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ABSTRACT 

 

Behavioral choices made by the brain during stress depend on glucocorticoid and BDNF 

signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) 

neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation 

areas may compromise integration of signals. Glucocorticoid receptor phosphorylation upon BDNF 

signaling in neurons represents one mechanism underlying the integration of BDNF and 

glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. 

Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural 

plasticity in the mesocorticolimbic system. This provides a novel molecular framework for 

understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge 

receptive neuronal fields in temporal domains defined by behavioral experience, and in mood 

disorders. 
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INTRODUCTION 

 Stress coping is paramount for survival in most species including humans (1). The neuro-

endocrine stress response interacts with neuronal circuitry to select suitable behavioral strategies 

based on outcomes (2, 3). Processing of information in face of ongoing and future behavioral 

demands is crucial for maintaining health (4, 5). Therefore, it is essential that during stress the 

appropriate molecular mechanisms be engaged to promote vigilance, learning and adaptation (6, 7). 

What happens when this selection of actions goes awry? Cognitive distortions may result when 

integration of positive and negative events are devalued (8). Therefore, it is important to understand 

how the brain neural circuitry confronts the values of upcoming and previous actions (9). Growing 

evidence indicates that abnormal feedback sensitivity between various corticostriatal loops and the 

reward system could be associated with the occurrence of depressive episodes (8). 

In this mini-review, we briefly describe the contributions of the mesolimbic dopaminergic 

and corticolimbic glutamatergic systems to the stress response. We describe the molecular mediators, 

signaling pathways and neuroanatomic feature that foster the adaptive and maladaptive response to 

stress. We also apply these concepts to how individuals respond and discuss clinical implications. 

 

Cooperation between the mesolimbic and corticolimbic systems determines behavioral 

choices 

The mesocorticolimbic system plays important roles in emotional and cognitive functions of 

the human and rodent brains. Disturbances in this system are associated with drug abuses, 

depression and autism (10, 11). While the mesolimbic system is involved in reward processes, the 

corticolimbic system mediates attention and cognitive processes. Both systems are interconnected at 

the ventral tegmental area (VTA), neocortical areas (e.g. PFC, hippocampus) and subcortical limbic 

areas including the nucleus accumbens (Nac) and the basolateral amygdala (BLA) (Figure-1). The 
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Nac serves as the interface between the limbic and motor regions to bring about motivation and 

selection of behavioral actions based on incentive stimuli (3). Beyond this core of motivationally 

salient neuronal network, additional regions like the insula, the orbitofrontal cortex, the septum, the 

extended amygdala and the hypothalamus code for the differential valence of stimuli (e.g. appetitive 

or aversive) via circuit-specific neuromodulators (e.g. CRF, catecholamines, vasopressin, oxytocin) 

and uses this information to select actions based on outcome (12).  

The synchrony of mesolimbic and corticolimbic networks permits value-based learning (3). 

The mesocorticolimbic network uses a reward-prediction error system to calculate the costs versus 

benefits of future actions based on their consequences (13). The uncertainty associated with the 

novelty and unpredictability of a situation produces correlated activities of the anterior cingulate 

cortex (ACC) and the amygdala, which projects to (i) the locus coeruleus (LC) to control vigilance via 

the noradrenaline pathway, and to (ii) the hypothalamus to control the cost of actions through the 

hypothalamo-pituitary-adrenal (HPA) and glucocorticoid axis (2). The stress response has an 

adaptive function through glucocorticoids that is complementary to the reward-prediction error 

response of the mesocorticolimbic system as it facilitates vigilance, learning and adaptation (14). 

Noradrenaline increases neurotransmission of a “vigilant state” at cortical and amygdala synapses, 

which glucocorticoids can tune by modifying synaptic plasticity (e.g. LTP, LTD) to trigger 

adaptation. Glucocorticoids can also promote learning by facilitating new synapse formation and 

maintenance in face of behavioral demands (15-18). It is noteworthy that stress employs predictive 

coding through the interplay of mesolimbic and corticolimbic systems to reduce the uncertainty 

about selection of actions based on consequences.  

 

Brain region-specific effects of BDNF and glucocorticoids on the mesocorticolimbic system 
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Functional alteration within the circuits of the mesocorticolimbic system or their connectivity 

could account for changes in behavior. This is influenced by environmental factors, and interactions 

among areas of the brain during developmental domains as well as in the course of ageing. 

Glucocorticoids and neurotrophins are well-established factors that contribute to the establishment, 

maintenance and remodeling of neuronal connections, which can be altered by environmental factors 

with lasting consequences (19, 20). According to the stress hypothesis of depression, the stress-

induced glucocorticoid response conditions neuroplasticity mediated by the brain-derived 

neurotrophic factor (BDNF) (21). Excessive level of glucocorticoids or stress suppresses BDNF-

mediated neuroplasticity in the corticolimbic pathway, which processes emotional experiences, while 

it bolsters BDNF-mediated neuroplasticity in the mesolimbic system, which manages reward 

pathways (22, 23). The rationale for this hypothesis relies on epigenetic, transcriptomic and 

proteomic regulation of BDNF expression in rodent models and human tissues (24-26). The 

consensus view is that expression of BDNF and/or its receptor TrkB is diminished in the 

corticolimbic system (mostly prefrontal cortex and hippocampus) whereas BDNF is upregulated in 

the mesolimbic system (mostly nucleus accumbens, amygdala, VTA) long after cessation to stressor 

exposure in animal models and in postmortem human brains (27-31). A reduction of BDNF/TrkB 

signaling in the corticolimbic areas of the brain is associated with synaptic loss, decreased neuronal 

plasticity and regressing network connectivity, while an elevation of BDNF/TrkB signaling in the 

mesolimbic areas of the brain is associated with synaptic growth, increased neuronal plasticity and 

expanding network connectivity (32-37). TrkB agonists in corticolimbic areas and TrkB antagonists 

in the mesolimbic areas reversed the consequences of chronic stress and depressive-like behaviors 

(Figure-2) (28, 38). 

Typically, BDNF exerts positive effects on neural plasticity in cortical synapses and in striatal 

synapses (39, 40). In Nac synapses for instance, TrkB activated by VTA-derived BDNF, can sensitize 
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reward-seeking behavior and can facilitate social defeat stress (23, 41, 42). In other words, the 

BDNF/TrkB signaling can escalate behavioral sensitization to social stress and drug abuse by 

increasing the plasticity of VTA-Nac synapses. In fact, sensitization of Nac synapses is triggered by 

stress neuromodulators (e.g. CRF, glucocorticoids) that control secretion and signaling of VTA-

derived BDNF (43, 44).   

 
 
Bridging the gap between BDNF and glucocorticoid effects in the mesocorticolimbic 
system 
 

The difference between mesolimbic and corticolimbic systems seems difficult to explain if 

considering only the modulation of BDNF by glucocorticoids. Perhaps, cellular reactions to 

glucocorticoids are also altered by BDNF signaling such that differential responses to TrkB agonists 

and antagonists in the mesolimbic and corticolimbic systems could be mediated via a glucocorticoid-

dependent signaling route. As for the modulations of BDNF/TrkB, manipulating glucocorticoid 

receptors (GR) revealed contrasting results between the mesolimbic and corticolimbic pathways. On 

one hand, GR antagonists impeded stress-induced sensitization of the mesolimbic pathway but on 

the other hand, GR agonists prevented behavioral vulnerability to stress in corticolimbic areas (45-

47). This reflects decreased GR expression in prefrontal cortex and hippocampus, and increased GR 

expression in the amygdala upon stress (48-51). Epigenetic reprogramming sets the stage for changes 

in GR expression associated with significant risk of depression and suicide (52, 53). This is evident in 

early life trauma where GR expression changes appear to be stable and persist even after stress is 

alleviated. By contrast, alterations in GR expression in the adult brain upon stress are not stable after 

cessation of stress, making it unlikely to be responsible for chronic depression in the adult (54).  

What might be responsible for persistent changes in GR responses in the adult brain under 

chronic stress? It is speculated that alterations of GR activity, rather than its expression, can persist 

long after chronic stress in the adult brain. Consistently, GR activity is sensitized in the mesolimbic 
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areas of the adult brain while it is desensitized in the corticolimbic areas after stress (55, 56). A long-

lasting loss of GR responsiveness consistent with glucocorticoid resistance in the corticolimbic 

pathway was monitored in peripheral blood cells of patients with major depressive disorders (57). 

When stable overtime, the normalization of GR functions correlates with relief of depressive 

symptoms after antidepressant therapies (58). However, relapse is common, associated with a lack of 

restoration of stable glucocorticoid sensitivity and efficacy (55, 59). 

 

GR phosphorylation is influenced by BDNF signaling 

Given that activation of TrkB responds to antidepressant drugs and that it is required for 

antidepressant-induced behavioral effects	 (60), it is possible that BDNF/TrkB signaling could 

condition GR responses (20). Pairing of BDNF and glucocorticoid signaling result in GR 

phosphorylation in the N-terminal transactivation domain at residues Ser155 and Ser287 (Ser134 and 

S267 in humans) that serve as docking sites for co-factors of signaling (61). Changes of GR 

phosphorylation impact GR-mediated transcription and neuronal plasticity. If GR is not 

phosphorylated on these sites, this results in a distinct GR genomic response and alteration in 

neuronal plasticity (62). Thus, it appears that the GR phosphorylation “code” is modified by BDNF 

signaling (Figure-3). Such glucocorticoid-independent protein modification provides cell- and signal-

specific responses to GR signaling (63). These findings provide insight into the molecular basis of 

stress-induced neuroadaptations in the mesocorticolimbic circuitry and perhaps in other tissues. For 

instance, effects of BDNF signaling on GR are possible not only in brain but also in peripheral 

tissues given that BDNF is present in blood at high levels(64). 

 

Effect of BDNF and glucocorticoid signaling in health and disease 

Complementary actions of glucocorticoids and BDNF have important influence on behavior. 
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Both signaling pathways are required to produce actions based on consequences, to form new 

memories of contextual fear, and to cope with stress (31, 65-67). Given that glucocorticoids can 

readily access neurons in brain and BDNF is secreted in an activity-dependent fashion by neuronal 

networks responding to behavioral experience, it is likely that neuronal networks with ongoing 

BDNF signaling give rise to a unique GR response via changes in the GR phosphorylation “code” 

and alterations of the GR genomic response in a cell-type specific manner (63). This could explain 

differential modulation of GR activity in mesolimbic and corticolimbic networks. Deletion of GR 

phosphorylation sites in neurons belonging to corticolimbic brain areas interferes with the expression 

of GR-regulated target genes involved in cytoskeleton dynamics, mitochondrial functions, synapse 

formation and maintenance (62, 68, 69). What’s more, BDNF-dependent GR phosphorylation sites 

reside near a caspase-1 site, whose cleavage causes partial loss of GR transcriptional activity in animal 

models and a disease of glucocorticoid resistance in humans (70, 71). Therefore, BDNF represents a 

conditioning factor that directs glucocorticoid responses through GR phosphorylation in the body 

including the mesolimbic and corticolimbic pathways that may lay the foundation for vulnerability or 

resiliency to stress maladaptations (60, 72). This notion is consistent with the theory of general 

adaptation syndrome whereby a normally well-tolerated degree of stress can become pathogenic if 

the glucocorticoid response to stressors is inappropriate in face of conditioning signals (e.g. BDNF, 

genetic and environmental factors…) (73). Therefore, deregulation of BDNF expression could 

compromise GR-directed glucocorticoid responses with consequences on neuronal networks and 

behaviors. This could explain why some individuals are more vulnerable than others to diseases of 

adaptation (e.g. mood disorders including depression) despite similar stressful experiences (74, 75). 

With this in mind, it is interesting that humans and rodents harboring the BDNF-Met66 genetic 

variant that suppresses activity-dependent secretion of BDNF, present with impaired reactivity to 

stressors and predisposition to depression (76-78).  
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Individuals differ in their responses to stress and drug sensitization (79-81). Whereas 

resiliency promotes value-based decision-making, stress devalues salient emotional stimuli (13, 14). 

Stress coping styles may differ depending on neuroadaptations in brain regions that mediate actions 

that control emotional valence (corticolimbic system) and salience (mesolimbic system) (82). For 

example, activation of CRF neurons controls BDNF secretion at VTA-Nac synapses in the animals 

that are vulnerable to social defeat stress (43). In this paradigm, vulnerability to stress required TrkB 

at Nac synapses whereas VTA-derived dopamine was dispensable (23). Stress-induced HPA axis 

activation is often elevated in those that respond highly to stress, whereas strategies to blunt such 

HPA hyperactivation could promote resilience (59, 83). Stress response required glucocorticoid 

receptors to increase the AMPA/NMDA ratio at VTA synapses, resulting in enhanced activation of 

glutamatergic synapses measured 24 hours later (44). The correct combination of glucocorticoid and 

BDNF signaling could delineate resiliency from vulnerability, and be mediated through BDNF-

dependent GR phosphorylation. If true, then controlling stress exposure could provide vulnerable 

individuals with the coping skills to ameliorate a variety of phobia and post-traumatic memories (84).  

 

SUMMARY 

Proper maintenance of the balance between the corticolimbic and mesolimbic neural 

networks ensures behavioral choices that are commensurate with the costs and benefits of contextual 

demands (85). Integration of positive and negative events over time can induce mood fluctuations. 

For example, lack of motivation and inflexible maladaptive responses result when prefrontal BDNF-

TrkB signaling is compromised and GR-mediated responses are desensitized. On the contrary, 

sensitization to rewarding or aversive conditioning result when mesolimbic BDNF-TrkB signaling is 

upregulated and GR-mediated responses are bolstered. Desynchronization of BDNF-TrkB and 

glucocorticoid-GR signaling pathways, in multiple neural networks, through alteration in the GR 
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phosphorylation “code”, could explain how decisions are influenced and maladapted in stress-

induced mood disorders. More studies are needed to characterize the relative contribution of the 

distinct neural circuits controlling risk/reward-seeking actions, their connectivity, their 

neuromodulators (e.g. oxytocin, vasopressin, catecholamine), and their interaction with genetic and 

environmental factors. 
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FIGURES AND LEGENDS 
 
 
 

 
 

 

Figure-1 Schematic representation of the (A) mesolimbic and (B) corticolimbic networks. The core 

VTA-Nac-PFC dopaminergic pathway processes rewarding functions. The dopaminoceptive 

neocortical regions reciprocally project glutamatergic neurons to the Nac and VTA to control 

emotions and to the hypothalamus and amygdala to prepare for novelty via stress-controlled 

hypothalamic neurons. VTA: ventral tegmental area, SN: Substantia nigra, DRN: Dorsal raphe 

nucleus, LC: locus coeruleus, Hippo: hippocampus, Amyg: Amygdala, PVN: hypothalamic 

paraventricular nucleus, Nac: Nucleus accumbens, Acc: Anterior cingulate cortex, PFC: prefrontal 

cortex 

 



	 18	

 
Figure-2 Expression of BDNF, TrkB and GR in mesocorticolimbic areas of the stressed brain 

adapted from (30). (A) Levels of BDNF-TrkB may decrease in brain areas of the corticolimbic 

pathway but increase in areas of the mesolimbic pathway. TrkB agonists (7,8 DHF) injected in 

prefrontal cortex (PFC) and TrkB antagonists (ANA-12) injected in the nucleus accumbens (NAc) 

can ameliorate stress-induced depressive phenotype. (B) Levels of GR may decrease in brain areas of 

the corticolimbic pathway but increase in areas of the mesolimbic pathway. GR agonist 

(corticosterone) injected in PFC and GR antagonists (RU486) injected in NAc or amygdala (AMY) 

can ameliorate stress-induced depressive phenotype. GR expression is relatively stable in the adult 

stressed brain, notably in regions controlling the secretion of ACTH and glucocorticoids in 

bloodstream. The hypothalamic-pituitary-adrenal (HPA) axis consists of stress-controlled CRF and 

AVP hypothalamic neurons that integrate excitatory stimuli from brainstem and inhibitory signals 

from cortical/subcortical areas into appropriate ACTH and glucocorticoid responses by the pituitary 

and adrenal glands, respectively. HC: hippocampus, DRN: dorsal raphe nucleus, HYP: 

hypothalamus, VTA: Ventral tegmental area, ACTH: Adrenocorticotropic hormone, CRF: 

corticotropin-releasing factor, AVP: Arginine-vasopressin.  
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Figure -3 The GR phosphorylation code.  

Phosphorylation of the transactivation domain and hinge region (H) at multiple sites conserved 

interspecies specifies co-factor recruitment for target gene expression. Most sites are dependent on 

glucocorticoid-binding but others respond to BDNF-TrkB signaling. Figure adapted from (63, 86-

88). 

	

	

	

	

	
	
	
	
	
	


