s)

Kernel Parameterization
Pavie et al.
Ours
Ours (Filtered)
Ours + Partials
Ours + Partials (Filtered)

Fig. 5: Performance comparison between our parameterization and the Pavie

et al. [5] one. Measures were done on 1920*1080 textures on a GTX 2080.

Table 1 shows the performance (in milliseconds) of three

noise patterns on two high-end GPUs (a GTX 1080Ti and a

GTX 2080). These three textures, shown in Fig 6, were gen-

erated in 2048*2048 with an increasing complexity. As seen

in Section 3, the computational complexity of our method is

directly linked to the overall number of Gaussian kernels im-

pacting each pixel.

Scene (fig. 6) Gauss/cell GTX 1080Ti GTX 2080

(a) Hive 5 5.1 ms 3.3 ms

(b) Fiber 20 15.7 ms 10.7 ms

(c) Sparkles 40 28.8 ms 19.4 ms

Table 1: Performance of 2D LCSN evaluations in Fig 6 for 2048*2048 textures.

Performance are linked to the number of Gaussians covering each pixel.

Next, we show how artistic control can be achieved through

the use of external processes (textures, procedural functions,

...). Thanks to our purely geometric formulation, each param-

eter of our noise can easily be driven by a procedural or dis-

crete (cf. Fig 7) texture to generate spatially varying patterns.

This approach is similar to the one introduced by Charpenay

et al. [21]. We show on the left image the control over the ro-

tation matrix R (varying horizontally) and local translation of

each Gaussian (varying vertically). Similarly, the right image

depicts the increasing randomness as the rotation angle is ran-

domly chosen using a narrow (left) or wide (right) uniform dis-

tribution. Note that by interpolating values in parameter space

before generating the final result, we achieve a smoothly vary-

ing appearance without blending artifacts.

Preprint Submitted for review /Computers & Graphics (2019) 7

(a) (b) (c)

Fig. 6: Results : three patterns generated with our spatially defined spot noise with increasing complexity (ie. number of Gaussians in kernel). (a) : One Gaussian

kernel with a symmetric rotation for each odd cells and five impulses per cell. (b) : Two Gaussian kernels with symmetric rotation for each odd cells and ten impulses

per cell. (c) : Four Gaussian kernels and ten impulses per cell.

Fig. 7: Each parameter can be directly given by a control map (similar to [21]).

Left: the green channel controls the spreading of the distribution while the blue

channel drives the kernel rotation. Right: the rotation angle is randomly chosen

using an increasing range induced by the alpha channel.

Fig. 8: Our analytic filtering scheme (right column) prevents aliasing artifacts

(as seen on the left column) for albedo (top) and normal (bottom).

Figure 8 highlights the increase in visual quality introduced

by the analytic filtering scheme, for color noise or normal map

generation. Note that, similarly to classical filtering of discrete

normal maps, this is still an approximation that generates in-

correct shading results (see [34]). As seen in Figure 10, our

noise model is devised to be artist-friendly and provide intu-

itive control of the final visual appearance. Unlike by-example

approaches based on the spectral definition of an example, users

can finely tune each individual instance of the kernels. Further-

more, randomness of the final appearance can be intuitively and

locally controlled, by providing for each element of the target

surface the probability density function of each parameter.

Figure 10 (b) depicts such an application where the user can

interactively create several kinds of patterns from regular to

purely random (we refer the reader to the accompanying video).

Our noise can be applied as a post processing step using either

an image (as seen in Figure 9) or a framebuffer (Figure 10 (e))

to drive various parameters.

Fig. 9: Our spot noise can be used as a post process to achieve stylized results

on an arbitrary input (here a photograph).

Finally, as highlighted by 10 (a) to (d), our spot noise can also

be used as a primitive in a shader-graph to drive other procedu-

ral methods, yielding composite textures. Here, the spot noise

is used as a texture space partition in conjunction with two high

performance noises [26] to achieve a complex appearance rely-

ing on our normal map generation for shading purpose. We lin-

early blend the two procedural textures by using the amplitude

of our spot noise as a blending mask and simulate geometric de-

8 Preprint Submitted for review /Computers & Graphics (2019)

(a)

(b)

(c) (d) (e)

Fig. 10: Results. Our spot noise can generate a wide range of patterns. (a),(c) and (d) highlight non-stationary texturing using our spot noise and high-performance

noise [26] (average frametime: 6.87ms). (b) shows patterns resulting from locally controlled parameters yielding a smooth transition in appearance (avg frametime

: 4.6ms). (e) Stylized rendering can be achieved using our method in a post processing step (avg frametime : 0.34ms).

tails during shading using the partial derivatives of our model.

8. Discussion & Limitations

As shown above, this spot noise generates a wide range of

texture appearances (stochastic to near-regular) but the evalua-

tion cost is directly dependent on the number of Gaussians per

kernel and the number of kernels considered for a given pixel.

This method also relies on surface parameterization. A setup-

free noise (as the one in [17]) will break/deform the structure

unless the surface meets some specific properties.

Our filtering scheme yields high quality results, matching the

brute-force reference, but is not suited to normal mapping. As

stated in Section 6, correctly filtering normal mapping is more

complex than computing a mean slope during shading.

A more complex filtering issue appears when using our spot-

noise in a procedural hierarchy, such as driving our noise pa-

rameters using an analytic or discrete “control” map (cf. Sec-

tion 7) or using our noise as spatial mask for other procedural

methods. In this paper, we independently filtered each layer

whereas accurate filtering should simultaneously consider all

levels at each stage. This is however out of the scope of this

paper.

9. Conclusion & Future Works

Our main objective is producing high quality images using

on-the-fly procedurally generated textures. In this context we

presented three significant improvements to the Locally Con-

trolled Spot Noise : a lighter kernel formulation, which alle-

viates the evaluation process, an anisotropic filtering scheme,

which prevents aliasing and an analytic bump mapping strategy

in order to easily add surface details during shading. Further-

more, our method provides intuitive user controls through the

purely geometric parameterization of our new kernel.

To achieve a high level of realism, virtual appearances should

exhibit fine non-stationary details at multiple scales. As shown

in our work, a promising venue of future research resides in the

conjoint use of procedural stationary texture synthesis [26, 23]

with spatially varying structured patterns generation to create

elaborate surface textures, though filtering issues should be

carefully considered.

In a similar fashion, the link between correctly filtering nor-

mal maps and the final appearance of the material have been

widely studied in Computer Graphics. Efficient filtering of pro-

cedurally generated normal maps is a non-trivial issue and is an

interesting topic for future works.

Preprint Submitted for review /Computers & Graphics (2019) 9

Acknowledgments

The authors would like to thank Xavier Chermain for his

corrections. Bunny Model is provided by Stanford repository,

Mori model is courtesy of McGuire Graphic Archive. Buddha

and Gargoyle models are provided by AIM@SHAPE. Dragon

model is courtesy of UTIA and CGG. Guillaume Gilet acknowl-

edges support from project HDWorlds from the Agence Na-

tionale de la Recherche.

References

[1] Lagae, A, Lefebvre, S, Cook, R, DeRose, T, Drettakis, G, Ebert, DS,

et al. A survey of procedural noise functions. In: Computer Graphics

Forum; vol. 29. Wiley Online Library; 2010, p. 2579–2600.

[2] Ebert, DS, Musgrave, FK. Texturing & modeling: a procedural ap-

proach. Morgan Kaufmann; 2003.

[3] Wei, LY, Lefebvre, S, Kwatra, V, Turk, G. State of the art in example-

based texture synthesis. 2009,.

[4] van Wijk, JJ. Spot noise texture synthesis for data visualization. SIG-

GRAPH Comput Graph 1991;25(4):309–318. URL: http://doi.acm.

org/10.1145/127719.122751. doi:10.1145/127719.122751.

[5] Pavie, N, Gilet, G, Dischler, JM, Ghazanfarpour, D. Procedural texture

synthesis by locally controlled spot noise [c]. In: Wscg. 2016,.

[6] Efros, AA, Freeman, WT. Image quilting for texture synthesis and trans-

fer. In: Proceedings of the 28th Annual Conference on Computer Graph-

ics and Interactive Techniques. SIGGRAPH ’01; New York, NY, USA:

ACM. ISBN 1-58113-374-X; 2001, p. 341–346. URL: http://doi.

acm.org/10.1145/383259.383296. doi:10.1145/383259.383296.

[7] Liang, L, Liu, C, Xu, YQ, Guo, B, Shum, HY. Real-time texture syn-

thesis by patch-based sampling. ACM Transactions on Graphics (ToG)

2001;20(3):127–150.

[8] Cohen, MF, Shade, J, Hiller, S, Deussen, O. Wang tiles for image and

texture generation. ACM Trans Graph 2003;22(3):287–294. URL: http:

//doi.acm.org/10.1145/882262.882265. doi:10.1145/882262.

882265.

[9] Wei, LY. Tile-based texture mapping on graphics hardware. In: Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware. ACM; 2004, p. 55–63.

[10] Vanhoey, K, Sauvage, B, Larue, F, Dischler, JM. On-the-fly multi-scale

infinite texturing from example. ACM Trans Graph 2013;32(6):208:1–

208:10. URL: http://doi.acm.org/10.1145/2508363.2508383.

doi:10.1145/2508363.2508383.

[11] Glanville, S. Texture bombing. In: GPU Gems; chap. 20. 2004,.

[12] Lagae, A, Dutré, P. A procedural object distribution function. ACM

Trans Graph 2005;24(4):1442–1461. URL: http://doi.acm.org/10.

1145/1095878.1095888. doi:10.1145/1095878.1095888.

[13] Gilet, G, Dischler, JM, Ghazanfarpour, D. Multi-scale assemblage

for procedural texturing. Computer Graphics Forum 2012;31(7):2117–

2126. URL: http://dx.doi.org/10.1111/j.1467-8659.2012.

03204.x. doi:10.1111/j.1467-8659.2012.03204.x.

[14] Lewis, JP. Texture synthesis for digital painting. SIGGRAPH Comput

Graph 1984;18(3):245–252. URL: http://doi.acm.org/10.1145/

964965.808605. doi:10.1145/964965.808605.

[15] Lewis, JP. Methods for stochastic spectral synthesis. In: Proceedings

on Graphics Interface ’86/Vision Interface ’86. Toronto, Ont., Canada,

Canada: Canadian Information Processing Society; 1986, p. 173–179.

URL: http://dl.acm.org/citation.cfm?id=16564.16594.

[16] Lewis, JP. Algorithms for solid noise synthesis. SIGGRAPH Comput

Graph 1989;23(3):263–270. URL: http://doi.acm.org/10.1145/

74334.74360. doi:10.1145/74334.74360.

[17] Lagae, A, Lefebvre, S, Drettakis, G, Dutré, P. Procedural noise us-

ing sparse gabor convolution. ACM Transactions on Graphics (TOG)

2009;28(3):54.

[18] Gilet, G, Dischler, JM, Ghazanfarpour, D. Multiple kernels noise for

improved procedural texturing. The Visual Computer 2012;28(6-8):679–

689.

[19] Neyret, F, Heitz, E. Understanding and controlling contrast oscillations

in stochastic texture algorithms using Spectrum of Variance. Research

Report; LJK / Grenoble University - INRIA; 2016. URL: https://hal.

inria.fr/hal-01349134.

[20] Tavernier, V, Neyret, F, Vergne, R, Thollot, J. Making Gabor

Noise Fast and Normalized. In: Association, TE, editor. Eurographics

2019 - 40th Annual Conference of the European Association for Com-

puter Graphics. Eurographics 2019 - Short Papers; Gênes, Italy; 2019, p.

1–4. URL: https://hal.inria.fr/hal-02104389. doi:10.2312/

egs.20191009.

[21] Charpenay, V, Steiner, B, Musialski, P. Sampling gabor noise in the

spatial domain. In: Gutierrez, D, editor. Proceedings of the 30th Spring

Conference on Computer Graphics - SCCG. ACM Press. ISBN 978-80-

223-3601-7; 2014, p. 79–82. URL: https://www.cg.tuwien.ac.at/

research/publications/2014/charpenay-2014-sgn/.

[22] Galerne, B, Lagae, A, Lefebvre, S, Drettakis, G. Gabor noise by

example. ACM Transactions on Graphics (TOG) 2012;31(4):73.

[23] Galerne, B, Leclaire, A, Moisan, L. Texton noise. Computer

Graphics Forum 2017;:n/a–n/aURL: http://dx.doi.org/10.1111/

cgf.13073. doi:10.1111/cgf.13073.

[24] Gilet, G, Sauvage, B, Vanhoey, K, Dischler, JM, Ghazanfarpour, D.

Local random-phase noise for procedural texturing. ACM Transactions

on Graphics (TOG) 2014;33(6):195.

[25] Guingo, G, Sauvage, B, Dischler, JM, Cani, MP. Bi-Layer tex-

tures: a Model for Synthesis and Deformation of Composite Textures.

Computer Graphics Forum 2017;36(4):111–122. URL: https://hal.

archives-ouvertes.fr/hal-01528537.

[26] Heitz, E, Neyret, F. High-Performance By-Example Noise us-

ing a Histogram-Preserving Blending Operator. Proceedings of the

ACM on Computer Graphics and Interactive Techniques 2018;1(2):Ar-

ticle No. 31:1–25. URL: https://hal.inria.fr/hal-01824773.

doi:10.1145/3233304.

[27] Tricard, T, Efremov, S, Zanni, C, Neyret, F, Martı́nez, J, Lefebvre,

S. Procedural phasor noise. ACM Trans Graph 2019;38(4):57:1–57:13.

doi:10.1145/3306346.3322990.

[28] Pavie, N, Gilet, G, Dischler, JM, Galin, E, Ghazanfarpour, D. Volumet-

ric spot noise for procedural 3d shell texture synthesis. In: Proceedings of

the conferece on Computer Graphics & Visual Computing. Eurographics

Association; 2016, p. 33–40.

[29] Heckbert, PS. Fundamentals of texture mapping and image warping.

Tech. Rep. UCB/CSD-89-516; EECS Department, University of Cali-

fornia, Berkeley; 1989. URL: http://www2.eecs.berkeley.edu/

Pubs/TechRpts/1989/5504.html.

[30] Blinn, JF. Simulation of wrinkled surfaces. In: ACM SIGGRAPH com-

puter graphics; vol. 12. ACM; 1978, p. 286–292.

[31] Mikkelsen, MS. Bump mapping unparametrized surfaces on the gpu.

Journal of Graphics, GPU, and Game Tools 2010;15(1):49–61.

[32] Olano, M, Baker, D. Lean mapping. In: Proceedings of the 2010 ACM

SIGGRAPH symposium on Interactive 3D Graphics and Games. ACM;

2010, p. 181–188.

[33] Dupuy, J, Heitz, E, Iehl, JC, Pierre, P, Neyret, F, Ostromoukhov,

V. Linear Efficient Antialiased Displacement and Reflectance Map-

ping. ACM Transactions on Graphics 2013;32(6). URL: https://hal.

inria.fr/hal-00858220.

[34] Bruneton, E, Neyret, F. A survey of non-linear pre-filtering methods

for efficient and accurate surface shading. IEEE Trans Vis Comput Graph

2012;18(2):242–260.

[35] Petersen, KB, Pedersen, MS. The matrix cookbook. 2012. URL: http:

//www2.imm.dtu.dk/pubdb/p.php?3274; version 20121115.

Appendix

Closed-form solution for Gaussians convolution

To obtain Equation 6, we need to compute the convolution I

of two Gaussian functions :

I =

∫

RD

g(t; λ1, µ1,Σ1)g(x − t; λ2, µ2,Σ2)dt (10)

We first recall closed-form solutions of the integral of a Gaus-

sian function and the product of two Gaussian functions. Then,

we compute the integral of the product of two Gaussian func-

tions and, by substitution, solve Equation 10.

http://doi.acm.org/10.1145/127719.122751
http://doi.acm.org/10.1145/127719.122751
http://dx.doi.org/10.1145/127719.122751
http://doi.acm.org/10.1145/383259.383296
http://doi.acm.org/10.1145/383259.383296
http://dx.doi.org/10.1145/383259.383296
http://doi.acm.org/10.1145/882262.882265
http://doi.acm.org/10.1145/882262.882265
http://dx.doi.org/10.1145/882262.882265
http://dx.doi.org/10.1145/882262.882265
http://doi.acm.org/10.1145/2508363.2508383
http://dx.doi.org/10.1145/2508363.2508383
http://doi.acm.org/10.1145/1095878.1095888
http://doi.acm.org/10.1145/1095878.1095888
http://dx.doi.org/10.1145/1095878.1095888
http://dx.doi.org/10.1111/j.1467-8659.2012.03204.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03204.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03204.x
http://doi.acm.org/10.1145/964965.808605
http://doi.acm.org/10.1145/964965.808605
http://dx.doi.org/10.1145/964965.808605
http://dl.acm.org/citation.cfm?id=16564.16594
http://doi.acm.org/10.1145/74334.74360
http://doi.acm.org/10.1145/74334.74360
http://dx.doi.org/10.1145/74334.74360
https://hal.inria.fr/hal-01349134
https://hal.inria.fr/hal-01349134
https://hal.inria.fr/hal-02104389
http://dx.doi.org/10.2312/egs.20191009
http://dx.doi.org/10.2312/egs.20191009
https://www.cg.tuwien.ac.at/research/publications/2014/charpenay-2014-sgn/
https://www.cg.tuwien.ac.at/research/publications/2014/charpenay-2014-sgn/
http://dx.doi.org/10.1111/cgf.13073
http://dx.doi.org/10.1111/cgf.13073
http://dx.doi.org/10.1111/cgf.13073
https://hal.archives-ouvertes.fr/hal-01528537
https://hal.archives-ouvertes.fr/hal-01528537
https://hal.inria.fr/hal-01824773
http://dx.doi.org/10.1145/3233304
http://dx.doi.org/10.1145/3306346.3322990
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html
https://hal.inria.fr/hal-00858220
https://hal.inria.fr/hal-00858220
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

10 Preprint Submitted for review /Computers & Graphics (2019)

Integral of a multivariate Gaussian. Integrating a given mul-

tivariate Gaussian g over RD yields :

∫

RD

g(x; λ, µ,Σ)dx = λ · (2π)D/2|Σ|1/2 (11)

Product of two multivariate Gaussians. The product of two

multivariate Gaussians is another multivariate Gaussian [35]:

g(x; λ1, µ1,Σ1) · g(x; λ2, µ2,Σ2) = g(x; λ3, µ3,Σ3) (12)

where

Σ3 = (Σ1
−1 + Σ2

−1)−1

µ3 = Σ3(Σ1
−1µ1 + Σ2

−1µ2)

λ3 = g(µ1; λ1λ2, µ2,Σ1 + Σ2)

Integral of the product of two multivariate Gaussians. By ap-

plying equations 11 and 12, the integral results in :

∫

RD

g(x; λ1, µ1,Σ1)g(x; λ2, µ2,Σ2)dx

= g(µ1; λ1λ2, µ2,Σ1 + Σ2)

∫

RD

g(x; 1, µ3,Σ3)dx

= g(µ1; λ1λ2(2π)D/2|Σ3|
1/2, µ2,Σ1 + Σ2)

Convolution of multivariate Gaussians. By substituting Equa-

tion 10 in Equation 12, we obtain :

∫

RD

g(t; λ1, µ1,Σ1)g(x − t; λ2, µ2,Σ2)dt

=

∫

RD

g(t; λ1, µ1,Σ1)g(t; λ2, x − µ2,Σ2)dt

= g(x; λ1λ2(2π)D/2|Σ3|
1/2, µ1 + µ2,Σ1 + Σ2)

	Introduction
	Related Work
	Patch based methods and Tiling
	Procedural noise

	Locally controlled spot noise
	Improved kernel formulation
	Anisotropic Filtering
	Analytic Normal Mapping
	Results
	Discussion & Limitations
	Conclusion & Future Works

