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Control Law Realification for the Feedback Stabilization of a Class of Diagonal Infinite-Dimensional Systems with Delay Boundary Control

Hugo Lhachemi, Robert Shorten, and Christophe Prieur Abstract-Recently, a predictor feedback control strategy has been reported for the feedback stabilization of a class of infinite-dimensional Riesz-spectral boundary control systems exhibiting a finite number of unstable modes by means of a delay boundary control. Nevertheless, for real abstract boundary control systems exhibiting eigenstructures defined over the complex field, the direct application of such a control strategy requires the embedding of the control problem into a complexified state-space which yields a complex-valued control law. This paper discusses the realification of the control law, i.e., the modification of the design procedure for obtaining a real-valued control law for the original real abstract boundary control system. The obtained results are applied to the feedback stabilization of an unstable Euler-Bernoulli beam by means of a delay boundary control.

I. INTRODUCTION

Feedback control of finite-dimensional systems in the presence of input delays has been extensively investigated [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF], [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF]. Its extension to infinite-dimensional systems such as Partial Differential Equations (PDEs) for unbounded control operators has attracted many attention in the recent years [START_REF] Fridman | Stabilization of second order evolution equations with unbounded feedback with time-dependent delay[END_REF], [START_REF] Kang | Boundary control of delayed ODE-heat cascade under actuator saturation[END_REF], [START_REF] Nicaise | Stabilization of the wave equation with boundary or internal distributed delay[END_REF], [START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] .

In this paper, we are concerned with the feedback stabilization of open-loop unstable infinite-dimensional systems by means of delay boundary control. One of the first contributions in this field dealt with a reaction-diffusion equation where the controller was designed by resorting to the backstepping technique [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF]. More recently, the opportunity of designing a predictor feedback control for a linear reaction-diffusion equation presenting a constant input delay was reported in [START_REF] Prieur | Feedback stabilization of a 1D linear reactiondiffusion equation with delay boundary control[END_REF]. Inspired by early developments in the undelayed boundary control of PDEs via a truncated model capturing the unstable part of the system dynamics [START_REF] Coron | Global steady-state controllability of onedimensional semilinear heat equations[END_REF], [START_REF]Global steady-state stabilization and controllability of 1D semilinear wave equations[END_REF], [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF], the control law was computed based on a truncated model by applying the Artstein transformation [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF], [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF] and the classical pole-shifting theorem. The same design procedure has been employed for the delay feedback stabilization of a linearized Kuramoto-Sivashinsky equation in [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF]. This idea has been generalized in [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] for the feedback stabilization of boundary control systems [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF] for which the associated disturbance-free operator is a Riesz-spectral operator admitting a finite number of unstable eigenvalues.

In the case of the reaction diffusion-equation or the linearized Kuramoto-Sivashinsky equation studied in [START_REF] Prieur | Feedback stabilization of a 1D linear reactiondiffusion equation with delay boundary control[END_REF] and [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF], respectively, the Riesz-spectral property holds for the associated real Hilbert Space. However, certain systems such as strings and beams inherently present eigenstructures belonging to a complex Hilbert space. In this case, the control law reported in [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] is a priori complex-valued, even if the original problem is defined over the real field. To tackle this issue, a naive approach would consist in only keeping the real part of the complex-valued control law for obtaining a real-valued stabilizing feedback of the original real abstract boundary control system. However, by doing so, the resulting control law entangles both real and imaginary parts of the complex abstract boundary control system. Therefore, the obtained real-valued control law to be applied to the original real abstract boundary control system cannot be expressed as a state feedback as it depends on the imaginary part of the complex abstract boundary control system. The objective of this paper is to present a modification of the design procedure to ensure that, even after the incursion into the complex field for studying the eigenstructures of the system, the final control law is real-valued and can be expressed as a statefeedback of the original real boundary control system.

The remaining of the paper is organized as follows. Notations and the concept of complexification of a real Hilbert space are presented in Section II. The problem setting is introduced in Section III while the corresponding feedback control strategy within the complexified Hilbert space is described in Section IV. Then, the realification of the control law is discussed in Section V. The obtained results are illustrated for an unstable Euler-Bernoulli Beam in Section VI. Finally, concluding remarks are formulated in Section VII.

II. NOTATION AND COMPLEXIFICATION OF A REAL HILBERT SPACE

The field K denotes either R or C. All the finitedimensional spaces K p are endowed with the usual euclidean inner product x, y = x * y and the associated 2-norm x =

x, x = √ x * x, where x * = x . For any matrix M ∈ K p×q , M stands for the induced norm of M associated with the above 2-norms. Throughout the paper, we assume that (H , •, • ) is a separable Hilbert space over the field R. The associated norm is denoted by • . The following definition introduces the concept of complexification of the real Hilbert space H , see, e.g., [START_REF] Luna-Elizarrarás | Complexifications of real spaces: General aspects[END_REF], [START_REF] Rickart | General Theory of Banach Algebras[END_REF].

Definition 2.1 ( [START_REF] Rickart | General Theory of Banach Algebras[END_REF]): The complexification H c of H is the C-vector space H2 when endowed with the vector addition defined for any (x 1 , y 1 ), (x 2 , y 2 ) ∈ H 2 by (x 1 , y 1 ) + (x 2 , y 2 ) = (x 1 + x 2 , y 1 + y 2 ) and with the scalar multiplication defined for any (x, y) ∈ H 2 and α + iβ ∈ C with α, β ∈ R by (α + iβ ) • (x, y) = (αxβ y, αy + β x).

We introduce for any (x, y) ∈ H c the notations x + i c y = (x, y) and xi c y = x + i c (-y) = (x, -y). We define the real and imaginary parts of z = x + i c y ∈ H c as Re z = x ∈ H and Im z = y ∈ H . The complex conjugate function • : H c → H c is defined for any z = x + i c y ∈ H c by x + i c y = xi c y. The complex conjugate function is its own inverse and thus is an involution. Furthermore, we have for all λ ∈ C and z ∈ H c that λ

• z = λ • z. For any S 1 , S 2 ⊂ H , we define S 1 + i c S 2 = {x + i c y ∈ H : x ∈ S 1 , y ∈ S 2 } ⊂ H c . Property 2.2 ([13]): Defining •, • : H c × H c → C by x 1 +i c y 1 , x 2 +i c y 2 c = x 1 , x 2 + y 1 , y 2 +i [ y 1 , x 2 -x 1 , y 2 ], (H c , •, • ) is a separable C-Hilbert space.
The associated norm is denoted by • c and is such that

z 2 c = Re z 2 + Im z 2 .
As for any x ∈ H , (x, 0) c = x , we identify H and the subspace H + i c {0} of H c and we denote, with a slight abuse of notation, x = x + i c 0. For any x, y ∈ H , x, y c = x, y . A straightforward computation shows that, for any x, y ∈ H c , x, y c = x, y c . Definition 2.3:

Let (H k , •, • k ), k ∈ {1, 2}, be two R- Hilbert spaces. For a given R-linear (eventually unbounded) operator A : D(A) ⊂ H 1 → H 2 , its complexification A c : D(A c ) ⊂ H 1,c → H 2,c is defined for any z ∈ D(A c ) D(A) + i 1,c D(A) by A c z = A Re z + i 2,c A Im z.
Lemma 2.4 ( [START_REF] Luna-Elizarrarás | Complexifications of real spaces: General aspects[END_REF]): The complexification A c of the Rlinear operator A is a C-linear operator. Furthermore, if

A ∈ L R (H 1 , H 2 ), then A c ∈ L C (H 1,c , H 2,c ).
Lemma 2.5: Let A : D(A) ⊂ H → H be given. Let A c be the complexification of A. Let λ ∈ C be an eigenvalue of A c with associated eigenvector φ ∈ H c . Then λ ∈ C is an eigenvalue of A c with associated eigenvector φ ∈ H c .

Proof:

A c φ = A c (Re φ -i c Im φ ) = A Re φ -i c A Im φ = A Re φ + i c A Im φ = A c (Re φ + i c Im φ ) = A c φ = λ • φ
Lemma 2.6: Let A : D(A) ⊂ H → H be the generator of a C 0 -semigroup S on (H , •, • ) (see, e.g., [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]) and let A c be its complexification. Then S c : R

+ → L (H c ) defined for any t ≥ 0 and z ∈ H c by S c (t)z = S(t) Re z + i c S(t) Im z is a C 0 -semigroup on (H c , •, • c ) with infinitesimal generator A c .
Proof: Direct consequence of Lemma 2.4 and of the identity

z 2 c = Re z 2 + Im z 2 for all z ∈ H c .

III. PROBLEM SETTING A. Real abstract boundary control system

Let (H , •, • ) be a real separable Hilbert space. We consider the following real 1 abstract boundary control system [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF] with delayed boundary control:

       dX dt (t) = A X(t) + d(t), t ≥ 0 BX(t) = u D (t) u(t -D), t ≥ 0 X(0) = X 0 (1) 
1 I.e., H is a real Hilbert space and the control input is real-valued. [-D, +∞) → R m , with a known constant delay D > 0 and u| [-D,0) = 0, the boundary control. We assume that (A , B) is a real boundary control system, i.e., 1) the disturbancefree operator A 0 , defined over the domain

D(A 0 ) D(A ) ∩ ker(B) by A 0 A | D(A 0 ) , is the generator of a C 0 -semigroup S on H ; 2) there exists a bounded operator B ∈ L (R m , H ), called a lifting operator, such that R(B) ⊂ D(A ), A B ∈ L (R m , H ), and BB = I R m .

B. Complexification of the abstract boundary control system

Let (H c , •, • c ) be the complexification of the real Hilbert space (H , •, • ). We introduce the complexified version of the abstract boundary control problem (1) as follows:

       dY dt (t) = A c Y (t) + p(t), t ≥ 0 B c Y (t) = v D (t) v(t -D), t ≥ 0 Y (0) = Y 0 (2)
where A c and B c denote the complexified versions of operators A and B, respectively. In this case, p :

R + → H c is a distributed disturbance and v : [-D, +∞) → C m with v| [-D,0) = 0 is the boundary control. We introduce the disturbance-free operator [A c ] 0 defined over the do- main D([A c ] 0 ) D(A c ) ∩ ker(B c ) by [A c ] 0 A c | D([A c ] 0 )
. Then, based on Lemmas 2.4 and 2.6, it is easy to show that (A c , B c ) is a complex 2 boundary control system with 

v = f (Y ), then u = Re v = Re f (Y )
depends in general on ImY and thus is not a pure statefeedback of X = ReY , i.e., is not of the form u = g(X). For the problem setting described hereafter and the closed-loop dynamics (6a-6e), the objective of this paper is to show that an appropriate modification of the control design procedure can be used for uncoupling the real part of the dynamics from its imaginary part, and thus obtaining a real-valued control law u under the form of a state-feedback of X. This is achieved by an adequate selection of the eigenstructures and a detailed study of the associated truncated model used to design the predictor feedback.

C. Assumptions on the complexified boundary control system

We assume that the complexified boundary control system (A c , B c ) presents the following diagonal structure, which is typical of many applications such as reaction-diffusion equations and structural vibrations.

Assumption 3.2: The disturbance-free operator [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF], i.e., is a linear and closed operator with simple eigenvalues λ n and corresponding eigenvectors 

[A c ] 0 = [A 0 ] c is a Riesz spectral operator
φ n ∈ D([A 0 ] c ), n ∈ N * , that satisfy: 1) {φ n , n ∈ N * } is a Riesz basis [3]: a) span C n∈N * φ n = H c ; b) there exist constants m R , M R ∈ R * + such that for all N ∈ N * and all α 1 , . . . , α N ∈ C, m R N ∑ n=1 |α n | 2 ≤ N ∑ n=1 α n φ n 2 c ≤ M R N ∑ n=1 |α n | 2 . (3) 2) The closure of {λ n , n ∈ N * } is totally disconnected, i.e. for any distinct a, b ∈ {λ n , n ∈ N * }, [a, b] ⊂ {λ n , n ∈ N * }. As (3) yields that √ m R ≤ φ n c ≤ √ M r ,
n φ n = e -iθ n β n × e iθ n φn = β n φn if n ∈ I and α n φ n = β n φ n otherwise, (3) yields m R N ∑ n=1 |β n | 2 ≤ ∑ n∈I N β n φn + ∑ n∈J N β n φ n 2 c ≤ M R N ∑ n=1 |β n | 2 ,
which completes the proof.

Based on the latter lemma, we assume without loss of generality that the Riesz basis {φ n , n ∈ N * } is selected such that: λ n ∈ R ⇒ φ n ∈ H . Furthermore, from φ n = 1, Lemma 2.5, and the assumption that the eigenvalues are simple, we also assume without loss of generality, by a similar argument as the one employed in the proof of Lemma 3.3, that {φ n , n ∈ N * } is closed under complex conjugation. Thus we have for any

n 1 = n 2 that λ n 1 = λ n 2 ⇔ φ n 1 = φ n 2 .
We make the following assumption that there exists a finite number of unstable modes and that the real part of the stable modes does not accumulate at 0. Assumption 3.4: There exist N 0 ∈ N * and α ∈ R * + such that Re λ n ≤ -α for all n ≥ N 0 + 1.

Based on Lemma 2.5, we assume without loss of generality (by an adequate numbering of the eigenvalues and an appropriate selection of N 0 ) that {λ n : 1 ≤ n ≤ N 0 } is closed under complex conjugation. As the eigenvalues are simple, we can also assume that there exists 0

≤ n 0 ≤ N 0 /2 such that λ 2k-1 = λ 2k ∈ C\R for all 1 ≤ k ≤ n 0 and λ k ∈ R for all 2n 0 + 1 ≤ k ≤ N 0 .
From the well-known properties of the Riesz-basis (see, e.g., [START_REF] Christensen | An Introduction to Frames and Riesz Bases[END_REF]), we introduce {ψ n , n ∈ N * } the biorthogonal sequence associated with the Riesz basis {φ n , n ∈ N * }, i.e., φ k , ψ l c = δ k,l ∈ {0, 1} with δ k,l = 1 ⇔ k = l. Then, we have: 

∀x ∈ H c , x = ∑ n≥1 x, ψ n c φ n = ∑ n≥1 x, φ n c ψ n . (4 
ψ n = ∑ m≥1 ψ n , φ m c ψ m = ψ n . Lemma 3.6: Let n 1 ∈ N * be such that λ n 1 ∈ C\R. Let n 2 = n 1 be the unique integer such that λ n 2 = λ n 1 . Then we have φ n 1 = φ n 2 and ψ n 1 = ψ n 2 .
Proof: The existence and uniqueness of n 2 follows from the facts that 1) the eigenvalue are simple; 2) both {λ n , n ∈ N * } and {φ n , n ∈ N * } are closed under complex conjugation. We have that δ n,n 2 = φ n , ψ n 2 c = φ n , ψ n 2 c = φ n , ψ n 2 c . With n = n 2 we obtain that φ n 1 , ψ n 2 c = 1. With n = n 1 we obtain that φ n 2 , ψ n 2 c = 0. We now consider the case n = n 1 , n 2 . If φ n ∈ H then φ n , ψ n 2 c = φ n , ψ n 2 c = 0. Otherwise, there exists a unique n ∈ N * with n / ∈ {n, n 1 , n 2 } such that φ n = φ n , from which we deduce that φ n , ψ n 2 c = φ n , ψ n 2 c = 0. Consequently, we obtain from (4) that

ψ n 2 = ∑ n≥1 ψ n 2 , φ n c ψ n = ψ n 1 .

IV. FEEDBACK CONTROL STRATEGY WITHIN THE COMPLEXIFIED HILBERT SPACE

We introduce the control strategy reported in [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] for the studied complexified abstract boundary control system. 

A. Spectral decomposition

Assuming that v ∈ C 2 ([-D, +∞); C m ), Y 0 ∈ D(A c ) such that B c Y 0 = v D (0) = 0 (i.e., Y 0 ∈ D([A 0 ] c )), and p ∈ C 1 (R + ; H c ), we denote by Y ∈ C 0 (R + ; D(A c )) ∩ C 1 (R + ; H c )
(t) = A N 0 Y N 0 (t) + B N 0 v(t -D) + P N 0 (t), (5) 
where

A N 0 = diag(λ 1 , . . . , λ N 0 ) ∈ C N 0 ×N 0 , B N 0 = (b n,k ) 1≤n≤N 0 ,1≤k≤m ∈ C N 0 ×m
, and

Y N 0 (t) =    Y (t), ψ 1 c . . . Y (t), ψ N 0 c    , P N 0 (t) =    p(t), ψ 1 c . . . p(t), ψ N 0 c    ∈ C N 0 .
We assume in the sequel that the finite-dimensional truncated subsystem, gathering the unstable modes of the original infinite-dimensional system, is stabilizable. Assumption 4.1:

(A N 0 , B N 0 ) is stabilizable.

B. Dynamics of the closed-loop system and stability result

Let D,t 0 > 0 be given. We consider a given transition signal ϕ ∈ C 2 ([-D, +∞); R) such that 0 ≤ ϕ ≤ 1, ϕ| [-D,0] = 0, and ϕ| [t 0 ,+∞) = 1. The closed-loop system dynamics takes for t ≥ 0 the following form [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF]:

dY dt (t) = A c Y (t) + p(t), (6a) 
B c Y (t) = v D (t) = v(t -D), (6b) v| [-D,0] = 0 (6c) v(t) = ϕ(t)KY N 0 (t) (6d) + ϕ(t)K t max(t-D,0) e (t-s-D)A N 0 B N 0 v(s) ds, Y (0) = Y 0 (6e)
with gain K ∈ C m×N 0 such that A cl A N 0 + e -DA N 0 B N 0 K is Hurwitz. The control input v defined by (6d) takes the form of a predictor feedback for the truncated model (A N 0 , B N 0 ). It is used to control the infinite-dimensional system (6a) by means of the boundary input (6b). A c )) ∩ C 1 (R + ; H c ) of (6a-6e) associated with the initial condition Y 0 and the distributed disturbance p. The associated control law v is the unique solution of (6d), so called the "fixed point implicit equality" in [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF], and is in

C 2 ([-D, +∞); C m ). Fur- thermore, there exist constants κ 0 ,C 1 ,C 2 > 0, independent of Y 0 ∈ D([A 0 ] c ) and p ∈ C 1 (R + ; H c ), such that the following ISS estimate holds for all t ≥ 0, Y (t) c + v(t) ≤ C 1 e -κ 0 t Y 0 c +C 2 sup τ∈[0,t] p(τ) . (7)

V. REALIFICATION OF THE CONTROL LAW

The objective of this section is to derive a real-valued control law for the original system (1) within the original real Hilbert space H . As discussed in Remark 3.1, the naive approach consisting in taking u = Re v is not satisfactory. Indeed, as the matrices A N 0 , B N 0 , and K present complex coefficients, Re v entangles explicitly both ReY and ImY . Thus, Re v cannot be expressed as a state feedback for the original system (1) with X = ReY . Therefore, a modification of the design procedure is required.

A. Stabilization in the complexified state-space H c with a real-valued control law v

We introduce the following matrices:

P = 1 2 1 1 -i i , P -1 = 1 i 1 -i , (8) 
P = diag [P, P, . . . , P, 1, 1, . . . , 1] ∈ C N 0 ×N 0 ,

P -1 = diag P -1 , P -1 , . . . , P -1 , 1, 1, . . . , 1 ∈ C N 0 ×N 0 ,
where P (resp. P -1 ) is repeated n 0 times while 1 is repeated N 0 -2n 0 times. Introducing ỸN 0 = PY N 0 , PN 0 = PP N 0 , ÃN 0 = PA N 0 P -1 , and BN 0 = PB N 0 , we obtain that

ẎN 0 (t) = ÃN 0 ỸN 0 (t) + BN 0 v(t -D) + PN 0 (t). (9) 
The newly introduced matrices ÃN 0 and BN 0 have real coefficients. Indeed, a direct computation shows that

ÃN 0 = diag R(λ 1 ), R(λ 3 ), . . . , R(λ 2n 0 -1 ), λ 2n 0 +1 , λ 2n 0 +2 , . . . , λ N 0 ∈ R N 0 ×N 0 ,
where, for any λ ∈ C,

R(λ ) = Re(λ ) -Im(λ ) Im(λ ) Re(λ ) ∈ R 2×2 .
Recalling that e k ∈ R m , we have that B c e k = Be k ∈ H and

A c B c e k = A Be k ∈ H . From Lemma 3.5, we have for 2n 0 + 1 ≤ n ≤ N 0 that ψ n ∈ H . This yields b n,k = -λ n B c e k , ψ n c + A c B c e k , ψ n c = -λ n Be k , ψ n + A Be k , ψ n ∈ R. From Lemma 3.6, we have for 1 ≤ m ≤ n 0 that λ 2m-1 = λ 2m and ψ 2m-1 = ψ 2m . This yields b 2m,k = -λ 2m-1 Be k , ψ 2m-1 c + A Be k , ψ 2m-1 c = b 2m-1,k . We deduce that P b 2m-1,k b 2m,k = Re b 2m-1,k Im b 2m-1,k ∈ R 2 .
Consequently, BN 0 ∈ R N 0 ×m . Introducing the Artstein transformation (see [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF], [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF]) defined for all t ≥ 0 by

Z(t) = ỸN 0 (t) + t t-D e (t-s-D) ÃN 0 BN 0 v(s) ds, a straightforward differentiation shows that Ż(t) = ÃN 0 Z(t) + e -D ÃN 0 BN 0 v(t) + PN 0 (t).
As (A N 0 , B N 0 ) is assumed stabilizable, so are ( ÃN 0 , BN 0 ) and ( ÃN 0 , e -D ÃN 0 BN 0 ). As ÃN 0 and e -D ÃN 0 BN 0 have real coefficients, we can compute via the pole shifting theorem a feedback gain K ∈ R m×N 0 such that Ãcl ÃN 0 + e -D ÃN 0 BN 0 K is Hurwitz. Introducing the control law

v = ϕ K Z, v(t) = [ϕ K ỸN 0 ](t) + ϕ(t) K t t-D e (t-s-D) ÃN 0 BN 0 v(s) ds (10) = ϕ(t) KPY N 0 (t) + ϕ(t) KP t t-D e (t-s-D)A N 0 B N 0 v(s) ds
which is exactly the form of the control law employed in (6a-6e) with K = KP ∈ C m×N 0 . Noting that

A cl = A N 0 + e -DA N 0 B N 0 K = P -1 ÃN 0 + e -D ÃN 0 BN 0 K P = P -1 Ãcl P
is Hurwitz, the conclusions of Theorem 4.2 apply. Lemma 5.1: In the context of Theorem 4.2, consider the feedback gain K = KP ∈ C m×N 0 where K ∈ R m×N 0 is such that Ãcl ÃN 0 + e -D ÃN 0 BN 0 K is Hurwitz. Assume that Y 0 ∈ D(A 0 ) and p ∈ C 1 (R + ; H ). We denote by Y the system trajectory of (6a-6e) and by v the associated boundary input.

Then we have

Y ∈ C 0 (R + ; D(A )) ∩ C 1 (R + ; H ) and v ∈ C 2 ([-D, +∞); R m ).
Proof: Let Y 0 ∈ D(A 0 ) and p ∈ C 1 (R + ; H ) be given. The existence and the uniqueness of the classical solution 

Y ∈ C 0 (R + ; D(A c )) ∩ C 1 (R + ; H c ) of (6a-
P Y (t), ψ 2m-1 c Y (t), ψ 2m c = Y (t), Re ψ 2m-1 -Y (t), Im ψ 2m-1 ∈ R 2 . ( 11 
)
From [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], as ϕ(t) ∈ R and ỸN 0 (t) ∈ R N 0 for all t ∈ [0, nD], and as all the involved matrices have real coefficients, the resulting command v is also real-valued over [-D, nD] (see [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]). We deduce that Im v D (t) = 0 for all t ∈ [0, (n+1)D].

As Im p = 0, we obtain that d ImY dt (t) = A 0 ImY (t) for all t ∈ [0, (n + 1)D] with the initial condition ImY (0) = 0. Thus ImY (t) = 0 for all t ∈ [0, (n + 1)D].

B. Feedback stabilization in the original state-space H

We can now present the main result of this paper. Let D,t 0 > 0 be given. We consider a given transition signal ϕ ∈ C 2 ([-D, +∞); R) such that 0 ≤ ϕ ≤ 1, ϕ| [-D,0] = 0, and ϕ| [t 0 ,+∞) = 1. The closed-loop system dynamics takes the following form:

dX dt (t) = A X(t) + d(t), (12a) 
BX(t) = u D (t) = u(t -D), (12b) u| [-D,0] = 0 (12c) u(t) = ϕ(t) K ỸN 0 (t) (12d) + ϕ(t) K t max(t-D,0)
e (t-s-D) ÃN 0 BN 0 u(s) ds, X(0) = X 0 (12e) for any t ≥ 0. The feedback gain K ∈ R m×N 0 is such that Ãcl ÃN 0 + e -D ÃN 0 BN 0 K is Hurwitz. Theorem 5.2: Assume that Assumptions 3.2, 3.4, and 4.1 hold. For any X 0 ∈ D(A 0 ) and d ∈ C 1 (R + ; H ), there exists a unique classical solution X ∈ C 0 (R + ; D(A )) ∩ C 1 (R + ; H ) of (12a-12e) associated with the initial condition X 0 and the distributed disturbance d. The associated control law u is the unique solution of (6d), is realvalued, and is in C 2 ([-D, +∞); R m ). Furthermore, there exist constants κ 0 ,C 1 ,C 2 > 0, independent of X 0 ∈ D(A 0 ) and d ∈ C 1 (R + ; H ), such that the following ISS estimate holds for all t ≥ 0,

X(t) + u(t) ≤ C 1 e -κ 0 t X 0 +C 2 sup τ∈[0,t] d(τ) . ( 13 
)
Proof: Introducing the feedback gain K = KP ∈ C m×N 0 , the matrix A cl = A N 0 + e -DA N 0 B N 0 K is Hurwitz. Thus, let C 1 ,C 2 ∈ R + be the constants provided by Theorem 4.2. Let X 0 ∈ D(A 0 ) and d ∈ C 1 (R + ; H ) be arbitrarily given. Applying Theorem 4.2, we introduce the unique classical solution Y ∈ C 0 (R + ; D(A c )) ∩ C 1 (R + ; H c ) of (6a-6e) and the corresponding control law v ∈ C 2 ([-D, +∞); C m ) associated with the initial condition Y 0 = X 0 ∈ H and the distributed disturbance p(t) = d(t) ∈ H . Applying Lemma 5.1, we obtain that ImY (t) = 0 and Im v(t) = 0 for all t ≥ 0. Defining X(t) = Y (t) ∈ H and u(t) = v(t) ∈ R m , and noting that the control law satisfies [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], we deduce that X is the classical solution of (12a-12e), with control law u, which is associated with X 0 and d. Finally, (13) follows from [START_REF] Fridman | Stabilization of second order evolution equations with unbounded feedback with time-dependent delay[END_REF].

VI. ILLUSTRATIVE EXAMPLE

We consider the Euler-Bernoulli Beam with point torque boundary conditions described by

y tt + y xxxx -2αy txx -β y t = d b , in R * + × (0, 1) y(t, 0) = y(t, 1) = y xx (t, 0) = 0, t ∈ R * + y xx (t, 1) = u(t -D), t ∈ R * + (y(0, x), y t (0, x)) = (y 0 (x), y t0 (x)) , x ∈ (0, 1)
where α ∈ (0, 1), β ∈ R * + , u is the control law, d b is a distributed disturbance, and y 0 , y t0 are the initial conditions. Introducing the real Hilbert space H = H 2 (0, 1) ∩ H 1 0 (0, 1) × L 2 (0, 1) with the inner product defined for all (y 1 , y 2 ), ( ŷ1 , ŷ2 ) ∈ H by (y 1 , y 2 ), ( ŷ1 , ŷ2 ) H = 1 0 y 1 (x) ŷ 1 (x) + y 2 (x) ŷ2 (x) dx, the distributed parameter system can be written as the abstract boundary control system (1) with A (y 1 , y 2 ) = (y 2 , -y 1 + 2αy 2 + β y 2 ) defined over the domain D(A ) = y 1 ∈ H 4 (0, 1) ∩ H 1 0 (0, 1) : y 1 (0) = 0 × H 2 (0, 1) ∩ H 1 0 (0, 1) , the boundary operator B(y 1 , y 2 ) = y 1 (1) defined over the domain D(B) = D(A ), the state vector X(t) = (y(t, •), y t (t, •)) ∈ H , the initial condition X 0 = (y 0 , y t0 ) ∈ H , the boundary control u(t) ∈ R, and the distributed perturbation d(t) = (0, d b (t)) ∈ H . One can show that (A , B) is an abstract boundary control system (see, e.g, [START_REF] Lhachemi | ISS property with respect to boundary disturbances for a class of Riesz-spectral boundary control systems[END_REF] for a similar setting) and that the linear operator B defined such that (Bu)(x) = ux(x 2 -1)/6, 0 for all u ∈ R and all x ∈ (0, 1) is a lifting operator associated with (A , B). Setting α = 1/2, β = 12, and D = 1 s, the first mode exhibits unstable eigenvalues located (approximately) at 1.0652 ± 9.8120i while all the other modes are stable. The control design is performed for N 0 = 2 to place the two first eigenvalues of the closed-loop system at -2 and -2.5. The transition time t 0 is set to t 0 = 0.5 s while the switching function ϕ| [0,t 0 ] is selected as the restriction over [0,t 0 ] of the unique quintic polynomial function f satisfying f (0) = f (0) = f (0) = f (t 0 ) = f (t 0 ) = 0 and f (t 0 ) = 1. The numerical scheme consists in the discretization of (12a-12e) by using the first 20 modes of the beam dynamics. The evolution of the closed-loop system is depicted in Figs. 12for the initial conditions y 0 (x) = 20x 3 (1x) 3 and y t0 (x) = 10x(3/4-x)(1-x), and the distributed disturbance d b (t, x) = sin(2t) sin(5t)x. The numerical results are compliant with the theoretical predictions.

VII. CONCLUSION

This paper discussed the realification of a predictor feedback control law for the stabilization of a class of diagonal abstract boundary control systems. Specifically, assuming that the diagonal structure does not hold for the original real Hilbert space but holds for its complexified version, it has been shown that an adequate selection of the eigenstructures can be used for obtaining a real-valued control law taking the form of a state feedback of the original abstract boundary control system. Future developments toward practical implementations could include either the impact of the discretization of the control law or the design of an observer

  with A : D(A ) ⊂ H → H a linear (unbounded) operator, B : D(B) ⊂ H → R m with D(A ) ⊂ D(B) a linear boundary operator, d : R + → H a distributed disturbance, and u :

  [A c ] 0 = [A 0 ] c and with associated lifting operator B c , the complexification of B. Remark 3.1: If Y with control law v is a classical solution of (2) associated with Y 0 and p, then X = ReY with control law u = Re v is a classical solution of (1) associated with X 0 = ReY 0 and d = Re p. However, if the control law v is obtained by a state feedback

  we can assume without loss of generality (by normalizing the vectors and changing m R , M R ∈ R * + ) that φ n c = 1 for all n ∈ N * . Lemma 3.3: Let I = {n ∈ N * : λ n ∈ R}. For any n ∈ I , we define φn ∈ H \{0} ⊂ H c by φn = φ n if φ n ∈ H , φn = Im φ n / Im φ n otherwise. Then, φn is an eigenvector associated with λ n . Furthermore, Φ {φ n , n ∈ N * \I } ∪ φn , n ∈ I forms a Riesz basis composed of unit eigenvectors of [A c ] 0 . Proof: Let n ∈ I with Im φ n = 0 be given. As [A 0 ] c φ n = λ n φ n with λ n ∈ R, we obtain by taking the imaginary part that [A 0 ] c Im φ n = λ n Im φ n with Im φ n = 0. As the eigenvalues are assumed simple, we obtain that there exists γ ∈ C\{0} such that φ n = γ Im φ n . Thus 1 = φ n c = |γ| Im φ n and we obtain the existence of a θ n ∈ [0, 2π) such that γ = e iθ n / Im φ n . Consequently, we have φ n = e iθ n φn and [A 0 ] c φn = λ n φn with φn ∈ H \{0} ⊂ H c . In the case n ∈ I with Im φ n = 0, we also have φ n = e iθ n φn when setting θ n = 0. In both cases, φn c = φ n c = 1. Now, as span C n∈N * φ n = H c , we immediately obtain that span C Φ = H c . Finally, let N ∈ N * and β 1 , . . . , β N ∈ C be arbitrarily given. We denote I N = {1, . . . , N} ∩ I and J N = {1, . . . , N}\I N . We define α n = e -iθ n β n ∈ C if n ∈ I and α n = β n ∈ C otherwise. Noting that |β n | = |α n | for all n ≥ 1 and that α

) Lemma 3 . 5 :

 35 Let n ∈ N * be such that λ n ∈ R. As φ n ∈ H , then we have ψ n ∈ H . Proof: Consider first the case φ m ∈ H . Then we have that δ n,m = ψ n , φ m c = ψ n , φ m c = ψ n , φ m c . Consider now the case φ m / ∈ H . Then we have m = n and there exists m = n, m such that φ m = φ m . This yields 0 = ψ n , φ m c = ψ n , φ m c = ψ n , φ m c . From the series expansion (4), we deduce that

  Theorem 4.2 ([11]): Assume that Assumptions 3.2, 3.4, and 4.1 hold. For any Y 0 ∈ D([A 0 ] c ) and p ∈ C 1 (R + ; H c ), there exists a unique classical solution Y ∈ C 0 (R + ; D(

  6e) and the corresponding control law v ∈ C 2 ([-D, +∞); C m ) associated with Y 0 and p is provided by Theorem 4.2. It remains to show that Y (t) ∈ H and v(t) ∈ R m for all t ≥ 0. To do so, we proceed by induction over n ∈ N * to show thatY (t) ∈ H for all t ∈ [0, nD] and v(t) ∈ R m for all t ∈ [-D, (n -1)D].Initialization. For n = 1, we have v(t) = 0 for all t ∈ [-D, 0]. Thus, the closed-loop system (6a-6e) reduces to dY dt(t) = [A 0 ] c Y (t) + p(t) for t ∈ [0, D] with the initial condition Y (0) = Y 0 .As ImY 0 = 0 and Im p = 0, we obtain by linearity and uniqueness of the imaginary part that d ImY dt (t) = A 0 ImY (t) for all t ∈ [0, D] with the initial condition ImY (0) = 0. Thus, as A 0 generates a C 0 -semigroup, we obtain that ImY (t) = 0 for all t ∈ [0, D].Heredity. Assume now that the claimed property holds true for a given n ∈ N * . Thus ImY (t) = 0 for all t ∈ [0, nD] and Im v(t) = 0 for all t ∈ [-D, (n -1)D]. Consequently, ỸN 0 (t) ∈ R N 0 for all t ∈ [0, nD] because 1) for 2n 0 + 1 ≤ m ≤ N 0 we have ψ m ∈ H and thus Y (t), ψ m c = Y (t), ψ m ∈ R; 2) for 1 ≤ m ≤ n 0 , we have ψ 2m-1 = ψ 2m , yielding Y (t), ψ 2m-1 c = Y (t), ψ 2m c = Y (t), ψ 2m c , and thus
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 12 Fig. 1. Time domain evolution of the flexible displacement of the beam

< 1 , 2 + iε n 4 π 4 -αn 2 π 2 - β 2 2 ∈

 1242 [A c ] 0 is a Riesz-Spectral operator with eigenvalues given for n ≥ 1 and ε ∈ {-1, 1} by λ n,ε = -αn 2 π 2 + β C\R with associated unit eigenvectors φ n,ε = 1 n 2 π 2 (sin(nπ•), λ n,ε sin(nπ•)) and biorthogonal vectors ψ n,ε = 2n 2 π 2 n 4 π 4λ 2 n,-ε (sin(nπ•), -λ n,-ε sin(nπ•)). It is now easy to show that Assumptions 3.2, 3.4, and 4.1 are satisfied. Therefore, we can apply the result of Theorem 5.2.

  the unique classical solution of (2). We introduce c n (t) Y (t), ψ n c the coefficients of the projection of Y (t) into the Riezs basis {φ n , n ∈ N * }, i.e., Y (t) = ∑ Introducing b n,k -λ n B c e k , ψ n c + A c B c e k , ψ n c , we obtain that the following linear ODE holds true for all t ≥ 0 ẎN 0

n≥1

c n (t)φ n . We also introduce p n (t) p(t), ψ n c . Then c n ∈ C 1 (R + ; C) and, following

[START_REF] Lhachemi | ISS property with respect to boundary disturbances for a class of Riesz-spectral boundary control systems[END_REF]

, we have for all t ≥ 0, ċn

(t) = λ n c n (t)λ n B c v D (t), ψ n c + A c B c v D (t), ψ n c + p n (t)

. Let E = (e 1 , e 2 , . . . , e m ) be the canonical basis of the C-vector space C m . In particular, we have e k ∈ R m for all 1 ≤ k ≤ m.

I.e., H c is a complex Hilbert space and the control input is complexvalued.
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