
HAL Id: hal-02368023
https://hal.science/hal-02368023

Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calibration of a magnetometer array using motion
capture equipment

Charles-Ivan Chesneau, Rémi Robin, Hendrik Meier, Mathieu Hillion,
Christophe Prieur

To cite this version:
Charles-Ivan Chesneau, Rémi Robin, Hendrik Meier, Mathieu Hillion, Christophe Prieur. Calibration
of a magnetometer array using motion capture equipment. Asian Journal of Control, 2019, 21 (4),
pp.1459-1469. �10.1002/asjc.2043�. �hal-02368023�

https://hal.science/hal-02368023
https://hal.archives-ouvertes.fr


Asian Journal of Control, Vol. 00, No. 0, pp. 1–10, Month 0000
Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.0000

Calibration of a magnetometer array using motion capture equipment

Charles-Ivan CHESNEAU, Rémi ROBIN, Hendrik MEIER, Mathieu HILLION, Christophe PRIEUR

ABSTRACT

This paper studies the problem of calibrating an array of single-
axis magnetometers in an unknown static inhomogeneous magnetic field
using motion capture equipment. A proof of identifiability is given, practical
identifiability of calibration parameters is established in simulation, and
real world experiments are conducted to demonstrate the feasibility of this
approach. Unlike many techniques of the state of the art, the proposed solution
does not require a homogeneous field, as in fact, we demonstrate that an
inhomogeneous field enlarges the set of identifiable parameters. Under the
above-mentioned assumptions, this approach may be used to extend self-
calibration techniques of visual-inertial setups to magnetic sensor arrays in
indoor environments.

I. Introduction

Precise calibration of micro-electronic single-
axis point-magnetometers is often required for prac-
tical applications, which has motivated research for
suitable calibration techniques. Several magnetometer
calibration techniques have been developed using the
earth magnetic field [1, 2, 3, 4], the most frequently
mentioned being ellipsoid fitting. These techniques
require a homogeneous and static magnetic field to
achieve a good calibration precision, which implies
manual outdoor data collection or expensive setups.
Other techniques exploit gyrometers [5], or coil-
generated homogeneous magnetic fields [6, 7, 8], or
coil-generated inhomogeneous magnetic fields [9, 10,
11]. Strictly speaking, because calibration processes
involving homogeneous magnetic fields do not give
access to sensor effective positions, magnetic field
gradiometers that rely on the knowledge of such
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positions cannot be calibrated this way. Among
the techniques involving inhomogeneous magnetic
fields, the one discussed in [9] requires accurate
manipulations, and [10, 11] describe a simple process
for calibrating SQUID (Superconducting Quantum
Interference Device) magnetometers, but require that
sensors be sensitive enough to measure the generated
magnetic field. The problem of precisely calibrating
an array of single-axis magnetometers is still not
satisfactorily solved in order to be applicable in so-
called magneto-inertial dead-reckoning applications,
which in general do not use SQUID magnetometers.
This observation motivates the research of a calibration
technique that is less demanding on the environment
and on dedicated setups.

In the last decade, several papers have shown the
feasibility of the above-mentioned navigation technique
of magneto-inertial dead-reckoning. Its theoretical
viability was shown in [12], the technique was patented
in [13], further studied in theory and practice in
the context of pedestrian indoor navigation in [14,
15, 16]. Its potential for space applications were
studied in [17]. Recently, Refs. [18, 19] studied indoor
navigation performance achievable with this technique
alone in various environment including an industrial
facility, by using Extended Kalman Filters taking into
account various sources of error. At the same time,
Refs. [20, 21, 22] provided several frameworks in which
magnetic sensor information can be combined with
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visual odometry, resulting in a robust dead-reckoning
navigation solution.

In short, magneto-inertial dead-reckoning con-
sists of two steps: integration of strapdown IMU
(Inertial Measurement Unit) navigation equations
and correction of the estimated motion using a
stationary inhomogeneous magnetic field and its spatial
variations. Indoor magnetic distortions have proved to
be sufficient for dead-reckoning, provided that accurate
magnetic measurements are available. However, the
required accuracy is rather demanding with regard to
magnetometer calibration.

This paper presents a calibration technique for
magnetometer arrays solving a problem inverse to
magneto-inertial dead-reckoning. Whereas the latter,
applicable for an indoor stationary (inhomogeneous)
magnetic field [19], allows us to obtain positions and
attitudes as a function of the calibration parameters (and
the raw magnetic data), the present method builds on
raw magnetic data paired with motion capture data, i.e.
position and attitude of the array of the moving sensor
device, in order to estimate calibration parameters as
well as the magnetic field. The only parameter that
is not accessible through our method is the global
scale factor that defines the unit of the magnetic field
(and may be adjusted to Tesla or Gauss in a separate
experiment if desired); in any case, the choice of such
a unit does not intervene in magneto-inertial dead-
reckoning.

The paper is organized as follows. In Sec. II,
we state the explicit problem addressed by this
article. In Sec. III, we mathematically prove the
identifiability of calibration parameters. Section IV
shows, using simulated data, that calibration parameters
are in practice identifiable. Finally, Section V shows
the results of applying this technique in real-world
experiments, and Sec. VI contains some concluding
remarks and points out a natural perspective. The
appendices collect some proofs of intermediate results.

II. Problem statement

The problem under consideration is the calibration
of an array of linear-response single-axis point
magnetometers strapped on a rigid body using motion
information.

As in [19], let Rn be a navigation frame, and
Rb a frame of reference moving with the rigid body.
Coordinates of vectors in Rn (resp. Rb ) are denoted
with the prescript n (resp. b).

Let M be a fixed point of the rigid body defining
the origin of Rb; by definition, its coordinates in body

frame are bM
.
= 0. Assuming Rn and Rb are each

equipped with an orthonormal basis, an attitude matrix
R, belonging to the special orthogonal group SO(3), can
be defined such that for any vector v, nv = R. bv. The
rigid body motion is defined by the time-evolution of
nM(t) and R(t) during an experiment.

Let B denote the magnetic field, which is assumed
static in Rn. This means that nB varies only as a
function of the position nM,

nB : R3 → R3

nM 7→ nB(nM).

Let b
jp denote the position of the j-th single-axis

magnetic sensor in the moving reference frame Rb. The
magnetic field at this point, and in Rb, is related to the
magnetic field in the navigation frame Rn as∗.

bB
(
b
jp, t

)
= R(t)>. nB

(
nM(t) +R(t). bjp

)
. (1)

As nM and R vary as a function of time, so does in
general bB.

To complete our measurement model, we specify
the direction and scale factor of the j-th single-axis
magnetic sensor by a co-vector (“row vector”) b

ja and
add a (scalar) bias jb. The full model for a measurement
with result jy then reads

jy = b
ja.R

>. nB
(
nM+R. bjp

)
+ jb (2)

for each magnetic single-axis sensor j. It is implied
that the co-vector b

ja, the bias jb, and the position
vector b

jp (which is a usual “column vector”) are time-
independent.

The magnetic field nB lives in an infinite-
dimensional vector space — the space of solutions to
Maxwell’s equations. In practice, it is typically possible
to describe this field with sufficient accuracy in a finite-
dimensional subspace, using only a finite number of
coordinates that we denote αi.

During a calibration, nM(t) and R(t) are varied
as a function of time t with ti ≤ t ≤ tf . The time-
dependency of these (6D) coordinates inflicts a time-
dependency on the measurement functions jy. In the
situation of an experiment that allows us to measure all
these quantities, nM(t), R(t), and jy(t) at each time t,
ti ≤ t ≤ tf , we consider the following problems:

P1 Are parameters b
ja, jb, and magnetic field

coordinates αi identifiable if the effective position
parameters b

jp are given?

∗In fact, Eq. (1) is merely a (Galilean) transformation between the
two reference frames [23, 6.10.A, 11.10]
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P2 Are parameters b
ja, jb, b

jp, and magnetic field
coordinates αi identifiable?

Problem P1 implies that we have to know the effective
position of each individual sensor in both Rb and
Rn. Problem P2 does not require us to possess this
information, a situation that is closer to what is
obtained in a motion capture experiment: such a setup
locates visual markers, while sensors are typically
hidden inside of a package, and their position is not
precisely known with respect to markers. Furthermore,
effective positions are needed in order to calibrate a
magnetic gradiometer built from an array of sensors.
Proving that parameters are identifiable in Problems
P1 and P2 would be equivalent to proving that any
parameterization to (2) is unique — a notion we clarify
in the next section. At the same time, the mere existence
of such a parameterization is guaranteed in experiment
by the physics behind the measurement model.

III. Identifiability

In this section, we prove the identifiability of cal-
ibration parameters under “mathematically controlled”
conditions that, as we argue, represent nevertheless the
situation in realistic experiments.

3.1. Notion of identifiability and assumptions

We adopt the setting of Sec. II and consider a
set of m single-axis magnetometers that measure the
projection of the magnetic field B. The field B is
assumed time-independent in our navigation frame Rn.
The measurement of each magnetometer is physically
modeled by a function jy, j ∈ {1, 2, . . . ,m}, that
assigns to a 6D position (nM, R) of the rigid body the
magnetic field component along the axis of the j-th
magnetometer,

jy : R3 × SO(3) → R (3)

(nM, R) 7→ b
ja.R

>. nB
(
nM+R. bjp

)
+ jb .

We note that for a reasonable sensor, b
ja 6= 0, which is

what we thus assume in the following. The magnetic
field nB is assumed to satisfy Maxwell’s equations for a
source-free region of space (which in particular implies
analyticity). Furthermore, nB is assumed not to vanish
identically and to feature at least one position in which
all eigenvalues of its derivative (Jacobian matrix) are

different from each other. This assumption is verified
by any realistic magnetic field. †

In experiment, all the parameters and the magnetic
field are a priori unknown and need to be determined
in calibration. Let us unite these parameters into one
tuple θ,

θ
.
=

(
(jb), (

b
jp), (

b
ja),

nB
)
, (4)

where the notation (jb) = (jb)j=1,...,m represents the
tuple of biases for all m magnetometers (and the same
applies to (bjp) and (bja)). The space of all such θ will
be denoted Θ. Each element θ ∈ Θ defines a set of m
measurement functions jy, Eq. (3).

We interpret identifiability as the ability to
distinguish different tuples of parameters by their
corresponding measurement functions. This means
that if two tuples of parameters θ and θ′ in the
parameter space Θ are different, θ 6= θ′, then their
corresponding measurement functions (jy) and (jy

′)
should be different too. In other words, there should
be at least one 6D position nM, R of the rigid body
for which at least one of the m magnetometers, say
magnetometer j, produces a different measurement
result, i.e. jy(

nM, R) 6= jy
′(nM, R).

However, this notion of identifiability is a little too
strong to hold, as revealed by a quick inspection of
Eq. (3). In fact, the functions (jy) are invariant under
simultaneous rescaling b

ja 7→ λ b
ja and nB 7→ nB/λ for

λ ∈ R \ {0}, which corresponds just to the global scale
factor that, as we mentioned in Sec. I, we cannot
calibrate.

This invariance motivates the definition of an
equivalence relation “∼” on Θ, which identifies two
elements θ, θ′ ∈ Θ if and only if there exists a λ ∈
R \ {0} such that

n
B′ ≡ nB/λ ,

∀ j, jb
′ = jb ,

b
jp

′ = b
jp ,

b
ja

′ = λ b
ja.

In this case, we write θ ∼ θ′. In terms of the equivalence
relation “∼”, we aim to prove identifiability in the sense
that for two tuples θ, θ′ ∈ Θ, that are not equivalent, θ 6∼
θ′, the measurement functions are able to distinguish

†In Eqs. (1) and (3), we consider for the sake of simple notations
R3 as domain of our fields. In fact, we could also restrict ourselves to
a bounded open subset without any loss of validity of our statement.
In an actual experiment, the position nM is restricted to vary within
some (bounded) open subset V ⊂ R3. Also, it is clearly sufficient to
consider position vectors b

jp within a ball whose radius r is of the
order of the linear size of the device that contains all magnetometers.
Then, the domain of the magnetic field nB can also be restricted to an
open bounded subset ⊂ R3, for instance the interior of the union of the
balls of radius r around all nM ∈ V . Physical source currents of the
magnetic field are assumed to be outside this subset.
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them from each other at least at one 6D position for
at least one magnetometer, i.e. if θ 6∼ θ′, there exists a
tuple (j, nM, R) such that jy(

nM, R) 6= jy
′(nM, R).

In a more formal reformulation, the notion of
identifiability we wish to prove is injectivity of the
mapping θ 7→ (jy) on the identification space Θ/ ∼,
see, e.g., [24], Def. (9.11) p. 62. The mapping is defined
by inserting a representative θ into Eq. (3). Here and
in the following, we use the notation θ for a particular
representative of equivalent parameter tuples also for its
equivalence class in Θ/ ∼.

3.2. Theorems of identifiability

Adopting the assumptions and notations of the
previous sections, we formulate the following theorem
of identifiability that addresses the problem P2 raised in
Sec. II:

Theorem III.1 For each tuple of parameters θ ∈
Θ/ ∼, there exists an open neighborhood T ⊂ Θ/ ∼,
θ ∈ T , on which the mapping θ 7→ (jy), defined by
inserting θ into Eq. (3), is injective.

The restriction to an open neighborhood applies
only to the effective sensor positions (bjp). For
biases (jb), injectivity holds globally. For the scale
factors b

ja and the magnetic field nB, no restriction
of locality is imposed beyond the required properties
discussed in the preceding section.

In special situations, for instance, if the magnetic
field is fully described by an affine mapping, our proof
allows immediately to lift the restriction to an open
neighborhood of (bjp) and the theorem holds globally.

As a corollary to Theorem III.1, we find

Corollary III.2 The mapping θ 7→ (jy), defined by
inserting θ into Eq. (3), is injective on any subset of
Θ/ ∼ in which the sensor positions (bjp) are constant.

We note that this corollary, which addresses
Problem P1, is in fact valid for arbitrary magnetic
fields as long as they do not vanish identically. No
requirement on its gradient is necessary. (In particular,
the gradient would be allowed to be identically zero.)

3.3. Proof of Theorem III.1

We proceed by proving parameter by parameter
that changes in any parameter of a given θ ∈ Θ/ ∼
result in a different measurement jy(

nM, R) for at
least one 6D position (nM, R), regardless of possible

simultaneous changes of other parameters whose
identifiability has not yet been proven.

The proof is built on the (theoretical) availability
of a trajectory that traverses the entire 6D position
manifold while we can expect a suitably designed
experimental trajectory to cover a large-enough and
sufficiently diverse subset that is representative for the
entire manifold.

3.3.1. Biases

The identifiability of the biases jb follows from the
following lemma.

Lemma III.3 Let j ∈ {1, 2, . . . ,m}. Using the
notation of the previous sections, for all nM, the
integral of jy(

nM, R) over R ∈ SO(3) yields∮
R∈SO(3)

jy(
nM, R) dR = jb, (5)

where dR denotes the Haar measure of SO(3) that
normalizes its volume to unity.

Proof See Appendix A.
Lemma III.3 implies that if two tuples of

parameters θ and θ′ that contain different biases jb
and jb

′ for the j-th magnetometer, then the integral
of Lemma III.3 on their respective measurement
functions will yield different results, regardless of other
parameters. Inevitably, the measurement functions must
thus differ for at least one position. Therefore, biases are
identifiable.

3.3.2. Effective sensor positions

Let j ∈ {1, 2, . . . ,m}. Since the bias jb has
been proven identifiable (see the preceding Sec. 3.3.1),
we can assume it to be zero, jb = 0, without loss of
generality.

As noted in the statement of Theorem III.1,
we refrain from trying to prove global injectivity
with respect to the sensor positions (bjp) and content
ourselves with local injectivity around its true value.

Let θj = (bjp,
b
ja,

nB) denote the tuple of the true
parameters of the physical model. The reader may
assume that we have already “guessed” the true b

jp, yet
we are still unaware of its (local) uniqueness.

As to the scale factor b
ja and the magnetic field nB,

the only information we need (and have) is that by
assumption, b

ja 6= 0 and that there is at least one
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position nM0 in which the gradient of the magnetic field
(Jacobian matrix),

∇ nB
∣∣∣
nM0

=
∂(nB)

∂(nM)

∣∣∣∣
nM=nM0

,

possesses eigenvalues that are all mutually different.
If, using only the knowledge of the measurement

function jy, we can construct an injective mapping ζ

from the effective positions space R3 into some
other vector space such that ζ(bjp) = 0 (independently
from b

ja and nB as long as the assumptions stated
above hold), uniqueness and thus identifiability of b

jp
is proven.

Lemma III.4 Under the assumptions made for b
ja

and nB, the construction of a mapping ζ as described
above is possible in an open neighborhood of b

jp.

Proof In Appendix B, we present an explicit
construction of a mapping ζ : R3 → R6 using only
knowledge of jy.

Remarks In the special case that the Jacobian matrix
of the magnetic field is constant, i.e. if the magnetic
field is affine, the arguments provided in Appendix B
are sufficient to prove global identifiability.

3.3.3. Scale factors and magnetic field

Without loss of generality, θ is such that biases jb

are zero and that effective sensor positions (bjp)
are known. Also, by assumption, there exists a
position nM0 at which the magnetic field is non-zero,
nB(nM0) 6= 0. In this situation, we can place any
sensor, say the j-th, at this position nM0 (in navigation
frame) for an arbitrary orientation R. This is possible by
choosing

nM = nM0 −R. bjp . (6)

As a result, a (theoretical) calibration experiment allows
us to gain full knowledge of the auxiliary measurement
function

jY (nM0) : R 7→ jy(
nM0 −R. bjp, R)

= Tr
[
R>. nB(nM0)⊗ b

ja
]
,

(7)

where b
ja and nB(nM0) denote the true (yet until now

unknown to be unique) values for the scale vector and
the magnetic field at nM0; the symbol Tr is the trace.

We observe that

A 7→ Tr
[
A>. nB(nM0)⊗ b

ja
]

(8)

defines a linear form on the space of real 3×
3 matrices R3×3 whose uniquely defined (standard)
gradient is the matrix nB(nM0)⊗ b

ja. Since SO(3) as
generating set in R3×3 spans the entire matrix space,
the knowledge of jY (nM0) for matrices R ∈ SO(3) is
sufficient to uniquely determine nB(nM0)⊗ b

ja.
The rank of nB(nM0)⊗ b

ja is 1, lines are
proportional to (the row vector) b

ja, columns are
proportional to (the column vector) nB(nM0), which
means that b

ja is identifiable up to an unknown scale
factor λ while the magnetic field at nM0 is identifiable
up to an unknown scale factor 1/λ.

Once nB(nM0) is identified up to the unknown
scale factor 1/λ, all scale factors of the other sensors b

j′
a

for j′ 6= j are identifiable (relatively to a chosen scale
factor for b

j′
a), using the same construction.

Since this construction works at all positions nM0

with non-zero magnetic field, the magnetic field itself is
identifiable as well (up to an unknown scale factor 1/λ).
This concludes the proof of Theorem III.1.

3.4. Conclusion of the proof and discussion

The above reasoning proves that Theorem III.1
and its Corollary III.2 hold. Theorem III.1 states that
unknown parameters corresponding to Problem P2
(defined in Sec. II) are locally identifiable, as long
as there exists at least one place where the magnetic
gradient is non-singular, and if all magnetometer scale
factors b

ja are different from zero. According to the
remark at the end of Sec. 3.3.2, we are aware of at least
one important special case in which identifiability holds
globally in all of the parameter space.

Corollary III.2 states that unknown parameters
corresponding to Problem P1 (defined in Sec. II) are
globally identifiable, if the magnetic field is different
from zero in at least one place, with no requirement
about gradient. In both cases, magnetometer scale
factors b

ja are only identifiable up to an unknown
global scale factor λ, while the magnetic field (nB) is
identifiable up to the unknown global scale factor 1/λ.

In practical applications, measurements are not
known for all 6D positions: only a finite set of sampled
measurements are provided. In the following, we show
that in practice, identifiability is preserved in this
situation.

IV. Practical identifiability of parameters for
simulated data

In this section, we want to check if for a given
realistic input, the above calibration problem can be
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solved. We proceed by collecting motion capture data
in order to get a realistic sampled trajectory. We denote
nM[k] the sampled positions, and R[k] the sampled
attitudes, where k is the sample number. For the purpose
of the simulation, we choose at random a realistic
set of parameters

(
(jb), (

b
jp), (

b
ja), (αi)

)
, describing

magnetometer calibration parameters and the magnetic
field in the volume of the trajectory. Then we generate
sampled values of measurements jy[k] according to (2)
at each trajectory sample,

jy[k]=
b
ja.R[k]>.nB(αi)

(
nM[k]+R[k].bjp

)
+jb. (9)

Problem P2 is rewritten as: given the set of sampled
measurements jy[k] and the sampled trajectory nM[k],
R[k], find the exact set of parameters that has been used
as input.

4.1. Scale factor ambiguity

Let us assume that there exists a tuple of
parameters

(
(jb), (

b
jp), (

b
ja), (αi)

)
satisfying (9). Let

λ > 0. Then,

jy[k]=λb
ja.R[k]>.

1

λ
nB(αi)

(
nM[k]+R[k].bjp

)
+jb.

(10)
Thus a tuple of parameters containing 1

λ
nB(αi) and

λ b
ja is indistinguishable from the former tuple using

only measurements jy[k], as discussed in Sec. III.
Therefore, in the rest of the document, we impose the
global scale factor by setting the first coefficient of the
scale factor of the first magnetometer to unity, b

1a1 = 1.

4.2. Least-square parameter estimation model

Let us denote magnetic measurement residuals
jr[k] such that for all j and k,

jr[k]
.
=b

ja.R[k]>.nB(αi)

(
nM[k]+R[k].bjp

)
+jb−jy[k]

(11)

By Eq. (9) for all j, k, jr[k] = 0, and is equivalent to

Jmag
.
=

∑
j,k

(
jr[k]

)2
= 0. (12)

It follows that the problem could be seen as a
generic non-linear least-square problem. Identifiability
of parameters

(
(jb), (

b
jp), (

b
ja), (αi)

)
can be assessed

on a specific trajectory by computing the rank of the
Hessian matrix of the cost function Jmag with respect
to these unknown variables. Parameter estimation can

be attempted by running a non-linear least-square
numerical solver.

We propose using Ceres-Solver [25] and its
implementation of the Levenberg-Marquardt algorithm
in order to solve this calibration problem, taking
advantage of its auto-differentiation framework. Doing
so, we successfully show that the solver converges
toward the correct parameter values, and numerically
obtain that the Hessian of Jmag with respect to all
estimated parameters is full rank in tested cases.

4.3. Convergence of the Levenberg-Marquardt
algorithm for simulated data

Using an input trajectory, after choosing a set
of calibration and magnetic field parameters and
simulating corresponding measurements without noise,
we choose a starting point at random, different from
the set of calibration and magnetic field parameters
used to simulate magnetic measurements, and run
our non-linear least-square solver [25] implementing
the Levenberg-Marquardt algorithm [26, 27]. This
numerical algorithm is a common choice for solving
non-linear least-square problems. In order to impose
the global scale factor corresponding to the unit of the
magnetic field, b

1a1 = 1 is excluded from the algorithm.
Figure 1 shows the evolution of calibration parameter
estimation errors at each iteration for all calibration
parameters in both Problem P1 and Problem P2. In
both cases, the solver converges successfully toward the
correct solution, and stops iterating after the seventh
iteration upon reaching its convergence criteria. Final
errors are at most one millionth of initial errors.

4.4. Conclusion of simulation experiments

The above experiments confirm that in practice,
identifiability holds for simulated sampled data, along
a realistic input trajectory.

V. Real-world experiments

We use an OptitrackTM motion capture equipment,
see Fig. 2, providing trajectory data at ∼ 240Hz,
to track the movement of a sensor board carrying
magnetometers and micro-electro-mechanical inertial
sensors. The sensor board is the same that was used
in [18, 19, 21, 22]. All sensors are sampled at
f ≈ 325Hz. No synchronization information between
motion capture data and sensor board data is available
in our setup.
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Fig. 1. Evolution of calibration parameters estimation error, with
respect to iteration number for simulated data for Problem P1
(left) and Problem P2 (right). Errors converge toward 0. The
solver reaches its convergence criteria and stops iterating at the
seventh iteration in both cases.

Fig. 2. Picture of the optitrack setup. The sensor board package is
displayed in the insert.

Motion capture data is noisy and not synchro-
nized with sensor board data. Also, body frames
are not necessarily defined in the same way for
each type of information (gyrometer, accelerometer,
magnetometer and motion capture). To account for
different measurement uncertainties we use three sets
of equations: integrated discrete-time strapdown IMU
navigation equations, as can be found in [28, Ch. 7],
simplified motion capture measurement equations, and
magnetic measurement equations corresponding to (9).
The augmented problem is then reformulated as a
non-linear least-squares identification problem in the
same manner as in (11) and (12). Moreover, magnetic
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Fig. 3. Evolution of the estimated distance between two magnetic
sensors of the array as a function of algorithm iteration number
(blue solid line). All positions are initialized as 0cm. The distance
by construction can be expected to be 35.4mm ±0.2mm (gray
dashed line). The final estimated distance is 35.36mm.

measurements are filtered in order to remove power-line
interference.

The sensor board is moved around in a space
covered by the motion capture setup. A sufficiently
diverse arbitrary trajectory is chosen, with enough
rotations and translations, in an indoor magnetic field
satisfying identifiability hypotheses for Problem P2
(defined in Sec. II). Sensor and motion capture data is
collected, and injected into the optimization problem
that is solved using Ceres-Solver [25] as described in
Sec IV.

The solver converges toward a set of scale factors
and biases that are in agreement with those obtained
using the technique in [1]. The estimated positions
are coherent with sensor-sensor distances expected by
construction (see Fig. 3). With these results, we have
verified that identifiability also holds in real-world
experiments.‡

VI. Conclusion

This paper has demonstrated that magnetic
data together with position and attitude information
suffices to identify calibration parameters of linear-
response single-axis point magnetometers, including
their effective positions within the device. Experimental
data has confirmed the identifiability we have proven
with a mathematical theory in real situations. This

‡A patent is pending on the whole calibration process.
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approach makes it possible to calibrate arrays of
magnetometers in magnetic fields within unknown
environments, provided that the magnetic field is
stationary and not specifically homogeneous, and that
positioning information is available. For instance, the
underlying concept could be used to extend tools such
as [29] to calibrate visual-inertial setups coupled with
magnetic sensor arrays such as in [20, 21, 22]. Finally,
experimental results suggest that some positioning
information might be redundant. In a subsequent study,
we intend to understand what minimal information is
needed in order to identify calibration parameters.

A. Proof of Lemma III.3

We adopt the assumptions and notations of
Sec. 3.3.1. Let j ∈ {1, 2, . . . ,m}, and nM ∈ R3.
Inserting Eq. (3) into the integral and subtracting the
bias jb from it, we find∮

R∈SO(3)
jy(

nM, R) dR− jb

=

∮
R∈SO(3)

b
ja.R(t)>. nB

(
nM+R. bjp

)
dR , (13)

as dR is normalized such that the volume of SO(3) is
unity. In order to prove the lemma, it suffices to show
that the expression (13) vanishes.

To do so, we recall that any element R ∈ SO(3)
can be decomposed (see also Fig. 4) into two rotations,
R = R2.R1, such that the first rotation R1 in S1 (∼=
SO(2)) is around b

jp and the second rotation R2 in
S2 (∼= SO(3)/SO(2)) around an axis orthogonal to b

jp.
The first rotation leaves the sensor position constant,
which means that nM+R. bjp = nM+R2.

b
jp does

not depend on R1. Then,∮
R∈SO(3)

b
ja.R(t)>.nB

(
nM+R.bjp

)
dR

=

∮
R2∈S2

 ∮
R1∈S1

b
ja.R

>
1 dR1

.R>
2 .

nB
(
nM+R2.

b
jp

)
dR2

By construction (cf. also Fig. 4), the integral over R1

is proportional to b
jp

>. Thus, the expression (13) is
proportional to∮

R2∈S2

(
R2.

b
jp

)>
. nB

(
nM+R2.

b
jp

)
dR2 . (14)

rotation R1

b
jp

b
ja

rotation R2

b
jp

n
ja

n
jp

Fig. 4. A rotation R ∈ SO(3) can be decomposed as R = R2.R1

where R1 rotates around b
jp, and R2 rotates around an axis

orthogonal to b
jp.

This expression is just the magnetic flux through the
surface of a sphere of radius ‖ b

jp‖. According to Gauss’
theorem for magnetism, it must vanish. As a result, the
expression (13) vanishes indeed, which concludes the
proof. �

B. Proof of Lemma III.4

We adopt assumptions and notations of Sec. 3.3.2.
Without loss of generality , we may put

b
j0p = 0 , (15)

which can always be achieved by redefining the center
of the moving frame Rb. In this case, the injective
mapping ζ to be constructed has to satisfy 0 = ζ−1(0).

In order to facilitate the construction, let

Sφ
.
=

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 , (16)

Tφ
.
=

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 , (17)

Uφ
.
=

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (18)

with φ ∈ [0, 2π]. For fixed nM ∈ R3, R ∈ SO(3) and
given measurement function jy, we define the mapping

ζ : R3 → R6 (19)

q 7→ 1

2

3∑
k=0

(−1)k



(jy ◦ f)(q,
nM, R.S kπ

2
)

(jy ◦ f)(q,
nM, R.S kπ

2 +π
4
)

(jy ◦ f)(q,
nM, R.T kπ

2
)

(jy ◦ f)(q,
nM, R.T kπ

2 +π
4
)

(jy ◦ f)(q,
nM, R.U kπ

2
)

(jy ◦ f)(q,
nM, R.U kπ

2 +π
4
)
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M

b
ja

-Sπ
2
. bjaSπ.

b
ja

-S 3π
2
. bja

c = 0

M

b
ja

-Sπ
2
. bja

Sπ.
b
ja -S 3π

2
. bja

−c

−Sπ
2
.c

−Sπ.c

−S 3π
2
.c

c 6= 0

Fig. 5. (left) The first component of ζ(0) can be expressed
as an inner product between the magnetic field at M and
b
ja.

(∑3
k=0(-1)

kS kπ
2

)>
= 0, which is always 0. (right) At

q 6= 0, ζ(q) becomes dependent on spatial variations of the
magnetic field around M. The construction is analogous for other
components.

with

f : R3 ×R3 × SO(3) → R3 × SO(3)

(q, nM, R) 7→ (nM−R.q, R)
. (20)

By definition of f and jy, i.e. (3) and (20), and using
assumption (15),

(jy ◦ f)(q,
nM, R) =

(
R. bja

)
· nB(nM−R.q).

To prove the lemma, we first show that ζ(0) = 0
independently of scale factors and the magnetic field.
For q = 0, we find that the first component of ζ(q) is
proportional to

∑3
k=0(-1)

kS>
kπ
2

= 0 , cf. also Fig. 5. A
completely analogous calculation shows that in fact all
components of ζ(q) vanish for q = 0, independently of
other parameters.

In order to show injectivity, consider the linear
approximation in q,

(jy ◦ f)(q,
nM, R)

' b
ja.R

> nB(nM)− b
ja.R

>. ∇ nB|nM .R.q .
(21)

By assumption, there exists a position nM0 such that
the magnetic gradient’s eigenvalues are different from
each other. Also, since Ampere’s law in the absence of
source currents implies that ∇ nB|nM0

is symmetric,
its matrix can be diagonalized by an orthogonal matrix.
Thus, there exists R0 ∈ SO(3) such thatd1 0 0

0 d2 0
0 0 d3

 = R>
0 . ∇

nB|nM .R0, (22)

with mutually different d1, d2, d3 ∈ R.
We now specialize the construction of the

mapping ζ, Eq. (19), by inserting the 6D posi-
tion (nM0, R0) for nM and R. Using the notation b

ja =

(
b
ja1

b
ja2

b
ja3

)
, we find that the Jacobian matrix of

the mapping ζ, Eq. (19), at q = 0 takes the form

∇ζ
∣∣∣
0

=


−(d1−d2)bja1 (d1−d2)bja2 0

(d1−d2)bja2 (d1−d2)bja1 0

(d3−d1)bja1 0 −(d3−d1)bja3
(d3−d1)bja3 0 (d3−d1)bja1

0 −(d2−d3)bja2 (d2−d3)bja3
0 (d2−d3)bja3 (d2−d3)bja2

 .

Since by assumption, the d1, d2, d3 are mutually
different and b

ja 6= 0, the 6× 3 Jacobian matrix ∇ζ
∣∣
0

contains necessarily a non-zero minor determinant of
order 3, and thus is injective. As a result, the mapping ζ
itself is an immersion in q = 0, and thus injective, at
least locally, around q = 0. �

REFERENCES

1. E. Dorveaux, D. Vissière, A.-P. Martin, and
N. Petit, “Iterative calibration method for inertial
and magnetic sensors,” in Proceedings of the 48h
IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control
Conference, (Shanghai, China), pp. 8296–8303,
dec 2009.

2. V. Renaudin, M. Afzal, and G. Lachapelle,
“Complete triaxis magnetometer calibration in the
magnetic domain,” Journal of Sensors, vol. 2010,
pp. 1–10, 2010.

3. X. Li, Y. Wang, and Z. Li, “Calibration of
tri-axial magnetometer in magnetic compass
using vector observations,” in 2015 IEEE 28th
Canadian Conference on Electrical and Computer
Engineering (CCECE), IEEE, may 2015.

4. M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson,
and H. Luinge, “Calibration of a magnetometer in
combination with inertial sensors,” in 2012 15th
International Conference on Information Fusion,
(Singapore), pp. 787–793, July 2012.

5. D. Yang, Z. You, B. Li, W. Duan, and B. Yuan,
“Complete tri-axis magnetometer calibration with
a gyro auxiliary,” Sensors, vol. 17, no. 6, p. 1223,
2017.

6. K. Mohamadabadi and M. Hillion, “An automated
indoor scalar calibration method for three-axis
vector magnetometers,” IEEE Sensors Journal,
vol. 14, pp. 3076–3083, sep 2014.

7. M. Díaz-Michelena, R. Sanz, M. F. Cerdán,
and A. B. Fernández, “Calibration of qm-
moura three-axis magnetometer and gradiometer,”

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



10 Asian Journal of Control, Vol. 00, No. 0, pp. 1–10, Month 0000

Geoscientific Instrumentation, Methods and Data
Systems, vol. 4, no. 1, pp. 1–18, 2015.

8. H. Pang, S. Luo, Q. Zhang, J. Li, D. Chen,
M. Pan, and F. Luo, “Calibration of a fluxgate
magnetometer array and its application in mag-
netic object localization,” Measurement Science
and Technology, vol. 24, p. 075102, may 2013.

9. S. Turner, M. J. Hall, S. Harmon, and N. Hillier,
“Calibration of a novel three-axis fluxgate
gradiometer for space applications,” IEEE Trans-
actions on Magnetics, vol. 51, pp. 1–4, jan 2015.

10. Y. Adachi, M. Higuchi, D. Oyama, Y. Haruta,
S. Kawabata, and G. Uehara, “Calibration for
a multichannel magnetic sensor array of a
magnetospinography system,” IEEE Transactions
on Magnetics, vol. 50, pp. 1–4, nov 2014.

11. T. Yoshida, M. Higuchi, T. Komuro, and H. Kado,
“Calibration system for a multichannel squid
magnetometer,” in Proceedings of 16th Annual
International Conference of the IEEE Engineering
in Medicine and Biology Society, (Baltimore, MD,
USA), nov 1994.

12. D. Vissière, A. Martin, and N. Petit, “Using
distributed magnetometers to increase imu-based
velocity estimation into perturbed area,” in
Conference on Decision and Control (CDC), (New
Orleans, LA), pp. 4924–4931, 2007.

13. D. Vissière, A. Martin, and N. Petit, “Système
fournissant la vitesse et la position d’un corps
en utilisant les variations du champ magnétique
évaluées grâce aux mesures de un ou des
magnétomètres et de une ou des centrales
inertielles,” Patent FR2914739 (A1), 2008.

14. E. Dorveaux, Magneto-inertial navigation: princi-
ples and application to an indoor pedometer. PhD
thesis, Ecole Nationale Supérieure des Mines de
Paris, France, 2011.

15. E. Dorveaux, T. Boudot, M. Hillion, and
N. Petit, “Combining inertial measurements and
distributed magnetometry for motion estimation,”
in American Control Conference (ACC), (San
Francisco, CA), pp. 4249–4256, 2011.

16. E. Dorveaux and N. Petit, “Presentation of a
magneto-inertial positioning system: navigating
through magnetic disturbances,” in International
Conference on Indoor Positioning and Indoor
Navigation (IPIN), (Guimarães, Portugal), 2011.

17. N. Praly, P.-J. Bristeau, J. Laurent-Varin, and
N. Petit, “Using distributed magnetometry in
navigation of heavy launchers and space vehicles,”
in Progress in Flight Dynamics, Guidance, Nav-
igation, Control, Fault Detection, and Avionics,
vol. 6, pp. 45–54, EDP Sciences, 2013.

18. C.-I. Chesneau, M. Hillion, and C. Prieur, “Motion
estimation of a rigid body with an EKF using
magneto-inertial measurements,” in 2016 Inter-
national Conference on Indoor Positioning and
Indoor Navigation (IPIN), (Alcalá de Henares,
Spain), oct 2016.

19. C.-I. Chesneau, M. Hillion, J.-F. Hullo,
G. Thibault, and C. Prieur, “Improving magneto-
inertial attitude and position estimation by
means of a magnetic heading observer,” in 2017
International Conference on Indoor Positioning
and Indoor Navigation (IPIN), (Sapporo, Japan),
sep 2017.

20. D. Caruso, A. Eudes, M. Sanfourche,
G. Le Besnerais, and D. Vissière,
“Infrastructureless indoor navigation with an
hybrid magneto-inertial and depth sensor system,”
in 2016 International Conference on Indoor
Positioning and Indoor Navigation (IPIN),
(Alcalá de Henares, Spain), oct 2016.

21. D. Caruso, A. Eudes, M. Sanfourche, D. Vissière,
and G. Le Besnerais, “A robust indoor/outdoor
navigation filter fusing data from vision and
magneto-inertial measurement unit,” Sensors,
vol. 17, p. 2795, dec 2017.

22. D. Caruso, A. Eudes, M. Sanfourche, D. Vis-
sière, and G. Le Besnerais, “Robust indoor/out-
door navigation through magneto-visual-inertial
optimization-based estimation,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), (Vancouver, Canada), sep
2017.

23. J. Jackson, Classical Electrodynamics, Third
Edition. John Wiley & Sons, Inc., 1998.

24. S. Willard, General Topology. Dover Publica-
tions, Inc., 2004.

25. S. Agarwal, K. Mierle, and Others, “Ceres solver.”
http://ceres-solver.org.

26. K. Levenberg, “A method for the solution of cer-
tain non-linear problems in least squares,” Quar-
terly of Applied Mathematics, vol. 2, pp. 164–168,
jul 1944.

27. D. W. Marquardt, “An algorithm for least-squares
estimation of nonlinear parameters,” Journal of the
Society for Industrial and Applied Mathematics,
vol. 11, pp. 431–441, jun 1963.

28. P. G. Savage, Strapdown Analytics by Paul G.
Savage. Strapdown Associates, 2000.

29. P. Furgale, J. Rehder, and R. Siegwart, “Unified
temporal and spatial calibration for multi-sensor
systems,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference
on, pp. 1280–1286, 2013.

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

http://ceres-solver.org

	I Introduction
	II Problem statement
	III Identifiability
	3.1 Notion of identifiability and assumptions
	3.2 Theorems of identifiability
	3.3 Proof of Theorem III.1
	3.3.1 Biases
	3.3.2 Effective sensor positions
	3.3.3 Scale factors and magnetic field

	3.4 Conclusion of the proof and discussion

	IV Practical identifiability of parameters for simulated data
	4.1 Scale factor ambiguity
	4.2 Least-square parameter estimation model
	4.3 Convergence of the Levenberg-Marquardt algorithm for simulated data
	4.4 Conclusion of simulation experiments

	V Real-world experiments
	VI Conclusion
	A Proof of Lemma III.3
	B Proof of Lemma III.4

