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Abstract

We investigate one-dimensional ’generalized convolution behaviors’ (gen. beh.)
that comprise differential and delay-differential behaviors in particular. We thus
continue work of, for instance, Breth’e, van Eijndhoven, Fliess, Gluesing-Luerssen,
Habets, Loiseau, Mounier, Rocha, Vettori, Willems, Yamamoto, Zampieri of the
last twenty-five years. The signal space for these behaviors is the space E of smooth
complex-valued functions on the real line. The ring of operators is the commuta-
tive integral domain E’ of distributions with compact support with its convolution
product that acts on E by a variant of the convolution product and makes it an
E’-module. Both E and E’ carry their standard topologies. Closed E’-submodules
of finite powers of E were introduced and studied by Schwartz already in 1947
under the name ’invariant varieties’ and are called gen. beh. here. A gen. beh.
is called a behavior if it can be described by finitely many convolution equations.
The ring E’ is not noetherian and therefore the standard algebraic arguments from
one-dimensional differential systems theory have to be completed by methods of
topological algebra. Standard constructions like elimination or taking (closed) im-
ages of behaviors may lead to gen. beh. and therefore the consideration of the latter
is mandatory. It is not known whether all gen. beh. are indeed behaviors, but we
show that many of them are, in particular all autonomous ones. The E’-module E
is neither injective nor a cogenerator and, in particular, does not admit elimination
in Willems’ sense. But the signal submodule PE of all polynomial-exponential
signals is injective for finitely generated modules and thus admits elimination.
This is a useful replacement and approximation of the injectivity of E since the
polynomial-exponential part of any gen. beh. is dense in it. We also describe a
useful replacement of the cogenerator property and thus establish a strong rela-
tion between convolution equations and their solution spaces. Input/output struc-
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tures of gen. beh. exist and are used to prove that also many nonautonomous
generalized behaviors are indeed behaviors. The E’-torsion elements of E, i.e.,
the smooth functions which satisfy at least one nonzero convolution equation, are
called ’mean-periodic functions’ and were studied by many outstanding analysts.
Their results are significant for gen. beh..

AMS subject classification: 44A35, 46E25, 93B25, 93C30.
Key words: convolution equation, convolution behavior, elimination, autonomous be-
havior, input/output structure, duality, topological algebra

1 Introduction
The present paper is the elaboration of the research announcement [6].
One-dimensional convolution equations have already a longer history in mathematics
and were especially studied in the analytic theory of mean-periodic functions [8], [30],
[22], [21], [10], [1], [2]. The paper [2] gives an excellent survey of the theory and its
history. The study of such equations and their solution spaces from Willems’ behav-
ioral point of view is of more recent origin and was pursued, for instance, by Fliess
and Mounier [13], Brethé and Loiseau [7], [23], Glüsing-Lürssen [15], [16], [17], van
Eijndhoven and Habets [18], [12], Mounier [25], Rocha and Willems [29], Vettori and
Zampieri [32], [33], [34], [35], Yamamoto [36], Yamamoto and Willems [37]. We re-
fer to [16] and [23] for references to the important earlier work on delay-differential
equations with commensurate delays.
We continue the work of these colleagues and prove new results on generalized (con-
volution) behaviors that were introduced and studied by Schwartz already in 1947
as invariant varieties [30, §1]. Variants of these were also considered in the impor-
tant quoted papers by Eijndhoven and Habets, Glüsing-Lürssen, Vettori and Zampieri.
These behaviors are defined as follows: We use the signal space E of smooth complex-
valued functions on the time-axis R(3 t) and the algebra E ′ of distributions with com-
pact support with its convolution product ∗ as ring of operators that acts on E ′ by a
variant ◦ of the convolution product ∗ and makes E an E ′-module. The ring E ′ is a
commutative integral domain, but not noetherian. Both E and E ′ are equipped with
their standard topologies. All structures are canonically extended to finite products E`
(columns) and E ′1×` (rows). A generalized behavior is a closed E ′-submodule B of
some E`, ` ∈ N. In connection with the signal submodule PE ⊂ E of polynomial-
exponential functions we talk of the generalized E′E-behavior B or E′PE-behavior
B
⋂
PE`. A generalized behavior is called a (convolution) behavior if it admits a

kernel representation according to Willems or, in other words, if it can be described by
finitely many convolution equations. Convolution equations and (generalized) convolu-
tion behaviors are important from the engineering point of view because they comprise
differential, delay-differential and integral equations and behaviors. Since the ring E ′
is not noetherian the standard algebraic arguments from one-dimensional differential
systems theory have to be completed by methods of topological algebra. The usual
constructions, for instance of elimination or taking (closed) images of convolution be-
haviors, may lead to generalized behaviors and therefore the consideration of the latter
is mandatory. It is not known whether every generalized behavior is indeed a behavior
and the proof of Thm. 7.13 suggests that this is probably hard to decide. We show,
however, that many generalized behaviors are behaviors, in particular all autonomous
ones. In the seminal result [30, Thm. 13 on p. 914, lines before Thm. 13] Schwartz
already proved that every generalized behavior B ⊆ E is a behavior and defined by two
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equations, but not by one in general. Another important topic of the present paper is
the discussion of (Willems’) elimination for generalized behaviors.

The paper is organized as follows: Basic facts on generalized E′E-behaviors and
complex variables are recalled in Sections 2 and 3. The Paley-Wiener-Schwartz theo-
rem on the Fourier-Laplace transform and one of Ehrenpreis’ many important results
enable to identify the topological algebra E ′ with a topological subalgebra (still de-
noted by E ′) of the ring O of entire holomorphic functions on C. This is an essential
ingredient of the proofs of Thms. 5.8 and 7.13. Localizations of O and E ′ with respect
to their closed maximal ideals are introduced in Section 3 and are important for the
algebraic characterization of topological properties of generalized behaviors in Thm.
4.5 of Section 4. In Thm. 4.4 it is shown that the signal module E′PE of polynomial-
exponential signals is injective for finitely generated modules and thus admits elimi-
nation in Willems’ sense. In contrast it is known that the E ′-module E is not divisible
and hence not injective. Since the polynomial-exponential trajectories of a generalized
behavior are dense in it (cf. [17, (3.3)], Result 2.1) this property of PE is a useful
replacement and approximation of the injectivity of E as module over the ring of dif-
ferential operators. Since HomE′(E ′/a, E) = 0 for every dense ideal a of E ′ the signal
modules E′E and hence PE are not cogenerators, but again Thm. 4.4,(1), describes a
useful replacement of the cogenerator property. Section 5 deals with autonomous gen-
eralized behaviors that are characterized by the property that the past of each behavior
trajectory determines its future. All autonomous generalized behaviors are constructed
in Thm. 5.6 and shown to be indeed behaviors in Thm. 5.8. In Section 6 we discuss
the characteristic variety, weak controllability and the weakly controllable part of a
generalized behavior. Weak controllability of convolution behaviors was introduced
and characterized in [17, Thm. 3.12, p.11], for instance. In the last Section 7 we treat
input/output structures and the corresponding transfer matrices of generalized behav-
iors and also the weakly controllable realizations of arbitrary transfer matrices. By
means of these notions we show that also many nonautonomous generalized behaviors
are indeed behaviors. For instance, a generalized input/output behavior is a behavior
if its transfer matrix has an invertible common denominator (Thm. 7.5,(3)) or if it is
weakly controllable and has only one input or only one output (Thm. 7.13). Here a
distribution T ∈ E ′ is called invertible if T ∗ E = E . In particular, the controllable part
of any delay-differential behavior is also a behavior. This solves an open question of
[17, p. 11]. The principal new results of this paper are Thms. 4.4, 4.5, 5.6, 5.8, 7.5,
7.12 and 7.13.
We use the following abbreviations: f.d.=finite-dimensional, f.g.=finitely generated,
gen. beh.=generalized behavior, IO=input/output, resp.=respectively.

2 Basic data
We are first going to describe the algebra and topology of E and E ′ in more precise
terms. The space E is equipped with its strong topology of compact convergence of
the functions and all their derivatives [31, p.88]. Its topological dual E ′ of continuous
linear functions T : E → C is identified with the space of distributions with compact
support [31, Thm. XXV]. The space E ′ carries the weak locally convex topology [3,
Ch.II, §6] with respect to the canonical nondegenerate bilinear form

< −,− >: E ′ × E → C, < T,w >:= T (w), (1)

as does the space E , and the strong topology of uniform convergence on the bounded
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sets of E . Then E with the strong resp. weak topology is the topological dual of E ′ with
the strong resp. weak topology, i.e., E with these topologies is reflexive [31, p. 89].
The convolution product ∗ on E ′, defined by

< S ∗ T,w >=< Ss < Tt, w(s+ t) >>, S, T ∈ E ′, w ∈ E , (2)

makes E ′ a commutative (integral) domain and a topological algebra with respect to
the strong topology [31, Ch. VI, Thms. IV, VII, XIV]. Also via convolution E ′ acts on
E and makes it an E ′-module such that for all w ∈ E the map E ′ → E , T 7→ T ∗ w, is
continuous with respect to both topologies. We define the action ◦ by

◦ : E ′ × E → E , < S, T ◦ w >=< S ∗ T,w >, S, T ∈ E ′, w ∈ E . (3)

The action ◦ is related to the convolution product via the algebra involution T 7→ Ť of
E ′, i.e., by

T ◦ w = Ť ∗ w where < Ťt, w(t) >:=< Tt, w(−t) > . (4)

In particular, E with ◦ is also an E ′-module. In the sequel we will use E ′ as ring of oper-
ators and E′E with the action ◦ as signal module. This signal space and module struc-
ture ◦ are important because various cases of engineering significance, in particular
differential, delay-differential and integral linear equations are included, for instance

(δh ◦ w)(t) = w(t+ h), t, h ∈ R, < δh, w >:= w(h),

((δ1 − δ0) ◦ w)(t) = w(t+ 1)− w(t),

δ := δ0, −δ′ ◦ w = δ′ ∗ w = w′,

(T ◦ w)(t) = (Ť ∗ w)(t) =

∫ ∞
−∞

T (x− t)w(x)dx for T ∈

L1
0(R,C) := {integrable functions with compact support} .

(5)

The preceding notions and results are canonically extended to the finite powers
E` := E`×1 (columns) resp. E ′1×` (rows) for any ` ∈ N. The closed subspaces of
E` with respect to the strong or the weak topologies coincide [3, §II.6.3, Cor. 3]. If
R ∈ E ′k×` and w ∈ E` then R ◦ w ∈ Ek is defined and homogeneous linear systems
R◦w = 0 and inhomogeneous systemsR◦w = u can and will be considered. A closed
subspace B ⊆ E` is translation-invariant, i.e., δh ◦ B = δh ∗ B = B for all h ∈ R,
if and only if it is an E ′-submodule of E` [31, (VI,3;16)]. The closed E ′-submodules
of some E`, ` ∈ N, are the generalized (convolution) behaviors introduced above.
Recently Lomadze characterized the differential behaviors among the gen. beh.. A
(convolution) behavior is a gen. beh. of the form

B :=
{
w ∈ E`; R ◦ w = 0

}
=w ∈ E`; ∀i = 1, · · · , k :

∑̀
j=1

Rij ◦ wj = 0

 , R ∈ E ′k×`,
(6)

that obviously is a closed E ′-submodule of E` and the solution space of finitely many
convolution equations. The representation in (6) is Willems’ kernel representation of
the behavior.
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We define the polar or orthogonal submodule of an E ′-submodule U ⊆ E ′1×` as [34,
§2], [4, Thm. 2.23]

Uo :=
{
w ∈ E`; < U,w >= 0

}
= U⊥ :=

{
w ∈ E`; U ◦ w = 0

}
⊆ E` (7)

and likewise, for an E ′-submodule B ⊆ E`,

Bo :=
{
ξ ∈ E ′1×`; < ξ,B >= 0

}
= B⊥ :=

{
ξ ∈ E ′1×`; ξ ◦ B = 0

}
. (8)

The submodule U⊥ is obviously closed and therefore a gen. beh. and likewise B⊥ is
closed. The maps U 7→ U◦ = U⊥ and B 7→ B◦ = B⊥ form a Galois correspondence,
i.e., are order-reversing and satisfy

U ⊆ U⊥⊥, B ⊆ B⊥⊥, U⊥ = U⊥⊥⊥, B⊥ = B⊥⊥⊥. (9)

Let clE(U) resp. clE(B) denote the closures of U resp. B in E ′1×` resp. E`. The
important bipolar theorem [3, Thm. II.6.1] implies

clE(U) = Uoo = U⊥⊥ and clE(B) = Boo = B⊥⊥. (10)

Hence the Galois correspondence establishes a one-one correspondence, also called
polarity or duality, between closed submodules U ⊆ E ′1×` and gen. beh. B := U⊥ ⊆
E`. In other words, U resp. B are closed if and only if U = U⊥⊥ resp. B = B⊥⊥. For
a matrix R ∈ E ′k×` the corresponding behavior is obtained as

{
w ∈ E`; R ◦ w = 0

}
= U⊥ where U := E ′1×kR =

k∑
i=1

E ′Ri− ⊆ E ′1×` (11)

is the row module of R. An arbitrary gen. beh. B = U⊥ is a behavior if and only if
there are k ∈ N and R ∈ E ′k×` such that

B = U⊥ =
(
E ′1×kR

)⊥
or, equivalently, B⊥ = clE(U) = clE(E ′1×kR), (12)

i.e., if the closure of U contains a dense f.g. submodule. Schwartz’ seminal result [30,
Thm. 13 on p. 914] thus signifies that every closed ideal a of E ′ contains a dense ideal
E ′T1 + E ′T2, Ti ∈ E ′. In general, a does not contain a dense principal ideal, i.e.,
the behavior a⊥ cannot be described by one equation or, in general terms, by a matrix
with linearly independent rows (=of maximal row rank), cf. [30, lines before Thm.
13 on p.914]. Therefore the conjecture [17, (2) on p.12] concerning delay-differential
behaviors is false for arbitrary convolution behaviors.
For any E ′-module U ⊆ E ′1×` we also introduce the factor module M = E ′1×`/U
with its factor or identification topology. The module M is separated or a Hausdorff
space if and only if U is closed. As for differential systems the canonical Malgrange
isomorphism

HomE′(E ′1×`/U, E) = HomE′(E ′1×`/ clE(U), E) ∼=
B := U⊥ = clE(U)⊥, ϕ↔ w, ϕ(ξ + U) = ξ ◦ w, ξ ∈ E ′1×`,

(13)

holds. We consider this as an algebraic isomorphism only and not as a topological one.
The left exact functor HomE′(−, E) on f.g. E ′-modules thus is an equally important
tool for generalized convolution behaviors as it is for differential behaviors.
We are now going to describe the space PE ⊆ E of polynomial-exponential functions



2 BASIC DATA 6

in more detail. From (5) we know −δ′ ◦ w = w′ = dw
dt . We therefore identify the

differential operator ∂ := d
dt with its corresponding distribution −δ′, ∂ := −δ′, and

conclude that the polynomial algebra C[∂] = C[−δ′] is the subalgebra of E ′ of linear
differential operators with constant coefficients. If N is any module over a commu-
tative integral domain A its torsion submodule tor(N) ⊆ N is the submodule of all
elements x for which there is a nonzero a ∈ A that annihilates x, i.e., ax = 0. If
tor(N) = N resp. tor(N) = 0 the module N is called torsion or a torsion mod-
ule resp. torsionfree. From standard one-dimensional differential systems theory it is
known that PE is the torsion submodule of E as C[∂] = C[ ddt ]-module. Since C[∂] is a
principal ideal domain with the representative system of prime elements ∂− z, z ∈ C,
any torsion module admits the canonical primary direct sum decomposition. Recall the
definition of direct sums here: If (Vi)i∈I is a possibly infinite family of submodules of
a module V the sum

∑
i∈I Vi is the least submodule of V containing all Vi and consists

of all sums
∑
i∈I xi where xi ∈ Vi and only finitely many xi are nonzero or, in other

words, almost all xi are zero. Without this condition the sum
∑
i xi does not make

sense in pure algebra; convergence is not considered here. The sum
∑
i Vi is called

direct and then written as
⊕

i∈I Vi if every x ∈
∑
i Vi has a unique representation

x =
∑
i xi. For PE we now obtain:

PE := tor
(
C[∂]E

)
= {w ∈ E ; ∃0 6= T ∈ C[∂] with T ◦ w = 0} =

⊕
z∈C
PE(z),

where PE(z) :=
⋃
k∈N

annE((∂ − z)k),

annE((∂ − z)k) :=
(
E ′(∂ − z)k

)⊥
=
{
w ∈ E ; (∂ − z)k ◦ w = 0

}
=

C[t]<ke
zt =

k−1⊕
j=0

Cez,j , C[t]<k :=

k−1⊕
j=0

Ctj ,

ez,j :=
tj

j!
ezt, (∂ − z)m ◦ ez,j =

{
ez,j−m if m ≤ j
0 if m > j

PE(z) = C[t]ezt, PE = ⊕z∈CC[t]ezt.
(14)

For a submodule U ⊆ E ′1×` and its behavior B := U⊥ this implies the decomposition

B
⋂
PE` =

{
w =

∑
z∈C

wz ∈
⊕
z∈C
PE(z)`; U ◦

∑
z∈C

wz =
∑
z∈C

U ◦ wz = 0

}
=

⊕
z∈C

(
B
⋂
PE(z)`

)
.

(15)
Since the ring E ′ is commutative the annihilators annE((∂ − z)k) are C-f.d. E ′-
submodules of E and indeed behaviors and therefore also the PE(z) = C[t]ezt and
PE = ⊕z∈CPE(z) are E ′-submodules of E , but not closed. The isomorphism (13)
induces the isomorphism

HomE′(E ′1×`/U,PE) ∼= B
⋂
PE` (16)

for the polynomial-exponential part of B. The following essential result was the fun-
damental result Thm. 6 of [30] for B ⊆ E and was extended to arbitrary gen. beh. in
[17, (3.3)] by means of [27].



3 THE USE OF COMPLEX VARIABLES 7

Result 2.1. The polynomial-exponential part B
⋂
PE` of a gen. beh. B ⊆ E` is dense

in B, hence

B⊥ = Bo =
(
B
⋂
PE`

)o
=
(
B
⋂
PE`

)⊥
.

This is false in higher dimensions and therefore the theory of this paper cannot be
extended to higher dimensions.

3 The use of complex variables
Let O := O(C) denote the C-algebra of entire functions (everywhere convergent
power series) in the complex variable s ∈ C. It is a Fréchet algebra with the topol-
ogy of compact convergence. The Fourier transform or Fourier-Laplace transform
[19, Thm. 7.1.14]

F : E ′ → O, T 7→ T̂ , T̂ (s) :=< Tt, e
−its >, (17)

is an injective algebra homomorphism where E ′ resp. O are furnished with the convo-
lution resp. with the pointwise multiplication. For a > 0, p ∈ N and F ∈ O define

‖F‖a,p := sup
z∈C
|F (z)|(1 + |z|)−pe−a|=(z)|, =(z) := imaginary part of z,

Oa,p := {F ∈ O; ‖F‖a,p <∞} ={
F ∈ O; ∃C > 0∀z ∈ C : |F (z)| ≤ C(1 + |z|)pea|=(z)|

}
,

PWS :=
⋃

a>0,p∈N
Oa,p, Oa,p ⊆ Oa′,p′ if a ≤ a′, p ≤ p′,

Oa,p ( Oa′,p if a < a′, Oa,p ( Oa,p′ if p < p′.

(18)

ThenOa,p is a Banach space with the norm ‖−‖a,p and a convergent sequence inOa,p
is compactly convergent in particular. The Paley-Wiener-Schwartz theorem [19, Thm.
7.3.1] implies the algebra isomorphism

F : E ′ ∼= PWS, T 7→ T̂ ,

supp(T ) ⊆ [−a, a] := {t ∈ R; |t| ≤ a} ⇐⇒ T̂ ∈
⋃
p∈N
Oa,p (19)

where supp(T ) is the support of T as distribution. This theorem was an important tool
already in [33], [17] and [12].
A sequence (Tn)n∈N ∈ E ′N converges weakly (and then also strongly) to T ∈ E ′ if and
only if limn→∞ < Tn, w >=< T,w > for all w ∈ E . According to [11, Lemma 5.17,
p.155], [2, p.211] this is equivalent to the existence of

a > 0, p ∈ N such that ∀n ∈ N : T̂n, T̂ ∈ Oa,p and

lim
n→∞

‖T̂n − T̂‖a,p = 0.
(20)

This enables the construction of distributions with support in [−a, a] by limit processes
in the Banach space Oa,p and is very important for the present paper. In the sequel we
identify

E ′ = PWS ⊂ O, T = T̂ , T (s) := T̂ (s) =< Tt, e
−its >, δ̂h = e−ihs, h ∈ R,

∂ = −δ′ = −̂δ′ =< −δ′, e−ist >= (−1)(−1)(−is) = −is, s = i∂.
(21)
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Hence C[s] = C[i∂] = C[∂] = C[δ′] ⊂ E ′ is the subalgebra of differential operators.
The algebra O is a Stein algebra [5, §6] and has many valuable algebraic properties.
An ideal b ofO is closed if and only if it is f.g. and then even a principal ideal, henceO
is a Bézout domain and therefore also coherent [5, Def. and Cor. 2.3]. More generally,
submodules U ⊆ O1×` are closed if and only if they are f.g. and then indeed free. This
implies that the f.g. Stein modules O1×`/U , U closed, [5, Result 6.1, Thm. 6.2] are
precisely the finitely presented or coherent ones. The principal ideals E ′f, 0 6= f ∈ E ′,
of E ′ are not closed in general. Indeed, the following equivalences hold [20, Thms.
16.3.10, 16.5.7, Def. 16.3.12 ] (cf. (53)):

E ′f is closed ⇐⇒ E ′f = E ′
⋂
Of ⇐⇒ f ◦ E = f ∗ E = E . (22)

Then f is called invertible. Smooth functions with compact support, considered as
distributions, are never invertible whereas all differential operators f ∈ C[s] = C[∂] ⊂
E ′ are invertible due to the standard result f ◦ E = E . This applies especially to the
prime powers (s − z)k = (i∂ − z)k = ik(∂ + iz)k and was widely exploited in the
seminal paper [30]. The ideals mO(z) = O(s − z), z ∈ C, are precisely the closed
maximal ideals ofO. For every z ∈ C the ringOz := C < s−z > is the ring of locally
convergent power series at z. It is a discrete valuation ring (DVR) (cf. [24, §11]), i.e.,
a principal ideal domain with the unique (up to association) prime element s − z and
unique maximal ideal mz = Oz(s − z). The identity theorem implies the inclusion
O ⊂ Oz, f = fz :=

∑∞
n=0 f

(n)(z)(n!)−1(s − z)n. The closure of an O-submodule
V ⊆ O1×` is

clO(V ) =
{
w ∈ O1×`; ∀z ∈ C : wz ∈ OzV ⊆ O1×`

z

}
(23)

[5, Result 6.1,(8)]. Equations (22) and (14) imply

E ′(s− z)k = E ′(∂ + iz)k = E ′
⋂
O(s− z)k for all k ∈ N and

annE
(
(s− z)k

)
=
{
w ∈ E ; (∂ + iz)k ◦ w = 0

}
= C[t]<ke

−izt.
(24)

There results the chain of maximal ideals with residue field C

mz ⊃ mO(z) := O
⋂

mz = {f ∈ O; f(z) = 0} =

O(s− z) ⊃ mE(z) := E ′
⋂

mO(z) = E ′(s− z) = E ′(∂ + iz) ⊃

mP (z) := C[s]
⋂

mO(z) = C[s](s− z) = C[∂](∂ + iz).

(25)

The maximal ideals induce the local quotient rings

Oz ⊃ OmO(z) ⊃ E ′mE(z) :=
{
fg−1; f, g ∈ E ′, g ∈ E ′ \mE(z)

}
={

fg−1; f, g ∈ E ′, g(z) 6= 0
}
⊃ C[s]mP (z).

(26)

Lemma 3.1. All local rings in (26) are DVRs with the unique prime element s − z or
∂ + iz, up to association (units).

Proof. ForOz = C < s− z >, OmO(z) and C[s]mP (z) this is a standard result: For all
three local rings A with maximal ideal m the value u(z) = u+ m ∈ A/m =

ident.
C of a

ring element u ∈ A is defined and u is a unit if and only if u(z) 6= 0. One represents
an arbitrary nonzero element h of the ring in the unique form h = u(s − z)k where
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u(z) 6= 0 and hence u is a unit and k is the multiplicity. This implies the DVR property.
For A = E ′mE(z) the proof is a variant of that forOmO(z): Again it suffices to show that
each element h of this ring has a unique representation h = u(s− z)k with a unit u of
E ′mE(z). But let

h = fg−1, f, g ∈ E ′, g(z) 6= 0, and f = f1(s− z)k, f1 ∈ O, f1(z) 6= 0 =⇒
h =

(
f1g
−1) (s− z)k.

From (22) we infer f1 ∈ E ′ and from g(z) 6= 0, f1(z) 6= 0 or g, f1 ∈ E ′ \mE(z) that
u := f1g

−1 is a unit of E ′mE(z).
The representation h = u(s−z)k is unique since it is unique inOz = C < s−z >.

By means of (24) we also conclude

mkz = Oz(s− z)k ⊃ mO(z)k := O
⋂

mkz = O(s− z)k ⊃

mE(z)k := E ′
⋂

mkz = E ′(s− z)k ⊃ mP (z)k := C[s]
⋂

mkz = C[s](s− z)k.
(27)

The canonical injection C[s] ⊂ Oz = C < s− z > induces the isomorphism

C[s]/C[s](s− z)k ∼= C < s− z > /C < s− z > (s− z)k ∼= ⊕k−1j=0C(s− z)
j

(28)
where s− z denotes the residue class in the respective factor algebras. Together the
equations (27) and (28) induce the canonical identifications

Oz/Oz(s− z)k = O/O(s− z)k = E ′mE(z)/E
′
mE(z)(s− z)

k(z) = E ′/E ′(s− z)k =

C[s]/C[s](s− z)k = ⊕k−1i=0 C(s− z)
k ∼= C[s− z]<k = C[s]<k.

(29)
These factor algebras have C-dimension k. By (22) E ′(s − z)k is closed and hence
the algebra E ′/E ′(s − z)k is Hausdorff with the coinduced factor topology and this
coincides with the topology as f.d. C-space. The identifications (29) finally induce the
identification of the completions of these DRVs [24, §8, p.62-63], [5, (94)], viz.

Ôz = ÔmO(z) = Ê ′mE(z) = ̂C[s]mP (z) = C[[s− z]] (30)

where C[[s − z]] is the DVR of formal power series in s − z. Since the inclusion
A ⊂ Â of a local noetherian ring into its completion is faithfully flat, i.e., the functor
M 7→ Â ⊗A M preserves and reflects exact sequences of A-modules, the preceding
considerations imply that all inclusions of DVRs

C[[s− z]] ⊃ Oz ⊃ OmO(z) ⊃ E ′mE(z) ⊃ C[s]mP (z), (31)

are faithfully flat.
Let b = Of be any nonzero closed ideal of O. Its associated analytic variety is the the
countable discrete set of zeros of f or b, viz.

VC(f) := VC(b) := {z ∈ C; ∀g ∈ b : g(z) = 0} . (32)

Recall that mO(z)k = O(s − z)k ⊂ mkz = Oz(s − z)k. The multiplicity k(z) :=
mult(f, z) of f at z is defined by the equivalent conditions

f ∈ mO(z)k(z) \mO(z)k(z)+1 ⇐⇒ f ∈ mk(z)z \mk(z)+1
z

⇐⇒ ∃g ∈ O with f = g(s− z)k(z) and g(z) 6= 0 ⇐⇒
f (i)(z) = 0 for i = 0, · · · , k(z)− 1, f (k(z))(z) 6= 0,

(33)
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hence VC(f) = {z ∈ C; mult(f, z) ≥ 1} .

Definition 3.2. For any nonzero ideal b = Of, 0 6= f ∈ O, the family(
VC(f), (mult(f, z))z∈VC(f)

)
is called the cospectrum [30, p. 911] or multiplicity variety [1, p. 117] of b. If B ( E is
a gen.beh., i.e., a proper closed translation-invariant subspace of E , with its associated
nonzero ideals a := B⊥ of E ′ and b := clO(Oa) of O then the cospectrum of b is
called the spectrum of B [30, p. 877].

The Weierstraß and Mittag-Leffler theorems (compare also [14, Thm. 7]) imply the
Stein algebra isomorphism

∆ : O/Of ∼=
∏

z∈VC(f)

O/O(s− z)k(z), k(z) := mult(f, z),

g +Of 7→
(
g +O(s− z)k(z)

)
z∈VC(f)

with ker(∆) = b =
⋂

z∈VC(f)

O(s− z)k(z) and

O/O(s− z)k(z) =
(29)

C[s]/C[s](s− z)k(z) =

⊕k(z)−1j=0 C(s− z)j 3 g := g +Of =

k(z)−1∑
i=0

g(j)(z)

j!
(s− z)j .

(34)

This implies in particular that the cospectra or multiplicity varieties are in one-one
correspondence with the nonzero closed ideals of O. Notice that for finite VC(f) the
isomorphism ∆ is a consequence of the Chinese Remainder Theorem. There is no
simple characterization of the closed ideals b ofO or of the corresponding multiplicity
varieties for which there is a distribution f ∈ E ′ with b = Of .

4 Injectivity, elimination and closure
Elimination in Willems’ sense for gen. beh. occurs as follows: Assume

P ∈ E ′`2×`1 , U1 ⊆ E ′1×`1 and

U2 := (◦P )−1(U1) =
{
η ∈ E ′1×`2 ; ηP ∈ U1

}
.

(35)

The Ui induce f.g. modules Mi := E ′1×`i/Ui, gen. beh.

Bi := U⊥i = clE(Ui)
⊥ =

ident.
HomE′(Mi, E) ⊆ E`i

and maps (◦P )ind : E ′1×`2/U2 → E ′1×`1/U1, η + U2 7→ ηP + U1,

P◦ = Hom((◦P )ind, E) : B1 = HomE′(M1, E)→ B2.

(36)

The map (◦P )ind is, of course, injective.

Lemma 4.1. For the not necessarily closed submodule U1 ⊆ E ′1×`1 the equation

clE
(
P ◦ U⊥1

)
=
(
(◦P )−1(clE(U1))

)⊥ (37)

holds.
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Proof. Let ξ ∈ E ′1×`2 be any element. We prove the dual equation(
P ◦ U⊥1

)⊥
=
(
clE
(
P ◦ U⊥1

))⊥
=
(
(◦P )−1(clE(U1))

)⊥⊥
= (◦P )−1(clE(U1)).

But ξ ∈
(
P ◦ U⊥1

)⊥ ⇐⇒ ξ ◦ (P ◦ U⊥1 ) = (ξP ) ◦ U⊥1 = 0 ⇐⇒
ξP ∈ U⊥⊥1 = clE(U1) ⇐⇒ ξ ∈ (◦P )−1 (clE(U1)) .

In Thm. 4.4,(2), below we derive the sharper equation

clE(P ◦ B1) = clE(P ◦ U⊥1 ) = (◦P )−1(U1)⊥ = B2 (38)

for any, not necessarily closed U1.
With the notations from (36) P ◦ B1 is, of course, an E ′-submodule of E ′1×`2 . If it
is also closed and thus the gen. beh. B2 by (38) then we say by slightly generalizing
Willems’ terminology in the case of differential systems that B2 is obtained by elimi-
nation from B1. Even if U1 is f.g. it is not known in general whether U2 is also f.g..
In other words, the closed image of a behavior may not be a behavior and therefore
the treatment of gen. beh. instead of behaviors only is mandatory. If all gen. beh. are
behaviors then this problem disappears, but this is not known at present.
A module E′W is injective if and only if the left exact functor HomE′(−,W ) is even
exact or, equivalently, transforms injections into surjections, and an injective cogen-
erator if in addition this functor also reflects exactness or if HomE′(M,W ) = 0 im-
plies M = 0. If 0 6= f ∈ E ′ = E ′1×1 is not invertible the map ◦f : E ′ → E ′
is injective, but f◦ = Hom(◦f, E) : E → E is not surjective and therefore f ◦ E
is not a gen. beh. and E′E is not injective and does not admit elimination. But we
are now going to show that PE admits elimination. By [26, Thms. 1.14, 6.6] the
module PE(−iz) = C[t]e−izt is the minimal injective cogenerator over the local ring
C[s]mP (z) where s = i∂, C[s] = C[∂] and mP (z) = C[s](s − z) = C[∂](∂ + iz).
According to [24, Thm. 18.6,(iii)] the module PE(−iz) is also the minimal injective
cogenerator over the completion ̂C[s]mP (z) = C[[s − z]] = C[[∂ + iz]]. Here the
action of C[s] = C[∂] on PE(−iz) by differentiation can be canonically extended to
C[[s−z]] since (∂+iz)m◦ t

j

j! e
−izt = 0 form > j by (14). This latter nilpotence of the

action moreover implies that C[s]- and C[[s − z]]-submodules of PE(−iz) coincide.
The faithful flatness of the inclusions (31) then furnish the injectivity of PE(−iz) as
E ′mE(z)-module. We give a simple, essentially constructive direct proof of this result.

Consider the formal power series algebra C[[∂]] and the polynomial ring C[t] =
⊕∞j=0Ctj with its basis ej := tj/j!, j ∈ N, and the C-linear differentiation operator

∂ =
d

dt
: C[t]→ C[t], w 7→ w′ =

dw

dt
= ∂w, ∂mej =

{
ej−m if m ≤ j
0 if m > j

. (39)

This endomorphism can be extended to the action

◦ : C[[∂]]× C[t]→ C[t],

∞∑
m=0

am∂
m ◦ w :=

∑
m≤deg(w)

am∂
mw, or

∞∑
m=0

am∂
m ◦

k∑
j=0

bjej :=
∑

m≤j≤k

ambjej−m.

(40)
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which makes C[t] a module over the DVR C[[∂]]. Since C[[∂]] is a principal ideal
domain the injectivity of C[[∂]]C[t] is equivalent to its divisibility, i.e., to the solvability
of f ◦ y = v for each v ∈ C[t] and nonzero f ∈ C[[∂]]. It suffices to show this
solvability for the basis signals v := ek = tk/k!. If f = g∂m with a unit g of C[[∂]]
and y := g−1 ◦ ek+m then f ◦ y = v = ek, indeed

f = g∂m, g = g0 + g1∂ + · · · , g0 6= 0, g−1 =

∞∑
n=0

an∂
n, a0 = g−10 ,

y := g−1 ◦ ek+m =

k+m∑
n=0

anek+m−n. Then

f ◦ y = ∂m ◦ g ◦ g−1 ◦ ek+m = ∂m ◦ ek+m = ek+m−m = ek = v.

(41)

The maximal ideal of C[[∂]] is m := C[[∂]]∂ and the map

C[[∂]]→ C[t], f = f0 + f1∂ + · · · 7→ f ◦ 1 = f0 = f0t
0,

induces the C[[∂]]-isomorphism C[[∂]]/m ∼= C = Ct0, hence Ct0 is the unique simple
C[[∂]]-module (up to isomorphism).

Lemma 4.2. (cf. [24, Thm. Ex. 18.7]) The module C[t] is the unique least injective
C[[∂]]-cogenerator (up to isomorphism).

Proof. This is a standard result of homological algebra of which we give a direct proof.
(i) Let N be a nonzero C[[∂]]-module. Since the ring is noetherian there is a simple
subquotient U1/U2, U2 ⊂ U1 ⊆ N , hence U1/U2

∼= Ct0. Since C[t] is injective the
nonzero linear map U1

can−→ U1/U2
∼= Ct0 ⊂ C[t] can be extended to N and therefore

HomC[[∂]](N,C[t]) 6= 0. This shows that C[[∂]]C[t] is an injective cogenerator.
(ii) If V ⊆ C[t] is a nonzero submodule and 0 6= w =

∑m
k=0 akek ∈ V, am 6= 0, then

0 6= am = amt
0 = ∂m ◦ w ∈ V

⋂
Ct0 =⇒ V

⋂
Ct0 6= 0.

This signifies [24, p.281] that Ct0 is essential in C[t].
(iii) If W is any injective cogenerator then HomC[[∂]](Ct0,W ) 6= 0. Since Ct0 is
simple and W is injective a nonzero C[[∂]]-linear map ϕ : Ct0 → W is obviously
injective and can be extended to ψ : C[t]→W with

0 = ker(ϕ) = Ct0
⋂

ker(ψ) =⇒
(ii)

ker(ψ) = 0 =⇒
ident.

C[t] ⊂W =⇒
C[t] injective

C[t]
⊕

W1 = W.

This shows that C[t] is indeed the least injective C[[∂]]-cogenerator (up to isomor-
phism).

We now transfer this result to other situations. Define the isomorphisms

φ : C[t] ∼= PE(−iz) = C[t]e−izt,

w 7→ we−izt, ej = tj/j! 7→ e−iz,j = tj(j!)−1e−izt and
ϕ : C[[∂]] ∼= C[[s− z]],

∂ 7→ ∂ + iz = i−1(s− z),
∑
m

am∂
m 7→

∑
m

ami
−m(s− z)m.

(42)
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The map ϕ is an algebra isomorphism and φ is ϕ-semi-linear in the sense that

φ(f ◦ w) = ϕ(f) ◦ φ(w), f ∈ C[[∂]], w ∈ C[t], especially for m ≤ j :

φ(∂m ◦ ej) = φ(ej−m) = e−iz,j−m = (∂ + iz)m ◦ e−iz,j = ϕ(∂m) ◦ φ(ej).
(43)

Lemma 4.2 and a standard transport of structure argument furnish

Corollary 4.3. For z ∈ C the modules PE(−iz) = C[t]e−izt resp. PE(z) = C[t]ezt

are the unique least injective cogenerators over the formal power series algebras
C[[s− z]] = C[[∂ + iz]] resp. C[[∂ − z]] = C[[s− iz]]. If

f = g(s− z)m, g ∈ C[[s− z]], g(z) 6= 0, g−1 =

∞∑
n=0

an(s− z)n, u := e−iz,k and

y := g−1 ◦ i−me−iz,k+m =

k+m∑
n=0

ani
n−me−iz,k+m−n then f ◦ y = u.

The last equation yields the constructive solution y of the divisibility equation f◦y = u.

Proof. The proof is a modification of those of (41) and of Lemma 4.2.

We now transfer this result to the local rings E ′mE(z) and also to E ′.

Theorem 4.4. Let B ⊆ E` be any gen. beh..
1. The module PE(−iz) = C[t]e−izt is the least injective cogenerator over E ′mE(z). In
particular, there is a matrix Rz ∈ E ′kz×` that is of maximal row rank kz and unique
up to row equivalence over E ′mE(z) such that

B
⋂
PE(−iz)` =

{
w ∈ PE(z)`; Rz ◦ w = 0

}
. (44)

2. The module PE =
⊕

z∈C C[t]ezt =
⊕

z∈C C[t]e−izt is injective for f.g. E ′-
modules, i.e., the left exact functor HomE′(−,PE) preserves exactness of sequences
of f.g. modules and especially transforms injections M ′ → M of f.g. E ′-modules into
surjections HomE′(M,PE) → HomE′(M

′,PE). For the data from 1. resp. (36) this
implies

B
⋂
PE` =

⊕
z∈C

{
w ∈ PE(−iz)`; Rz ◦ w = 0

}
resp. (45)

P ◦ (B1
⋂
PE`) = B2

⋂
PE`, clE(P ◦ B1) = B2. (46)

In particular E′PE admits elimination.

Proof. 1. The divisibilty of PE(−iz) over C[[s − z]] implies that over the subring
E ′mE(z). Notice that C[s] = C[−iδ′] ⊂ E ′mE(z) ⊂ C[[s− z]]. If

0 6= w =

m∑
j=0

wje−iz,j ∈ PE(−iz) = C[t]e−izt, wj ∈ C, wm 6= 0, then

0 6= (s− z)m ◦ w = imwme
−izt ∈ Ce−izt.

(47)

As in Lemma 4.2 this shows that the simple E ′mE(z)-module Ce−izt is essential in
PE(−iz) and that PE(−iz) is the least injective E ′mE(z)-cogenerator.
2. For all z ∈ C the localization or quotient module functor

ModE′ →ModE′
mE(z)

, M 7→MmE(z) :=
{
f−1x; x ∈M, f ∈ E ′ \mE(z)

}
,
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is exact and so is the functor

ModE′ →ModE′
mE(z)

M 7→ HomE′(M,PE(−iz)) =
ident.

HomE′
mE(z)

(
MmE(z),PE(−iz)

) (48)

since PE(−iz) is injective as E ′mE(z)-module. The identification comes from the uni-
versal property of the quotient module MmE(z). If M is a f.g. E ′-module the functor
HomE′(M,−) preserves direct sums and hence

HomE′(M,PE) = HomE′(M,
⊕
z∈C
PE(−iz)) =

ident.

⊕
z∈C

HomE′(M,PE(−iz)) =
ident.⊕

z∈C
HomE′

mE(z)

(
MmE(z),PE(−iz)

)
.

(49)
Since direct sums of exact sequences are exact too this shows that the contravariant
functor M 7→ HomE′(M,PE) maps exact sequences M ′ → M → M ′′ of f.g. E ′-
modules onto exact sequences. In the situation of (35) and (36) this implies the surjec-
tion

P◦ : B1
⋂
PE`1 =

ident.
HomE′(M1,PE)→ B2

⋂
PE`2 =

ident.
HomE′(M2,PE) =⇒

B2
⋂
PE`2 = P ◦

(
B1
⋂
PE`1

)
⊆ P ◦ B1 ⊆ B2 =⇒

B2 = clE(B2
⋂
PE`2) = clE(P ◦ B1).

With M = E ′1×`/U and the identifications

B =
ident.

HomE′(M, E) and B
⋂
PE` =

ident.
HomE′(M,PE)

equation (49) also implies (45).

Notice that for arbitrarily chosen matrices Rz ∈ E ′kz×` the gen. beh. B :=
clE
(⊕

z∈C
{
w ∈ PE(z)`; Rz ◦ w = 0

})
does not satisfy (45). This is in contrast to

Thm. 5.6 below.
Thm. 4.4 implies the following important result on the connection between algebra and
topology. Let

K := quot(E ′) :=
{
fg−1; f, g ∈ E ′, g 6= 0

}
⊂

M := quot(O) =
{
fg−1; f, g ∈ O, g 6= 0

} (50)

denote the quotient field K of E ′ inside the quotient field M of O of meromorphic
functions. All local rings E ′mE(z) are contained in K. For every submodule U ⊆ E ′1×`
this implies

UmE(z) ⊆ E ′1×`mE(z) ⊂ K
1×` and

KU = KUmE(z) = K ⊗E′ U ⊆ K1×` = K ⊗E′ E ′1×`.
(51)

Theorem 4.5. Let U ⊆ E ′1×` be any E ′-submodule and M := E ′1×`/U .
1. The closure of U in E ′1×` is

clE(U) = E ′1×`
⋂ ⋂

z∈C
UmE(z). (52)
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2. The closures in E ′1×` and in O1×` are related by

clO(U) = clO(OU) and clE(U) = E ′1×`
⋂

clO(U),

hence E ′1×`/ clE(U) ⊂
ident.
O1×`/ clO(U).

(53)

Proof. 1. Let

B = U⊥ =
ident.

HomE′(M, E) ⊆ E` =⇒ clE(U) = U⊥⊥ = B⊥ =
Res. 2.1(

B
⋂
PE`

)⊥
=

(45)

(∑
z∈C

(B
⋂
PE(−iz)`)

)⊥
=
⋂
z∈C

(B
⋂
PE(−iz)`)⊥.

Since PE(−iz) is an injective cogenerator over E ′mE(z) the equation

B
⋂
PE(−iz)` =

ident.
HomE′

mE(z)
(MmE(z),PE(−iz)) =

HomE′
mE(z)

(E ′1×`mE(z)/UmE(z),PE(−iz))

implies

UmE(z) =
{
ξ ∈ E ′1×`mE(z); ξ ◦ (B

⋂
PE(−iz)`) = 0

}
=⇒

E ′1×`
⋂
UmE(z) =

{
ξ ∈ E ′1×`; ξ ◦ (B

⋂
PE(−iz)`) = 0

}
=
(
B
⋂
PE(−iz)`

)⊥
=⇒ E ′1×`

⋂ ⋂
z∈C

UmE(z) =
⋂
z∈C

(
B
⋂
PE(−iz)`

)⊥
= B⊥ = clE(U).

2. Since C[s] is contained in E ′ and dense in O and since O → O1×`, f 7→ fx, is
continuous for all x ∈ O1×` we infer

∀u ∈ U : Ou = clO(C[s])u ⊆ clO(C[s]u) ⊆ clO(U) =⇒ clO(OU) = clO(U).

We use the commutative diagrams

E ′1×` ⊂ O1×`, ξ 7→ ξ⋂ ⋂
↓ ↓

E ′1×`mE(z) ⊂ O1×`
z = C < s− z >1×`, ξ = ξ

1 7→ ξz

,

hence OzE ′mE(z)U = OzUmE(z) = OzOU.

Equation (23) implies

clO(OU) =
{
η ∈ O1×`; ∀z ∈ C : ηz ∈ OzOU = OzUmE(z)

}
=⇒

E ′1×`
⋂

clO(OU) =
{
ξ ∈ E ′1×`; ∀z ∈ C : ξz ∈ OzUmE(z)

}
={

ξ ∈ E ′1×`; ∀z ∈ C : ξ ∈ E ′1×`mE(z)

⋂
OzUmE(z)

}
.

Since the inclusion E ′mE(z) ⊂ Oz is faithfully flat by (31) the following equality holds

for every submodule V ⊆ E ′1×`mE(z):

V = E ′mE(z)

⋂
OzV =⇒ UmE(z) = E ′1×`mE(z)

⋂
OzUmE(z) =⇒ E ′1×`

⋂
clO(OU) ={

ξ ∈ E ′1×`; ∀z ∈ C : ξ ∈ UmE(z)

}
= E ′1×`

⋂ ⋂
z∈C

UmE(z) = clE(U).
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This theorem enables the study of E ′1×`/ clE(U) by means of the f.g. modules
E ′1×`m(z)/Um(z) over the DVRs E ′m(z) with their well-known simple structure.

Corollary 4.6. ([34, Prop. 8]) If U = E ′1×kR, R ∈ E ′k×`, is f.g. thenOU = O1×kR
is f.g. and thus closed and therefore clE

(
E ′1×kR

)
= E ′1×`

⋂
O1×kR. In particular,

clE(E ′f) = E ′
⋂
Of for all f ∈ E ′ and this implies the first equivalence in (22).

Corollary 4.7. Assume

P ∈ E ′`2×`1 , Ui ⊆ E ′1×`i , Bi := U⊥i ⊆ E`i , U1P ⊆ U2, hence P ◦ B1 ⊆ B2.

1. If the Ui are closed then clE(P ◦ B1) = B2 if and only if U2 = (◦P )−1(U1).

2. The map P◦ : B1 → B2 ⊆ E`2 is injective if and only if

clE
(
E ′1×`2P + U1

)
= E ′1×`1 , i.e., ∀z ∈ C : E ′1×`2mE(z)P + U1,mE(z) = E ′1×`2mE(z).

Proof. 1. ⇐=: (46). =⇒: From the assumption and (46) we infer

U⊥2 = B2 = clE(P ◦ B1) = (◦P )−1(U1)⊥ =⇒ U2 = (◦P )−1(U1)

since U2, U1 and thus (◦P )−1(U1) are closed.
2. Application of the left exact functor HomE′(−, E) to the exact sequence

E ′1×`2 (◦P )ind−→ E ′1×`1/U1
can−→ E ′/U3 → 0, U3 := E ′1×`2P + U1,

of E ′-modules furnishes the exact gen. beh. sequence

0→ U⊥3 =
ident.

HomE′(E ′1×`1/U3, E)→ B1 = U⊥1
P◦−→ E`2 , hence

P◦ : B1 → E`2 is injective ⇐⇒ clE(U3)⊥ = U⊥3 = 0 ⇐⇒ clE(U3) = E ′1×`1

⇐⇒
(52)
∀z ∈ C : E ′1×`2mE(z)P + U1,mE(z) = U3,mE(z) = E ′1×`2mE(z).

Corollary 4.8. If O1×`3 ◦Q−→ O1×`2 ◦P−→ O1×`1 , Q ∈ E ′`3×`2 , P ∈ E ′`2×`1 , is exact
then clE

(
P ◦ E`1

)
=
{
w ∈ E`2 ; Q ◦ w = 0

}
.

Proof. Let B2 :=
{
w ∈ E`2 ; Q ◦ w = 0

}
. Then

O1×`3 ◦Q−→ O1×`2 ◦P−→ O1×`1 exact ⇐⇒ ∀z ∈ C : O1×`3
z

◦Q−→ O1×`2
z

◦P−→ O1×`1
z

exact ⇐⇒
(31)
∀z ∈ C : E ′1×`3mE(z)

◦Q−→ E ′1×`2mE(z)

◦P−→ E ′1×`1mE(z) exact ⇐⇒
Thm. 4.4,(1)

∀z ∈ C : PE(−iz)`1 P◦−→ PE(−iz)`2 Q◦−→ PE(−iz)`3 exact ⇐⇒

P ◦ PE`1 =
⊕
z∈C

(
B2
⋂
PE(−iz)`2

)
= B2

⋂
PE`2 =⇒ clE(P ◦ E`1) = B2.
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Corollary 4.9. For every submodule U ⊆ E ′1×`, and z ∈ C as in (51) we obtain

U ⊆ clE(U) ⊆ UmE(z), UmE(z) = clE(U)mE(z), KU = K clE(U) = KUmE(z),

MmE(z) =
(
E ′1×`/U

)
mE(z)

= E ′1×`mE(z)/UmE(z) =
(
E ′1×`/ clE(U)

)
mE(z)

K1×`/KU = K ⊗E′
(
E ′1×`/U

)
= K ⊗E′

(
E ′1×`/ clE(U)

)
=

K ⊗E′
mE(z)

(
E ′1×`mE(z)/UmE(z)

)
.

(54)

In the preceding Cor. 4.9 define M := E ′1×`/U and

p := rank(U) := dimK(KU), m := rank(M) := dimK(K ⊗E′ M), hence

p+m = `, K ⊗E′ M ∼= K1×m.
(55)

Corollary and Definition 4.10. For the data from (55) the kernel of the canonical map
M → K⊗E′ M, x 7→ 1⊗ x, is the torsion submodule

tor(M) := {x ∈M ; ∃f ∈ E ′ with f 6= 0 and fx = 0} (56)

ofM , and henceM is a torsion module, i.e.,M = tor(M), if and only ifK⊗E′M = 0.
Since M is f.g. the canonical map maps M into a free E ′-submodule of K1×m of
dimension m and hence there is a matrix

P ∈ E ′`×m such that UP = 0, hence U ⊆ U2 := ker(◦P ) =
{
ξ ∈ E ′1×`; ξP = 0

}
,

and tor(M) = U2/U = ker
(
(◦P )ind : M = E ′1×`/U → E ′1×m, ξ + U 7→ ξP

)
and E ′1×m/E ′1×`P is a torsion module.

(57)
The submodule U2 is closed and hence tor(M) is closed in M = E ′1×`/U .

5 Autonomous behaviors
The principal goal of this section is the proof of Thms. 5.6 and 5.8.
Let, as usual, D := D(R) denote the subspace of E of smooth functions with compact
support with its standard topology, D′ = D′(R,C) its dual space of distributions and
D′+ the subspace of D′ of distributions with left bounded support. The convolution
product makes D′+ an integral domain [31, Thm. VI.XIV] and E ′ is a subalgebra of
D′+. The subspace E+ = D′+

⋂
E of smooth functions with left bounded support is

an ideal of D′+ and therefore a torsionfree D′+-module. We conclude that E+ is a
torsionfree E ′-submodule of E′E .

Theorem and Definition 5.1. (cf. [17, Prop. 3.10] [35, Def. 2, Prop. 4]) For a not
necessarily closed submodule U ⊆ E ′1×` and the associated f.g. E ′-module M :=
E ′1×`/U and gen. beh. B := U⊥ the following properties are equivalent:
1. M is a torsion module, i.e., there is a nonzero f ∈ E ′ with fM = 0 or E ′1×`f ⊆ U .
2. B

⋂
E ′`+ = 0, i.e., the past of a trajectory of B determines its future.

3. There is a nonzero g ∈ E ′ with

g ◦ B = 0 or B ⊆ (E ′1×`g)⊥ =
{
w ∈ E`; g ◦ w = 0

}
. (58)

If U is closed one may choose f = g in (1) and (3).
Under these conditions B is called autonomous.
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Proof. 1. =⇒ 3.: The inclusion

E ′1×`f ⊆ U implies B ⊆ (E ′1×`f)⊥ =
{
w ∈ E`; f ◦ w = 0

}
=⇒ f ◦ B = 0.

3. =⇒ 1.: The equation g ◦ B = 0, 0 6= g, implies

U⊥ ⊆ (E ′1×`g)⊥ =⇒ E ′1×`g ⊆ (E ′1×`g)⊥⊥ ⊆ U⊥⊥ = clE(U) =⇒
gM ′ = 0 for M ′ := E ′1×`/ clE(U).

Thus M ′ is a torsion module and so is M due to (54).
1. =⇒ 2.: The module B

⋂
E`+ is a submodule of the torsionfree E ′-module E`+ and

annihilated by the nonzero f and thus zero.
2. =⇒ 1.: Recall K = quot(E ′). We give an indirect proof and assume that M is not
a torsion module or K ⊗E′ M 6= 0. For the data from (57) this implies

m > 0 and (◦P )ind 6= 0 or U ⊆ U2 = clE(U2) ( E ′1×` =⇒

0 6= B2 := U⊥2 ⊆ B. Since B
⋂
E`+ = 0 also B2

⋂
E`+ = 0.

From (57) and (46) we infer clE(P ◦ Em) = B2 6= 0 and hence P ◦ Em 6= 0. Finally
D and therefore E+ are dense in E and therefore

0 6= P ◦ Em = P ◦ clE(Em+ ) ⊆ clE(P ◦ Em+ ) ⊆ B2
⋂
E`+ = 0.

This is a contradiction.

If an ideal a of E ′ is not closed and

g ∈ clE(a) \ a then a⊥ = clE(a)⊥, g ◦ a⊥ = 0, but g(E ′/a) 6= 0.

So, in general, the distributions f and g in the preceding theorem cannot be chosen
equal.
There is no structure theorem for arbitrary closed E ′-submodules U ⊆ E ′1×` or gen.
beh. B = U⊥, but we construct all autonomous gen. beh. in the next theorem. So
assume

U ⊆ E ′1×`, M := E ′1×`/U, 0 6= f ∈ E ′,
fM = 0 or E ′1×`f ⊆ U, B := U⊥ ⊆ (E ′1×`f)⊥ = B`f ,

where Bf := (E ′f)⊥ = {w ∈ E ; f ◦ w = 0} .
(59)

We use data from (32) and (33), especially V := VC(f), for f and the (Stein) algebra
isomorphism (34)

O/Of ∼=
∏
z∈V
O/O(s− z)k(z), g +Of 7→

(
g +O(s− z)k(z)

)
z∈V

. (60)

This isomorphism immediately implies

Corollary 5.2. There are elements εz ∈ O, z ∈ V, unique mod Of , such that

∀z, z′ ∈ V : εz ≡ δz,z′ mod O(s− z′)k(z
′), hence

∀z, z′ ∈ V : εzεz′ ≡ δz,z′εz mod Of.
(61)

In particular, the εz +Of, z ∈ V, are orthogonal idempotents in O/Of .
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Proof. εz+Of is the unique inverse image under (60) of
(
δz,z′ +O(s− z′)k(z′)

)
z′∈V

.

The ideas for the following construction of distributions εz ∈ E ′ that satisfy the
congruences in (61) were extracted from [30, pp. 882-, (24)-(29)], but not trivially:
Recall

f = (s− z)k(z)fz with fz ∈ E ′, fz(z) 6= 0, k(z) := mult(f, z). (62)

The function f−1 is meromorphic with poles at z ∈ V . Let ppz(f
−1) denote its

principal part at z which is given and characterized by

ppz(f
−1) =

k(z)∑
i=1

az,i(s− z)−i, az,i ∈ C, gz := f−1 − ppz(f
−1) ∈ Oz. Define

εz := f ppz(f
−1) = fz(s− z)k(z) ppz(f

−1) = fz
k(z)∑
i=1

az,i(s− z)k(z)−i ∈ E ′.

(63)
In particular, the action εz ◦ w ∈ E is defined for all w ∈ E .

Lemma 5.3. The εz ∈ E ′, z ∈ V, from (63) satisfy the congruences

εz ≡ δz,z′ mod E ′(s− z′)k(z
′), z′ ∈ V, or

εz − 1 ∈ E ′(s− z)k(z) and εz ∈
⋂

z′∈V, z′ 6=z

E ′(s− z′)k(z
′). (64)

Proof. (i)

1 = ff−1 = f
(
ppz(f

−1) + (f−1 − ppz(f
−1))

)
= εz + fgz =⇒

fgz = 1− εz = (s− z)k(z)fzgz ∈ O =⇒
fzgz∈Oz

fzgz ∈ O =⇒

1− εz = (s− z)k(z)(fzgz) ∈ E ′
⋂
O(s− z)k(z) = E ′(s− z)k(z).

(65)

(ii) For z 6= z′ there is another product representation

f = (s− z)k(z)(s− z′)k(z
′)fz,z

′
, fz,z

′
∈ E ′, fz = (s− z′)k(z

′)fz,z
′

=⇒

εz = fz
k(z)∑
i=1

az,i(s− z)k(z)−i = (s− z′)k(z
′)fz,z

′
k(z)∑
i=1

az,i(s− z)k(z)−i ∈

E ′
⋂
O(s− z′)k(z

′) = E ′(s− z′)k(z
′).

(66)

If (cf. (18))

f ∈ Oa,p ⊂ E ′ then also ∀z ∈ V ∀i = 1, · · · , k(z) : (s− z)−if ∈ Oa,p =⇒

∀z ∈ V : εz =

k(z)∑
i=1

az,i(s− z)−if ∈ Oa,p.
(67)
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The condition fz(z) 6= 0 in f = (s − z)k(z)fz implies that fz is a unit in E ′mE(z)

and hence E ′mE(z)f = E ′mE(z)(s − z)
k(z). For z 6∈ V we get k(z) = 0, f = fz and

E ′mE(z)f = E ′mE(z). From (14), (15), (48) and s = i∂ we know that

Bf
⋂
PE =

⊕
z∈C

(
Bf
⋂
PE(−izt)

)
and

Bf
⋂
PE(−izt) =

ident.
HomE′

mE(z)

(
E ′mE(z)/E

′
mE(z)f,PE(−iz)

)
=

HomE′
mE(z)

(
E ′mE(z)/E

′
mE(z)(s− z)

k(z),PE(−iz)
)

) =
ident.

(
E ′(s− z)k(z)

)⊥
=

annE

(
(s− z)k(z)

)
= C[t]<k(z)e

−izt =⇒

Bf
⋂
PE =

⊕
z∈C

C[t]<k(z)e
−izt =

⊕
z∈V

C[t]<k(z)e
−izt.

(68)

Corollary 5.4. For all z, z′ ∈ V and wz′ ∈
(
E ′(s− z′)k(z′)

)⊥
= C[t]<k(z′)e

−iz′t,

i.e., (s− z′)k(z′) ◦ wz′ = 0 we have

εz ◦ wz′ = δz,z′wz′ , hence εz ◦ (Bf
⋂
PE) = C[t]<k(z)e

−izt. (69)

Proof. For z, z′ ∈ V we infer from Lemma 5.3 that

εz = δz,z′ + g(s− z′)k(z
′), g ∈ E ′ =⇒

εz ◦ wz′ = δz,z′wz′ + g ◦ (s− z′)k(z
′) ◦ wz′ =

(s−z′)k(z′)◦wz′=0
δz,z′wz′ .

The inclusion B = U⊥ ⊆ B`f and the preceding considerations also furnish

Corollary 5.5. For the behavior B = U⊥ ⊆ B`f and z ∈ V there holds the decompo-
sition

B
⋂
PE` =

⊕
z′∈V

(
B
⋂
PE(−iz′)`

)
=
⊕
z′∈V

(
B
⋂

C[t]`<k(z′)e
−iz′t

)
and

εz◦ :
⊕
z′∈V

(
B
⋂

C[t]`<k(z′)e
−iz′t

)
→ B

⋂
C[t]`<k(z)e

−izt,
∑
z′∈V

wz′ 7→ wz,
(70)

is the projection.

Theorem 5.6. 1. For the data from (59)-(69) there are polynomial matrices Rz ∈
C[s]`×`, z ∈ V := VC(f), of degree degs(R

z) < k(z) such that for all z ∈ V

B
⋂
PE(−iz)` =

{
w ∈ C[t]`<k(z)e

−izt; Rz ◦ w = 0
}

={
w ∈ E`; (s− z)k(z) ◦ w = 0, Rz ◦ w = 0

}
=
(
E ′1×2`

(
Rz

(s−z)k(z) id`

))⊥ (71)

2. Conversely, for given f 6= 0 in E ′ with the data from (33) and (34) choose arbitrary
polynomial matrices Rz ∈ C[s]`×`, z ∈ V, and define

U(z) := E ′1×`Rz + E ′1×`(s− z)k(z) = E ′1×2`
(

Rz

(s−z)k(z) id`

)
⊆ E ′1×`,

hence U(z)⊥ ⊂ C[t]`<k(z)e
−izt ⊂ PE(−iz)`, z ∈ VC(f),

(72)
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where the U(z) are closed and the U(z)⊥ are C-f.d. differential behaviors. Then

⊕z∈V U(z)⊥
(
⊆
⊕

z∈V C[t]`<k(z)e
−izt

)
is an E ′-submodule of E` and

B := clE
(
⊕z∈VC(f)U(z)⊥

)
(73)

is the unique autonomous gen. beh. B with

B
⋂
PE(−iz)` =

{
U(z)⊥ if z ∈ V
0 if z ∈ C \ V.

(74)

In particular, it is annihilated by f , i.e., f ◦ B = 0.
3. In the situation of 1. or 2. and with the εz ∈ E ′ from (63) the map

B →
∏
z∈V

U(z)⊥, w 7→ (εz ◦ w)z∈V , (75)

is injective.

Proof. 1. For z ∈ V equation (48) furnishes

B
⋂
PE(−iz)` =

ident.
HomE′

mE(z)
(E ′1×`mE(z)/UmE(z),PE(−iz)). (76)

Recall that in f = (s− z)k(z)fz the distribution fz is a unit in E ′mE(z). Together with
fE ′1×` ⊆ U this yields

E ′1×`mE(z)f = E ′1×`mE(z)(s− z)
k(z) ⊆ UmE(z) =⇒ UmE(z)/E ′1×`mE(z)(s− z)

k(z) ⊆

E ′1×`mE(z)/E
′1×`
mE(z)(s− z)

k(z) ∼=
(29)

C[s]1×`/C[s]1×`(s− z)k(z)

where C[s]/C[s](s− z)k(z) =

k(z)−1⊕
i=0

C(si + C[s](s− z)k(z)).

(77)

But all C[s]-submodules of C[s]1×`/C[s]1×`(s− z)k(z) are of the form(
C[s]1×`Rz + C[s]1×`(s− z)k(z)

)
/C[s]1×`(s− z)k(z) with

Rz ∈ C[s]`×`, degs(R
z) < k(z) =⇒

(77)
UmE(z) = E ′1×`mE(z)R

z + E ′1×`mE(z)(s− z)
k(z) =⇒

(76)

B
⋂
PE(−iz)` =

ident.

HomE′
mE(z)

(
E ′1×`mE(z)/

(
E ′1×`mE(z)R

z + E ′1×`mE(z)(s− z)
k(z)
)
,PE(−iz)

)
=(

E ′1×2`
(

Rz

(s−z)k(z) id`

))⊥
.

2. The module U(z) is closed since U(z)/E ′1×`(s − z)k(z) is a (closed) subspace of
the C-f.d. Hausdorff space

(
E/E ′(s− z)k(z)

)1×`
(cf. (29)). This implies that

U(z)⊥ =
{
w ∈ E`; Rz ◦ w = 0, (s− z)k(z) ◦ w = 0

}
={

w ∈ C[t]`<k(z)e
−izt; Rz ◦ w = 0

}
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is a C-f.d. behavior. Then B1 := ⊕z∈V U(z)⊥ is an E ′-submodule of E` and its closure
B := clE(B1) is a gen. beh.. Recall that f◦ : E` → E` is continuous. From

f = (s− z)k(z)fz and (s− z)k(z) ◦ U(z)⊥ = 0 we infer f ◦ B1 = 0 =⇒
f ◦ B = f ◦ clE(B1) ⊆ clE(f ◦ B1) = clE(0) = 0 =⇒ f ◦ B = 0 =⇒

Cor. 5.5

B
⋂
PE` =

⊕
z∈V

(
B
⋂

C[t]`<k(z)e
−izt

)
and

U(z)⊥ =
{
w ∈ C[t]`<k(z)e

−izt; Rz ◦ w = 0
}
⊆ B

⋂
C[t]`<k(z)e

−izt.

It remains to show that the last inclusion is an equality. So assume
w ∈ B

⋂
C[t]`<k(z)e

−izt. Since B is the closure of B1 we conclude that

w = lim
n→∞

wn where wn =
∑
z∈V

wn,z, wn,z ∈ C[t]`<k(z)e
−izt, Rz ◦ wn,z = 0.

Notice that for fixed n only finitely many wn,z are nonzero. Recall that εz◦ and Rz◦
are continuous. Cor. 5.4 furnishes

εz ◦ w = w, εz ◦ wn = wn,z =⇒ w = εz ◦ w = εz ◦ lim
n
wn =

lim
n

(εz ◦ wn) = lim
n
wn,z and Rz ◦ w = lim

n
Rz ◦ wn,z = lim

n
0 = 0 =⇒

w ∈
{
v ∈ C[t]`<k(z)e

−izt; Rz ◦ v = 0
}

= U(z)⊥ =⇒ U(z)⊥ = B
⋂

C[t]`<k(z)e
−izt.

3. Under the assumption w ∈ B and εz ◦w = 0 for all z ∈ V we have to prove w = 0.
Let Bw := clE(E ′ ◦ w) 3 w. From Cor. 5.5 we get

Bw
⋂
PE` =

⊕
z∈V

(
Bw
⋂
PE(−iz)`

)
and ∀z ∈ V : Bw

⋂
PE(−iz)` =

εz ◦
(
Bw
⋂
PE`

)
⊆ εz ◦ clE(E ′ ◦ w) ⊆ clE(E ′ ◦ εz ◦ w) = clE(0) = 0 =⇒

Bw
⋂
PE` = 0 =⇒ Bw = clE

(
Bw
⋂
PE`

)
= 0 =⇒ w = 0.

Remark 5.7. Consider the special case ` = 1, 0 6= f ∈ E ′ and B := (E ′f)⊥ =
{w ∈ E ; f ◦ w = 0} in Thm. 5.6. In this case the injectivity of the map in (75) was
established in Schwartz’ fundamental theorem [30, Thm. 9] from which he inferred
that B

⋂
PE is dense in B whereas we simply used Result 2.1. Moreover the quoted

analysts proved a much stronger version of Thm. 5.6,(3), for the case ` = 1 and
showed that for all w ∈ Bf and not only for w ∈ Bf

⋂
PE =

⊕
z∈V C[t]<k(z)e

−izt

the convergent sum representation w =
∑
z∈V εz ◦ w, V := VC(f), holds where

a suitable notion of convergence has to be used [30, Thm. 11], [2, Thms. 2,3, 4].
In [2] the authors make the essential assumption that f is invertible, i.e., that E ′f is
closed or f ◦ E = E . Analogous convergent sum representations hold for arbitrary
trajectories w of B`f from (59) by componentwise application of the case ` = 1. The
sum representationsw =

∑
z∈V εz◦w generalize the convergent Fourier series. Notice
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that for w ∈ B and z ∈ V

εz ◦ w ∈ C[t]<k(z)e
−izt, i.e., εz ◦ w =

k(z)−1∑
j=0

az,jt
j , az,j ∈ C =⇒

w =
∑
z∈V

εz ◦ w =
∑

z∈V,0≤j<k(z)

az,jt
je−izt.

(78)

For
f = δ2π − δ0 =

ident.
δ̂2π − δ̂0 = e−2πis − 1, V = Z

all multiplicities k(n), n ∈ V = Z, are 1 and therefore (78) obtains the standard
form w =

∑
n∈Z ane

int of the Fourier series for any periodic w ∈ E with f ◦ w =
w(t+ 2π)− w(t) = 0

Theorem 5.8. Every autonomous gen. beh. B ⊆ E` is indeed a behavior. If 0 6= f ∈ E ′
with supp(f) ⊆ [−a, a], a > 0, annihilates B, i.e., if f ◦ B = 0, then there is a matrix
R ∈ E ′`×` with supp(R) ⊆ [−a, a] such that

B =
{
w ∈ E`; R ◦ w = 0, f ◦ w = 0

}
, hence B⊥ = clE

(
E ′1×2`

(
R
f id`

))
. (79)

Proof. We use Thm. 5.6 and its notations and obtain

B
⋂
PE` =

⊕
z∈V

(
B
⋂
PE(−iz)`

)
with

B
⋂
PE(−iz)` =

{
w ∈ C[t]`<k(z)e

−izt; Rz ◦ w = 0
}
, Rz ∈ C[s]`×`.

For z ∈ V we use εz = (s− z)−k(z)f
∑k(z)
j=1 az,j(s− z)k(z)−j from (63). By polyno-

mial division with remainder we get

k(z)∑
j=1

az,j(s− z)k(z)−jRz = P z + (s− z)k(z)Qz, P z, Qz ∈ C[s]`×`

with degs(P
z) < k(z), P z =

k(z)∑
j=1

P z,j(s− z)k(z)−j , P z,j ∈ C`×` =⇒

εzR
z = (s− z)−k(z)f

k(z)∑
j=1

az,j(s− z)k(z)−jRz = F z + fQz where

F z := f

k(z)∑
j=1

P z,j(s− z)−j .

(80)

By assumption f ∈ E ′ has its support in [−a, a] is therefore contained in some
Oa,p, p ∈ N, (cf. (18)). This implies f(s − z)−j ∈ Oa,z for j = 1, · · · , k(z) and
therefore also

F z = f

k(z)∑
j=1

P z,j(s− z)−j ∈ O`×`a,p . (81)
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From (62) and (66) we also obtain

F z = fz
k(z)∑
j=1

P z,j(s− z)k(z)−j and ∀z′ ∈ V, z 6= z′ :

F z = (s− z′)k(z
′)fz,z

′
k(z)∑
j=1

P z,j(s− z)k(z)−j ∈

(
E ′
⋂
O(s− z′)k(z

′)
)`×`

=
(
E ′(s− z′)k(z

′)
)`×`

=⇒

∀z′ 6= z and w ∈ E` with (s− z′)k(z
′) ◦ w = 0 : F z ◦ w = 0.

(82)

Let

w ∈ (Bf
⋂
PE(−iz))` = annE((s− z)k(z))` = C[t]`<k(z)e

−izt =⇒

εz ◦ w =
(69)

w and Rz ◦ w = εzR
z ◦ w = (F z + fQz) ◦ w =

f◦w=0
F z ◦ w.

(83)

In the representation of B
⋂
PE(−iz)` we have thus replaced Rz ∈ C[s]`×` by F z ∈

O`×`a,p .
For the final step we notice that if (xz)z∈V , V countable, is any countable family
of vectors xz in a Banach space X with the norm ‖x‖ one can choose positive real
numbers a(z) > 0 such that

∑
z∈V a(z)‖xz‖ < ∞. The completeness of X then

implies that
∑
z∈V a(z)xz ∈ X . We apply this to the Banach space O`×`a,p with the

maximum norm ‖ − ‖a,p induced from ‖ − ‖a,p on Oa,p (cf. (18)), i.e.,

Y ∈ O`×`a,p , Yj,k ∈ Oa,p, ‖Y ‖a,p = max1≤j,k≤` ‖Yj,k‖a,p. (84)

We choose positive real numbers a(z) > 0, z ∈ V, such that
∑
z′∈V a(z′)‖F z′‖a,p <

∞ and obtain the convergent sum R :=
∑
z′∈V a(z′)F z

′ ∈ Oa,p ⊂ E ′. According to
(20) the sum R :=

∑
z′∈V a(z′)F z

′
is also convergent in the strong topology of E ′ and

therefore
∀w ∈ E` : R ◦ w =

∑
z′∈V

a(z′)(F z
′
◦ w) (85)

converges in the topology of E . For w ∈ C[t]<k(z)e
−izt = annE((s − z)k(z)) the

preceding equations imply

R ◦ w =
(85)

∑
z′∈V

a(z′)(F z
′
◦ w) =

(82)
a(z)(F z ◦ w) =

(83)
a(z)(Rz ◦ w) =⇒

B
⋂
PE(−iz)` =

{
w ∈ C[t]`<k(z)e

−izt; Rz ◦ w = 0
}

={
w ∈ C[t]`<k(z)e

−izt; F z ◦ w = 0
}

=
{
w ∈ C[t]`<k(z)e

−itz; R ◦ w = 0
}
.

(86)

In the representation of B
⋂
PE(−iz)` we have thus replaced the various polynomial
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matrices Rz by one matrix R ∈ O`×`a,p . We finally define

B1 :=
(
E ′1×2`

(
R
f id`

))⊥
=
{
w ∈ B`f ; R ◦ w = 0

}
=⇒ f ◦ B1 = 0 and

B1
⋂
PE(−iz)` =

{
w ∈ C[t]<k(z)e

−izt;R ◦ w = 0
}

={
w ∈ C[t]<k(z)e

−izt;Rz ◦ w = 0
}

= B
⋂
PE(−iz)` =⇒

B1
⋂
PE` =

⊕
z∈V

(
B1
⋂
PE(−iz)`

)
=
⊕
z∈V

(
B
⋂
PE(−iz)`

)
= B

⋂
PE` =⇒

B = clE

(
B
⋂
PE`

)
= B1 =

(
E ′1×2`

(
R
f id`

))⊥
.

(87)

Corollary 5.9. ([30, Thm. 13 on p.914 ]) If a is a nonzero closed ideal of E ′ with gen.
beh. B = a⊥ ( E and 0 6= f ∈ a

⋂
Oa,p then there is R ∈ a

⋂
Oa,p such that

B = {w ∈ E ; R ◦ w = f ◦ w = 0} and a = clE(E ′f + E ′R). (88)

Proof. One applies Thm. 5.8 to the autonomous gen.beh. B. Schwartz constructed R
differently and gave only an indication of the proof.

Corollary 5.10. If B1 ⊆ E`1 is an autonomous behavior and P ∈ E ′`2×`1 then the
closed image B2 := clE(P ◦B1) (cf. (36)) is also autonomous and therefore a behavior.

The emphasis of [33] is on delay-differential behaviors. To discuss these we need
the algebras

R :=
⊕

h∈R C[δ′]δh ⊂ E ′ ⊂ O⋂ ⋂
‖

HR := quot(R)
⋂
O ⊂ HE := K

⋂
O ⊂ O⋂ ⋂ ⋂

quot(R) ⊂ K := quot(E ′) ⊂ M := quot(O)

, HR ⊂ E ′,

(89)
where quot(A) denotes the quotient field of a domain A,M is the field of meromor-
phic functions on C and R is the ring of delay-differential operators. All nonzero
distributions in R are invertible (cf. (22)) [9, p.697]. Therefore HR is contained in E ′
and all nonzero distributions in HR are also invertible. Each h ∈ HR has the simpler
form h = fg−1 with f ∈ R and 0 6= g ∈ C[s] (cf. [17, Thm. 2.2], [5, (85)]). A behav-
ior of the form B =

{
w ∈ E`; R ◦ w = 0

}
with R ∈ Hk×`R is called delay-differential

[17, Def. 3.1]. The necessity ofHR instead ofR is explained in [15], [18] and [17].

Corollary 5.11. If a nonzero f ∈ HR annihilates a gen. beh. B this is autonomous
and hence a behavior, but not delay-differential in general. The closed image of an
autonomous delay-differential behavior is a behavior, but again not delay-differential
in general.

Proof. Recall from Thm. 5.8 that

B =
{
w ∈ E`; R ◦ w = 0, f ◦ w = 0

}
with

R =
∑
z∈V

a(z)F z, F z := f

k(z)∑
j=1

P z,j(s− z)−j .
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If f ∈ HR then also all (s − z)−jf, 1 ≤ j ≤ k(z), belong to HR and therefore
F z ∈ H`×`R for all z ∈ V . But the infinite convergent sum R =

∑
z∈V a(z)F z will

only rarely belong toH`×`R . So B is, in general, not a delay-differential behavior.

6 Characteristic variety and weak controllability
Recall the algebras and especially the quotient fields from (50) and (89). Consider a
f.g. E ′-module M = E ′1×`/U with the associated gen. beh. B := U⊥ = clE(U)⊥.
From (54)- (57) we get

K ⊗E′ (clE(U)/U) = (K ⊗E′ clE(U)) / (K ⊗E′ U) = K clE(U)/KU = 0 =⇒
clE(U)/U ⊆ tor(M) = U2/U.

(90)
Recall that the dimension dimA(N) of a free module over a commutative ring is the
length of one and then of all its bases. If N is a f.g. module over a noetherian local
integral domain A with maximal ideal m, residue field k = A/m and quotient field
K := quot(A) then N/mN is a k-space and Krull’s (Nakayama’s) lemma shows that

dimk(N/mN) ≥ rank(N) := dimK(K ⊗A N) and
dimk(N/mN) = rank(N) ⇐⇒ N is free of dimA(N) = rank(N).

(91)

For z ∈ C, the DVR A := E ′mE(z) with E ′mE(z)/mE(z)E ′mE(z) = C and the f.g.
E ′m(z)-moduleMmE(z) withM/mE(z)M =

ident.
MmE(z)/mE(z)MmE(z) and rank(M) =

rank
(
MmE(z)

)
this implies

dimC (M/mE(z)M) ≥ m := rank(M) = rank
(
MmE(z)

)
and

dimC (M/mE(z)M) = m ⇐⇒ MmE(z) is free of dimension m.
(92)

Recall that the module MmE(z) over the DVR E ′mE(z) is free if and only if it is torsion-
free. If U = E ′1×kR, R ∈ E ′k×` is itself f.g. and B =

{
w ∈ E`; R ◦ w = 0

}
is a

behavior then

p := rank(U) = rank(R), m := rank(M) = `− p,
M/mE(z)M =

ident.
C1×`/C1×kR(z), dimC (M/mE(z)M) = `− rank(R(z)).

(93)

We define the characteristic variety

char(M) = char(B) :=
{
z ∈ C; MmE(z) is not free

}
, especially

char(M) = char(B) = {z ∈ C; rank(R(z)) < rank(R)} in the situation of (93).
(94)

For all z ∈ C \ char(M) the module MmE(z) is free of dimension rank(M).
Recall that PE(−iz) is an injective cogenerator over E ′mE(z) and

B
⋂
PE(−iz)` ∼= HomE′

mE(z)
(MmE(z),PE(−iz)), hence

B
⋂
PE(−iz)` 6= 0 ⇐⇒ MmE(z) 6= 0.

(95)
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If B is autonomous and thus M and all MmE(z) are torsion modules then

char(M) = char(B) =
{
z ∈ C; MmE(z) 6= 0

}
=
{
z ∈ C; B

⋂
PE(−iz)` 6= 0

}
and B

⋂
PE` =

⊕
z∈char(B)

(
B
⋂
PE(−iz)`

)
.

(96)
The direct sum decomposition in (96) generalizes the well-known and important modal
decomposition of one-dimensional autonomous differential behaviors.
The geometric properties of char(M) are further explained by studying the associated
Stein modules [5, §6]. We define

Û := clO(U) =
(53)

clO(OU) ⊆ O1×` and M̂ = O1×`/Û , hence (cf. (23), [5, Result 6.1]

Ûz = OzU = OzUmE(z), M̂z = O1×`
z /Ûz = Oz ⊗E′

mE(z)
MmE(z).

(97)
The submodule Û is closed and thus f.g. and free since O is a Bézout domain. Since
the inclusion E ′mE(z) ⊂ Oz is faithfully flat (cf. (31)) the module MmE(z) is free if

and only if M̂z is. The following properties are quoted from [5, §8, Result 8.1]. The
characteristic variety char(M̂) of M̂ [5, (108)] consists of the z ∈ C with nonfree M̂z

and is indeed a variety. This implies

char(M) = char(M̂) = VC(g) := {z ∈ C; g(z) = 0} (98)

for some entire function g that does not necessarily belong to E ′.
If clE(U) = E ′1×`

⋂
clO(U) ( E ′1×` or, equivalently, M̂ 6= 0 then char(M̂) ( C

and hence g 6= 0, char(M) is a countable discrete subset of C and MmE(z) is free for
almost all z ∈ C. If clE(U) = E ′1×` then MmE(z) = 0 for all z ∈ C. The module M̂
is free if and only if char(M̂) = char(M) = ∅. This also signifies that all MmE(z) are
free or torsionfree or that dimC (M/mE(z)M) = rank(M) for all z ∈ C.

The next theorem characterizes weak controllability of a gen. beh. in the sense of
[17, p. 11]). From (90) we derive that U is closed if M is torsionfree and therefore we
assume the closedness of U in the next theorem. We use the data from (54)- (57).

Theorem and Definition 6.1. (cf. [17, Thm. 3.12]) 1. If U is closed the following
properties are equivalent:

(i) U = E ′1×`
⋂
KU .

(ii) M ⊂ K ⊗E′ M , i.e., M is torsionfree.

(iii) There is a matrix P ∈ E ′`×m such that ker(◦P ) =
{
ξ ∈ E ′1×`; ξP = 0

}
= U

or (◦Pind) : M = E ′1×`/U → E ′1×m is injective.

(iv) There is P ∈ E ′`×m such that clE(P ◦ Em) = B or P ◦ PEm = B
⋂
PE`.

(v) char(B) = 0.

(vi) B = clE(B
⋂
D`).

Under these conditions B is called weakly controllable . The condition (v) is usually
described as spectral controllability of B.
(2) The gen. beh. Bcont := HomE′(M/ tor(M), E) = clE(B

⋂
D`) is the largest

weakly controllable gen. beh. contained in B.
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Proof. 1. (i) ⇐⇒ (ii):

tor(M) = ker
(
can : M = E ′1×`/U → K⊗E′ M = K1×`/KU

)
=
(
E ′1×`

⋂
KU
)
/U.

(ii) ⇐⇒ (iii): With the data from (57) we have

tor(M) = U2/U = ker
(
(◦P )ind : E ′1×`/U → E ′1×m

)
, U2 = (◦P )−1(0).

(iii) ⇐⇒ (iv): Let P ∈ E ′`×m. Then

U = (◦P )−1(0) ⇐⇒
Cor. 4.7,(1)

clE(P ◦ Em) = U⊥ = B.

(ii) =⇒ (v): If M is torsionfree then so are all MmE(z).
(v) =⇒ (ii): From char(M) = ∅ we infer that all MmE(z) are torsionfree or, equiva-
lently, free. The equation (52) and U = clE(U) imply that the canonical map

M = E ′1×`/U →
∏
z∈C

MmE(z) =
∏
z∈C
E ′1×`mE(z)/UmE(z), ξ + U 7→

(
ξ + UmE(z)

)
z∈C ,

(99)
is injective. Since all MmE(z) are torsionfree over E ′mE(z) and hence over E ′ also M is
torsionfree over E ′.
(iv) =⇒ (vi): Assume clE(P ◦ Em) = B. Since D is dense in E we conclude

P ◦ Em = P ◦ clE(Dm) ⊆ clE(P ◦ Dm) ⊆ clE(B
⋂
D`) ⊆ B =⇒

B = clE(P ◦ Em) = clE(B
⋂
D`) = B.

(vi) =⇒ (ii): We proceed by contradiction. Assume thatM contains a nonzero torsion
element or, in other words, that there is an injection (◦Q)ind : E ′/a→ M = E ′1×`/U
with Q ∈ E ′1×` and 0 ( a ( E ′. Since (◦Q)ind is injective a = (◦Q)−1(U) is the
inverse image of U under ◦Q and thus closed. With (46) we conclude clE(Q ◦ B) =
a⊥. Since a is nonzero the behavior a⊥ is autonomous. From Thm. 5.1 we infer
a⊥
⋂
E+ = 0 and hence a⊥

⋂
D = 0. But

B = clE(B
⋂
D`) =⇒ Q ◦ B ⊆ clE

(
Q ◦ (B

⋂
D`)
)
⊆

clE

(
(Q ◦ B)

⋂
D
)
⊆ clE

(
a⊥
⋂
D
)

= clE(0) = 0 =⇒

a⊥ = clE(Q ◦ B) = 0 =⇒ a = clE(a) = a⊥⊥ = 0⊥ = E ′.

This contradicts a ( E ′.
2. We use tor(M) = U2/U withU2 = (◦P )−1(0) from (57) and concludeM/ tor(M) =
E ′1×`/U2 and

Bcont := U⊥2 =
ident.

HomE′(M/ tor(M), E).

Since M/ tor(M) is the largest torsionfree factor module of M the gen. beh. Bcont is
the largest weakly controllable gen. subbehavior of B. Let B1 = clE(B

⋂
D`), hence

B
⋂
D` ⊆ B1

⋂
D` ⊆ B1 =⇒ clE

(
B1
⋂
D`
)

= B1 =⇒
1.

B1 weakly controllable =⇒ B1 ⊆ Bcont and Bcont = clE

(
Bcont

⋂
D`
)
⊆

clE(B
⋂
D`) = B1 =⇒ Bcont = B1 = clE(B

⋂
D`).
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7 Input/output structures
In this section we introduce input/output (IO) structures and the associated transfer
matrices of gen. beh. and use them to show that also many nonautonomous gen. beh.
are indeed behaviors.
Let U ⊆ E ′1×` and B := U⊥. Recall p = rank(U) = dimK(KU), m = rank(M)
and p + m = ` from (55). In general there are different subsets I ⊆ {1, · · · , `} with
p elements such that the projection K1×` → K1×I induces an isomorphism KU ∼=
K1×I . Such an I is called an IO structure of U , M or B and B with this structure is
called an IO gen. beh.. After the usual permutation of the components of E ′1×` we
always assume I = {1, · · · , p}.

Lemma and Definition 7.1. There is a unique matrix H ∈ Kp×m such that KU =
K1×p(idp,−H) that is called the transfer matrix of the IO behavior with its chosen IO
structure.

Proof. By assumption the projection

◦
(
idp

0

)
: KU ⊂ K1×(p+m) → K1×p, (ξ, η)→ ξ,

is an isomorphism. Its inverse has the form

◦(X,−H) : K1×p ∼=−→ KU ⊂ K1×(p+m), (X,−H) ∈ Kp×(p+m) =⇒
idp = (X,−H)

(
idp

0

)
= X, (X,−H) = (idp,−H) and KU = K1×p(idp,−H).

Lemma 7.2 below shows that for behaviors instead of gen. beh. this transfer matrix
coincides with the usual one that is known from differential IO behaviors and was also
used in [17, Thm. 3.9]. Equation (54) implies that IO structures and transfer matrices
of U , clE(U) and UmE(z) coincide. An IO structure gives rise to the isomorphism

(◦(0, idm))ind : K1×m → K⊗E′ M = K1×(p+m)/KU, η 7→ (0, η) +KU, (100)

and then to the usual exact sequences

0→ E ′1×m (◦(0,idm))ind−→ M

(
◦
(
idp

0

))
ind−→ M0 → 0 where

M = E ′1×(p+m)/U, M0 := E ′1×p/U0, U0 := U
(
idp

0

)
,

0→ E ′1×mmE(z)

(◦(0,idm))ind−→ MmE(z)

(
◦
(
idp

0

))
ind−→ M0

mE(z) → 0, z ∈ C.

(101)

The isomorphism (100) implies K ⊗E′ M0 = 0, hence M0 is a torsion module and
thus B0 := (U0)⊥ ⊂ Ep is autonomous. According to Thm. 5.8 there is a matrix

P ∈ E ′k×p, rank(P ) = p, k = 2p, with clE(U0) = clE(E ′1×kP ), hence

U0
mE(z) =

{
E ′1×kmE(z)P if z ∈ char(M0)

E ′1×pmE(z) if z ∈ C \ char(M0)
,

M0
mE(z) =

{
E ′1×pmE(z)/E

′1×k
mE(z)P if z ∈ char(M0)

0 if z ∈ C \ char(M0)
.

(102)
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Application of HomE′(−, E) resp. HomE′(−,PE) to the first exact sequence in (101)
furnishes the exact gen. beh. sequence

0→ B0 inj−→ B proj−→ Em
y 7→ ( y0 ) , ( yu ) 7→ u

and

clE(proj(B)) = Em, proj
(
B
⋂
PEp+m

)
= PEm.

(103)

In particular, every polynomial-exponential input u gives rise to a trajectory (y, u)> ∈
B. Even if U is closed U0 is not necessarily so, but clE(U)

(
idP
0

)
⊆ clE

(
U
(
idP
0

))
implies

clE
(
E ′1×kP

)
= clE(U0) = clE(clE(U)0) and

B0 = {w ∈ Ep; P ◦ w = 0} = (U0)⊥ = clE(U0)⊥ = (clE(U)0)⊥.
(104)

In particular, B0 does not depend on the choice of U with U⊥ = B.

Lemma 7.2. If the IO gen. beh. B is a behavior, i.e., if there is a matrix

(P1,−Q1) ∈ E ′k1×(p+m) such that clE(U) = clE
(
E ′1×k1(P1,−Q1)

)
then as usual

rank(P1,−Q1) = rank(P1) = p, P1H = Q1,

B =
{

(y, u)> ∈ Ep+m; P1 ◦ y = Q1 ◦ u
}
, B0 = {y ∈ Ep; P1 ◦ y = 0} .

(105)

Proof. For each z ∈ C we get

UmE(z) = E ′1×k1mE(z)(P1,−Q1) ⊂ KUmE(z) = K1×k1(P1,−Q1) = K1×p(idp,−H) =⇒

p = rank(P1,−Q1) and (P1,−Q1) = X(idp,−H), X ∈ Kk1×p =⇒
P1 = X, Q1 = XH = P1H =⇒ p = rank(P1,−Q1) = rank(P1).

Moreover

U0 = U
(
idp

0

)
⊆ clE

(
E ′1×k1(P1,−Q1)

) (
idp

0

)
⊆ clE

(
E ′1×k1(P1,−Q1)

(
idp

0

))
=

clE
(
E ′1×k1P1

)
⊆ clE

(
clE(U)

(
idp

0

))
= clE

(
clE(U)0

)
=

(104)
clE(U0) =⇒

clE(U0) = clE
(
E ′1×k1P1

)
, B0 = {w ∈ Ep; P1 ◦ w = 0} .

Notice that for an arbitrary matrix H ∈ Kp×m there are various matrices

(P1,−Q1) ∈ E ′k1×(p+m) with p = rank(P1) and P1H = Q1. Then

B1 =
{

(y, u)> ∈ Ep+m; P1 ◦ y = Q1 ◦ u
} (106)

is called a behavior realization of H .
For the algebraHE := K

⋂
O from (89) we obtain the representation

Lemma 7.3. HE = K
⋂
O =

⋂
z∈C E ′mE(z).
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Proof. Let fg−1 ∈ K = quot(E ′), f, g ∈ E ′, g 6= 0. Then

∀z ∈ C : fg−1 ∈ E ′mE(z) ⇐⇒ ∀z ∈ C : E ′f ⊆ E ′mE(z)g = (E ′g)mE(z) ⇐⇒

E ′f ⊆ E ′
⋂ ⋂

z∈C
(E ′g)mE(z) =

(52)
clE(E ′g) =

(53)
E ′
⋂
Og ⇐⇒ fg−1 ∈ O.

Compare the preceding proof with arguments in [17, p.4].

Lemma 7.4. The IO structures of the gen. beh. B and its weakly controllable subbe-
havior Bcont and the corresponding transfer matrices coincide.

Proof. Let H be the transfer matrix of B, i.e., KU = K1×p(idp,−H). Recall from
(57) and Thm. 6.1,(2), that

tor(M) = U2/U ⊆M = E ′1×`/U, M/ tor(M) = E ′1×`/U2,

Bcont = U⊥2 ⊆ B = U⊥.

The equation K⊗E′ tor(M) = 0 and the application of the exact functor K⊗E′ (−) to
the exact sequence 0→ tor(M) ⊂M →M/ tor(M)→ 0 then furnish

K ⊗E′ M = K1×`/KU ∼= K ⊗E′ (M/ tor(M)) = K1×`/KU2 =⇒
KU = KU2 =⇒ KU2 = K1×p(idp,−H).

The next theorem shows that also various nonautonomous gen. beh. are indeed
behaviors and thus extends Thm. 5.8.

Theorem 7.5. Assume an IO structure KU = K1×p(idp,−H) of B and a matrix
P ∈ E ′k×p as in (102) and (104) and define the matrix Q := PH ∈ Kk×m. Then

1. Q ∈ Hk×mE (cf. Lemma 7.3)

2. If Q ∈ E ′k×m then B is a behavior, viz. B = {( yu ) ∈ Ep+m; P ◦ y = Q ◦ u} .
This is the case if U0 is closed.

3. If H has an invertible common denominator f (0 6= f ∈ E ′, fH ∈ E ′p×m) then
Q ∈ E ′k×m and hence B is a behavior by item 2.. Moreover the controllable
part Bcont of B is a behavior and the projection proj : B → Em, ( yu ) 7→ u, is
surjective (cf. [17, Thm. 3.9]).

Proof. 1. For every z ∈ C the IO structure is also one of UmE(z). Since E ′mE(z) is a
DVR the submodule UmE(z) of rank(UmE(z)) = rank(U) has the form

UmE(z) = E ′1×pmE(z)(P
z,−Qz), (P z,−Qz) ∈ E ′p×(p+m)

mE(z) , P zH = Qz =⇒

E ′1×kmE(z)P = U0
mE(z) = UmE(z)

(
idp

0

)
= E ′1×pmE(z)P

z =⇒ P = XzP z, Xz ∈ E ′k×pmE(z)

=⇒ Q = PH = XzP zH = XzQz ∈ E ′k×mmE(z) =⇒ Q ∈
⋂
z∈C
E ′k×mmE(z) = Hk×mE .
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2. Assume Q ∈ E ′k×m. By part 1. of the proof we obtain

UmE(z) = E ′1×pmE(z)(P
z,−Qz) = E ′1×pmE(z)P

z(idp,−H) =

E ′1×kmE(z)P (idp,−H) = E ′1×kmE(z)(P,−Q) =⇒
(52)

clE(U) = clE
(
E ′1×k(P,−Q)

)
,

hence B = U⊥ = {( yu ) ∈ Ep+m; P ◦ y = Q ◦ u} is indeed an IO behavior. If U0 is
closed then E ′1×kP ⊆ U0 and hence

E ′1×k(P,−Q) = E ′1×kP (idP ,−H) ⊆ U0(idp,−H) = U ⊆ E ′1×(p+m)

=⇒ Q ∈ E ′k×m.

3. Let 0 6= f ∈ E ′ be an invertible common denominator of H , i.e.,

E ′f = E ′
⋂
Of or E ′ = f−1E ′

⋂
O and fH ∈ E ′p×m =⇒

fQ = P (fH) ∈ E ′k×m and Q = f−1(fQ) ∈ f−1E ′k×m
⋂
Ok×m = E ′k×m.

Part 2. and Lemma 7.4 imply that B and Bcont are behaviors. Finally consider an
equation P ◦ y = Q ◦ u with given input u. Since f is invertible there is a

v ∈ Em with u = f ◦ v =⇒
P ◦ ((fH) ◦ v) = PfH ◦ v = Qf ◦ v = Q ◦ (f ◦ v) = Q ◦ u =⇒

B → Em, ( yu ) 7→ u, is surjective.

Corollary 7.6. (cf. [32, Thm. 3.8], [17, Thm. 3.9, lines before Prop. 3.13]). If in
Thm. 7.5 the transfer matrix H belongs to quot(R) (cf. (89)) it has an invertible
common denominator and therefore B and Bcont (cf. Lemma 7.4) are IO behaviors. In
particular, if B is a delay-differential behavior then Bcont is a behavior, but it is not
known at present whether Bcont is delay-differential too.

Proof. All nonzero delay-differential operators g ∈ R are invertible and so item 3. of
Thm. 7.5 is applicable.

We conjecture that the weakly controllable part of a delay-differential behavior is
not necessarily a delay-differential behavior.

Lemma 7.7. (Rosenbrock equations) Let B1 ⊆ En+m be an IO gen. beh. with transfer
matrix H1 and autonomous part B01 , P =

(
Y U
0 idm

)
∈ E ′(p+m)×(n+m) and

B2 := clE(P ◦ B1) = clE {( Y ◦x+U◦uu ) ; ( xu ) ∈ B1} ⊆ Ep+m. (107)

Then also B2 is an IO gen. beh. with transfer matrix H2 = U +Y H1 and autonomous
part B02 = clE(Y ◦ B01).

Proof. Let U1 := B⊥1 , U0
1 := U1

(
idn
0

)
, KU1 = K1×n(idn,−H1) and consider the

map

◦P = ◦
(
Y U
0 idm

)
: E ′1×(p+m) → E ′1×(n+m), (ξ2, η) 7→ (ξ2Y, ξ2U + η),=⇒

U2 := (◦P )−1(U1) closed , B2 =
(46)

U⊥2 , U
0
2 = U2

(
idp

0

)
,

KU2 := (◦P )−1(KU1) = (◦P )−1
(
K1×n(idn,−H1)

)
.
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By two easy computations these equations furnish

KU2 = K1×p(idp,−(U + Y H1)) and U0
2 := (◦Y )−1(U0

1 ).

These equations signify that B2 = clE(P ◦ B1) is an IO gen. beh. with transfer matrix
H2 := U + Y H1 and autonomous part B02 =

(46)
clE(Y ◦ B01).

The connection with the standard Rosenbrock equations is the following: If in
Lemma 7.7 B1 is an IO behavior of the form

B1 =
{

( xu ) ∈ En+m; P1 ◦ x = Q1 ◦ u
}

then

B2 := clE
{

( yu ) ∈ Ep+m; ∃x ∈ En, u ∈ Em : P1 ◦ x = Q1 ◦ u, y = Y ◦ x+ U ◦ u
}

(108)
is an IO gen. beh. with transfer matrix H2 = U + Y H1 where P1H1 = Q1. The
difference to the case of differential systems is that the closure operator clE is needed
and that it is generally not known whether B2 is a behavior. But we have

Theorem 7.8. If in Lemma 7.7 the transfer matrix H1 of B1 has an invertible common
denominator, for instance if H1 ∈ quot(R)n×m or if B1 is a delay-differential behav-
ior, then also H2 has an invertible common denominator and therefore both B1 and B2
are behaviors.

Proof. A common denominator of H1 is also one of H2 = U + Y H1, hence the
theorem follows from Thm. 7.5.

In Thm. 7.8 one obtains a behavior B2 by eliminating the latent variable x from
the behavior B1, but without any rank or observability condition, cf. [17, Thm. 3.7].
There remains the question whether all gen. beh. are indeed behaviors. The following
considerations suggest that this is not the case, but that counter-examples are hard
to construct. We use the important Thm. 2.12 from [32]. Result 8.1 from [5] (cf.
(98)) shows that a Stein module Ĉ = O1×`/O1×kR, R ∈ Ok×`, is torsionfree and
then indeed free of dimension ` − r, r := rank(R), if and only if char(Ĉ) = ∅ or,
equivalently, rank(R(z)) = rank(R) := r for all z ∈ C. This is also equivalent to the
freeness of Ok/RO` or to the existence of a generalized inverse G ∈ O`×k of R with
RGR = R [32, Remark 2.10].

Result 7.9. ([32, Thm. 2.12]) Assume R ∈ E ′k×` and rank(R(z)) = rank(R) and
hence also rank(R(z)>) = rank(R>) for all z ∈ C. Then there are k′, `′′ ∈ N and
R′ ∈ E ′k′×k, R′′ ∈ E ′`×`′′ such that the sequences

O′1×k
′ ◦R′

−→ O1×k ◦R−→ O1×` ◦R′′

−→ O1×`′′ and O′k
′ R′◦←− Ok R◦←− O` R

′′◦←− O`
′′

(109)
are exact and especially rank(R′) + rank(R) = k, rank(R) + rank(R′′) = `.

This result follows by application of [32, Thm. 2.12] toR and toR>. For all z ∈ C
the inclusion E ′mE(z) ⊂ Oz is faithfully flat and a sequence M of Stein modules is exact
if and only if all sequences Mz, z ∈ C, are exact [5, Result 6.1]. We conclude

Corollary 7.10. For the data from Result 7.9 and all z ∈ C the sequences

E ′1×k
′

mE(z)

◦R′

−→ E ′1×kmE(z)

◦R−→ E ′1×`mE(z)

◦R′′

−→ E ′1×`
′′

mE(z)

E ′k
′

mE(z)
R′◦←− E ′kmE(z)

R◦←− E ′`mE(z)
R′′◦←− E ′1×`

′′

mE(z)

(110)
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and therefore also the sequences

K1×k′ ◦R′

−→ K1×k ◦R−→ K1×` ◦R′′

−→ K1×`′′ ,

Kk
′ R′◦←− Kk R◦←− Kk

′ R′′◦←− K`
′

(111)

are exact. Moreover R′ and R′′ also satisfy the rank conditions

∀z ∈ C : rank(R′(z)) = rank(R′), rank(R′′(z)) = rank(R′′). (112)

Due to Cor. 4.8 the sequence

PE`
′′ R′′◦−→ PE` R◦−→ PEk R′◦−→ PEk is exact and

clE(R′′ ◦ E`
′′
) =

{
w ∈ E`; R ◦ w = 0

}
, clE(R ◦ E`) =

{
w ∈ Ek; R′ ◦ w = 0

}
(113)

are behaviors.

Proof. Only (112) has to be shown. The first exact sequence in (110) implies the exact
sequence

E ′1×k
′

mE(z)

◦R′

−→ E ′1×kmE(z)

◦R−→ E ′1×`mE(z)

◦R′′

−→ E ′1×`mE(z)R
′′ → 0. (114)

This is a free resolution of the free module E ′1×`mE(z)R
′′ and is therefore split exact. This

property is preserved by application of any additive functor. We use C = E ′/mE(z) =
E ′mE(z)/E

′
mE(z)mE(z), apply the functor N 7→ C ⊗E′

mE(z)
N to this sequence and

obtain the exact sequence

C1×k′ ◦R
′(z)−→ C1×k ◦R(z)−→ C1×` −→ C⊗E′

mE(z)

(
E ′1×`mE(z)R

′′
)
→ 0.

This, in turn, implies

rank(R′(z)) = k − rank(R(z)) = k − rank(R) = rank(R′).

The same argument applied to the second exact sequence in (110) furnishes rank(R′′(z)) =
rank(R′′) for all z ∈ C.

If KU = K1×p(idp,−H) is any IO structure then B := U⊥ is weakly controllable
(cf. Thm. 6.1,(i),) if and only if

U = E ′1×(p+m)
⋂
K1×p(idp,−H) =

{
(ξ, η) ∈ E ′1×(p+m); ξH + η = 0

}
. (115)

Conversely if H ∈ Kp×m is any matrix then

U := E ′1×(p+m)
⋂
K1×p(idp,−H) =

{
(ξ, η) ∈ E ′1×(p+m); ξH + η = 0

}
(116)

is closed. The gen. beh. B := U⊥ is the only weakly controllable IO gen. beh. with
transfer matrix H and is called the weakly controllable realization of H . If

HD = N where D ∈ E ′m×m
′
, N ∈ E ′p×m

′
, rank(D) = m then

U := ker
(
◦ (ND )

−1
)

= (◦ (ND ))
−1

(0) =
{

(ξ, η) ∈ E ′1×(p+m); ξN + ηD = 0
}

and B = U⊥ =
(46)

clE(Bc) where

Bc := (ND ) ◦ Em
′

=
{

( yu ) ∈ Ep+m; ∃x ∈ Em
′

: ( yu ) = (N◦xD◦x ) .
}

(117)
The standard representation of this type isH = ND−1 withm′ = m and det(D) 6= 0.
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Corollary 7.11. Assume a representation (117) ofH ∈ Kp×m such that rank
(
N(z)
D(z)

)
=

m for all z ∈ C. Then the weakly controllable realization B of H is an IO behavior
B = {( yu ) ∈ Ep+m; P ◦ y = Q ◦ u} with PH = Q and rank(P ) = p and, of course
(cf. Thm. 6.1,(v)), p = rank(P ) = rank(P (z),−Q(z)) for all z ∈ C.

Proof. From Result 7.9 and Cor. 7.10 we derive the existence of a matrix (P,−Q) ∈
E ′k×(p+m) and exact sequences

K1×k ◦(P,−Q)−→ K1×(p+m)
◦(ND )
−→ K1×m′

and PEm
′ (ND )◦
−→ PEp+m (P,−Q)◦−→ PEk.

Then

B = U⊥ = clE

(
(ND ) ◦ Em

′
)

=
(113)

{
( yu ) ∈ Ep+m; P ◦ y = Q ◦ u

}
is indeed a behavior. Moreover

(P,−Q) (ND ) = 0 =⇒ QD = PN = PHD =⇒
rank(D)=m

Q = PH =⇒

rank(P ) = rank(P,−Q) = p+m− rank (ND ) = p+m−m = p.

Theorem 7.12. Assume that B = {( yu ) ∈ Ep+m; P ◦ y = Q ◦ u} is the weakly con-
trollable realization of H ∈ Kp×m and a behavior, hence

PH = Q and rank(P ) = rank(P,−Q) = rank(P (z),−Q(z)) for all z ∈ C.

Then there is a matrix (ND ) ∈ E ′(p+m)×m′
such that

HD = N and ∀z ∈ C : m = rank(D) = rank (ND ) =
(
N(z)
D(z)

)
.

Hence the weakly controllable realization of H is a behavior if and only if a matrix
(ND ) with the properties of Cor. 7.11 exists.

Proof. Result 7.9 and Cor. 7.10 furnish a matrix (ND ) ∈ E ′(p+m)×m′
such that

K1×k ◦(P,−Q)−→ K1×(p+m)
◦(ND )
−→ K1×m′

is exact and

∀z ∈ C : rank (ND ) = rank
(
N(z)
D(z)

)
.

We conclude

PN = QD = PHD =⇒
rank(P )=p

N = HD and

rank(D) = rank (ND ) = p+m− rank(P,−Q) = m.

For the proof of the next theorem we consider n ∈ N and the nondegenerate bilinear
form

K1×n ×Kn → K, (ξ, x) 7→ ξx =

n∑
i=1

ξixi. (118)
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For subsets V ⊆ K1×n resp. X ⊆ Kn we define the polar spaces

V ◦ := {x ∈ Kn; V x = 0} , X◦ :=
{
ξ ∈ K1×n; ξX = 0

}
. (119)

If V and X are K-subspaces then V = V ◦◦ and X = X◦◦.
For the data from (115) we have

U◦ = (KU)◦ =
(
K1×p(idp,−H)

)◦
=
(
H
idm

)
Km,

KU = K1×p(idp,−H) =
((

H
idm

)
Km
)◦
.

(120)

Theorem 7.13. 1. If m = 1 or p = 1, in particular in the SISO case p = m = 1,
the unique weakly controllable realization U⊥ of a transfer matrix H ∈ Kp×m is a
behavior where U :=

{
(ξ, η) ∈ E ′1×(p+m); ξH + η = 0

}
.

Proof. We use the notations from (115).
1.(i) Assume m = 1, p ≥ 1, n := p + 1. Choose a nonzero common denominator D
of H and define

0 6= f = (f1, · · · , fn)> := (H1 )D = (HDD ) ∈ E ′n, hence U = E ′1×n
⋂

(fK)
◦
,

0 6= f0 :=
∏
{fi; 1 ≤ i ≤ n, fi 6= 0} ∈ E ′, V := VC(f0) ⊇ VC(fi) if fi 6= 0,

∀1 ≤ i ≤ n with fi 6= 0∀z ∈ V : ki(z) := mult(fi, z),

k(z) := min {ki(z); 1 ≤ i ≤ n, fi 6= 0} ≤ ki(z) if fi 6= 0.

In the sequel we consider i with 1 ≤ i ≤ n and fi 6= 0 only. From the multiplicities
we derive, for all z ∈ V , the representations

fi = (s− z)ki(z)fzi , (s− z)−k(z)fi = (s− z)ki(z)−k(z)fzi , fzi ∈ E ′, fzi (z) 6= 0.

The fi are contained in E ′ and hence in some Oa,p (cf. (18)). We infer

∀z ∈ V : fzi = (s− z)−ki(z)fi, (s− z)−k(z)fi = (s− z)ki(z)−k(z)fzi ∈ Oa,p.

We choose numbers a(z) > 0, z ∈ V, such that

∀i with 1 ≤ i ≤ n and fi 6= 0 :
∑
z∈V

a(z)‖(s− z)−k(z)fi‖a,p <∞ =⇒

gi :=
∑
z∈V

a(z)(s− z)−k(z)fi ∈ Oa,p ⊂ E ′ =⇒ ∀z0 ∈ V :

gi = a(z0)(s− z0)ki(z0)−k(z0)fz0i +
∑

z0 6=z∈V

a(z)(s− z)−k(z)fi

For each z0 ∈ V we may and do choose an index i such that

ki(z0) = k(z0) since k(z0) = min {ki(z0); 1 ≤ i ≤ n, fi 6= 0}

=⇒ gi = a(z0)fz0i +
∑

z0 6=z∈V

a(z)(s− z)−k(z)fi, fi 6= 0 =⇒

gi(z0) = a(z0)fz0i (z0) +
∑

z0 6=z∈V

a(z)(z0 − z)−k(z)fi(z0), a(z0)fz0i (z0) 6= 0.

(121)
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If ki(z0) = mult(fi, z0) = 0 then fi(z0) 6= 0. If ki(z0) > 0 then fi(z0) = 0 and the
last equation in (121) implies gi(z0) = a(z0)fz0i (z0) 6= 0. We conclude that for all
z0 ∈ V there is an index i such that fi(z0) 6= 0 or gi(z0) 6= 0. Define gi := 0 if fi = 0,
g := (g1, · · · , gn)> and R := (f, g) ∈ E ′n×2. For this matrix we have just shown that
for all z0 ∈ V either f(z0) 6= 0 or g(z0) 6= 0. The vector f = (HDD ) , D 6= 0, is
nonzero and hence f(z0) 6= 0 for all z0 6∈ V = VC(f0). We infer that

rank(R(z0)) ≥ 1 for all z0 ∈ C. (122)

(ii) Recall gi =
∑
z∈V a(z)(s− z)−k(z)fi. For all ξ ∈ U := E ′1×n

⋂
(fK)

◦ we get

ξf =

n∑
i=1

ξifi = 0 =⇒
n∑
i=1

ξigi =
∑
z∈V

a(z)(s− z)−k(z)
n∑
i=1

ξifi = 0 =⇒

ξg = 0 =⇒ ξR = 0 =⇒ (fK)◦ = KU ⊆ (RK2)◦ ⊆ (fK)◦ =⇒
(RK2)◦ = (fK)◦ =⇒ RK2 = fK = (H1 )K =⇒ rank(R) = rank(f) = 1 =⇒

(122)

∀z ∈ C : 1 = rank(R) = rank(R(z)) and U = E ′1×n
⋂

(RK2)◦.

With these data Cor. 7.11 implies that B = U⊥ is a behavior.
2. Assume p := 1, m ≥ 1 and n := 1 +m. Then KU = K(1,−H) 6= 0. Choose any
nonzero vector f = (f1, · · · , fn) ∈ U , hence KU = Kf . As in part 1. we construct

gi =

{∑
z∈V a(z)(s− z)−k(z)fi if fi 6= 0

0 if fi = 0
,

g := (g1, · · · , gn), R :=
(
f
g

)
∈ E ′2×(1+m) such that(

H
idm

)
Km = (K(1,−H))◦ = U◦ = (K1×2R)◦, KU = K(1,−H) = K1×2R

rank(R) = 1 and ∀z ∈ C : rank(R(z)) = rank(R) = 1.

From Result 7.9 and Cor. 7.10 we infer a matrix R′′ = (ND ) ∈ E ′(1+m)×`′′ such that

O1×2 ◦R−→ O1×(1+m)
◦(ND )
−→ O1×`′′ and K1×2 ◦R−→ K1×(1+m)

◦(ND )
−→ K1×`′′

are exact and ∀z ∈ C : rank
(
N(z)
D(z)

)
= rank (ND ) = 1 +m− rank(R) = m.

(123)
We conclude

K(1,−H) (ND ) = K1×2R (ND ) = 0 =⇒ N = HD, rank(D) = rank (ND ) = m.
(124)

Hence N = HD is a representation as in (117) and satisfies the condition of Cor. 7.11.
Therefore the weakly controllable realization of H is a behavior.

8 Concluding remarks
We discuss several questions that the reviewer raised in her/his report.

1. The usefulness of the Fourier-Laplace transform: In Section 3 the embedding
E ′ ⊂ O = O(C) is explained. Algebraic properties of O are used at several
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instances. The Paley-Wiener-Schwartz theorem (19) and Ehrenpreis’ fundamen-
tal complement (20) are essential analytic, not algebraic tools for the proof of
Thms. 5.8 and 7.13. The space E is not an O-module and therefore the Bé-
zout property of O does not help much for subbehaviors of E`. Our paper [5]
is devoted to AW -behaviors where both the signal space W and the ring A of
operators consist of multivariate analytic functions.

2. The size of E ′: The smaller and simpler Bézout domain O
⋂
C(s)[σ, σ−1] ⊂

E ′, σ = e−iτs, is the canonical ring of operators for delay-differential (DD)
equations with commensurate delays in Zτ [16],[23]. The present paper is a
contribution to more general convolution behaviors, for instance to those defined
by DD-equations with incommensurate delays in the lattice L = Zτ1 ⊕ · · · ⊕
Zτk, k > 1, with their associated ring of operators [17, Thm. 2.2)]

HL := O
⋂

C(s)[σ1, σ
−1
1 , · · · , σk, σ−1k ] ⊂

(89)
HR, σj := e−iτjs. (125)

In contrast to the case k = 1 [16], [23] the algebraic, topological and constructive
properties of HL are only little known. There is no analogue of the analytic
properties (19) and (20) of E ′ for HR and HL and therefore the study of E ′
instead of HL seems advantageous (cf. Cor. 5.11). Since every distribution in
f ∈ E ′ is the limit of finite linear combinations of point distributions δτ , τ ∈ R,
[31, (VI,3;16)] the convolution (f ◦w)(t) is a limit of finite sums

∑m
i=1 aiw(t+

τi) that have an obvious interpretation from the engineering point of view. A
good property of HR ⊇ HL is that all its nonzero elements are invertible in the
distributional sense (cf. remarks following (89)), and this was essentially used in
Cor. 7.6.

3. Computations and constructions: In contrast to the theory of finitely presented
modules over the Bézout domain O

⋂
C(s)[σ, σ−1] from above [16], [23] the

theory of f.g. E ′- or HL-modules is presently indeed unconstructive to a wide
extent, both in the present paper and its predecessors. This applies even to the
Bézout domain O(C) since the convergent power series are determined by in-
finitely many coefficients and cannot therefore be exactly represented in a com-
puter. Thm. 4.4 with Lemma 4.2 and Cor. 4.3 as preparations and Thms. 5.6 and
5.8 are as constructive as possible for the given data.

4. Coherence as in [28]: The coherence of the rings E ′, HL and HR is not known
and does probably not hold. Coherence signifies that the intersection of two
f.g. ideals is again f.g.. But f.g. ideals of E ′ are not closed in general (cf.
(22) and Cor. 5.9) and nothing is known about nonclosed ideals. In Schwartz’
seminal paper ideal of E ′ means closed ideal [30, p. 912]. The f.g. ideals of
O(Cn), n ≥ 1, are closed, but coherence of O(Cn), n > 1, is nevertheless not
known and probably not valid (cf. [5, Cor. 6.3]).

5. Algebraic Analysis, for instance [28]: If a signal module AW of analytic or
engineering interest is given this notion can refer to the theory of f.g. A-modules
M , called systems by Fliess, or to that of the solution modules or behaviors
B := solW (M) ∼=

Malgrange
HomA(M,W ). Unless certain injectivity properties

of AW can be derived as in the present paper the module theory (algebra) does
not help very much in analytic or engineering problems concerning B even if the
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ring A has good algebraic properties, for instance being noetherian or coherent
or even Bézout.

6. Fractional representation, coprime factorization, for instance [28]: In the present
paper these appear in Cor. 7.11 and Thm. 7.12 in the form PH = Q or
HD = N if the weakly controllable realization B(H) of a transfer matrix
H ∈ Kp×m, K := quot(E ′), is a behavior. The coprimeness condition is
rank(P (z),−Q(z)) = p = rank(P ), z ∈ C, resp. rank

(
N(z)
D(z)

)
= m =

rank(D), z ∈ C. The existence of (P,−Q), that of (ND ) and the behavior
property of the gen. beh. B(H) are equivalent, but it is open whether they al-
ways hold. Thm. 7.13 proves these properties for the cases that p or m are 1.
According to Cor. 7.6 they always hold if H ∈ quot(R) (cf. Cor. 5.10).
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