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Abstract

We study implicit systems of linear time-varying (LTV) difference equations
with rational coefficients of arbitrary order and their solution spaces, called dis-
crete LTV-behaviors. The signals are sequences, i.e. functions from the discrete
time set of natural numbers into the complex numbers. The difference field of
rational functions with complex coefficients gives rise to a noncommutative skew-
polynomial algebra of difference operators that act on sequences via left shift. For
this paper it is decisive that the ring of operators is a principal ideal domain and
that nonzero rational functions have only finitely many poles and zeros and grow at
most polynomially. Due to the poles a new definition of behaviors is required. For
the latter we derive the important categorical duality between finitely generated
left modules over the ring of operators and behaviors. The duality theorem implies
the usual consequences for Willems’ elimination, the fundamental principle, in-
put/output decompositions and controllability. The generalization to autonomous
discrete LTV-behaviors of the standard definition of uniformly exponentially stable
(u.e.s.) state space systems is unsuitable since u.e.s. is not preserved by behavior
isomorphisms. We define exponentially stable (e.s.) discrete LTV-behaviors by a
new analytic condition on its trajectories. These e.s. behaviors are autonomous and
asymptotically stable. Our principal result states that e.s. behaviors form a Serre
category, i.e., are closed under isomorphisms, subbehaviors, factor behaviors and
extensions or, equivalently, that the series connection of two e.s. input/output be-
haviors is e.s. if and only the two blocks are. As corollaries we conclude various
stability and instability results for autonomous behaviors. There is presently no
algebraic characterization and test for e.s. of behaviors, but otherwise the results
are constructive.

AMS-classification: 93D20, 93C55, 93C05
Key-words: exponential stability, discrete behavior, time-varying, duality
∗SATIE, ENS Cachan/CNAM, 61 Avenue President Wilson, F-94230, Cachan, France. email:

henri.bourles@satie.ens-cachan.fr
†École Centrale de Nantes, B.P. 92101, 1, rue de la Noë, FR-44321 Nantes Cedex 3, France. email:

bogdan.marinescu@irccyn.ec-nantes.fr
‡Institut für Mathematik, Universität Innsbruck, Technikerstrasse 13, A-6020 Innsbruck, Austria. email:

ulrich.oberst@uibk.ac.at

1



1 INTRODUCTION 2

1 Introduction
Stability theory for linear time-varying (LTV) discrete systems has been mainly de-
veloped for the discrete time set N = {natural numbers} and Kalman’s state space
equations

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t), t ∈ N,
x(t) ∈ Cn, u(t) ∈ Cm, y(t) ∈ Cp with matrices A(t), B(t), C(t), D(t) ∈ C•×•

(1)
of suitable sizes. The complex field C is often replaced by the real field R. We write
Cn := Cn×1 resp. C1×n for the space of column- resp. row-vectors. The vectors x(t),
u(t) resp. y(t) are the state, input resp. output at the time instant t ∈ N. If an initial
time t0, an initial state x(t0) and an input (u(t))t≥t0 are chosen all x(t) and y(t) for
t ≥ t0 can be computed [25, (21) on p. 392] via

x(t) = Φ(t, t0)x(t0) +

t−1∑
i=t0

Φ(t, i+ 1)B(i)u(i), y(t) = C(t)x(t) +D(t)u(t),

with Φ(t, t0) = A(t− 1) · · ·A(t0).

(2)

For excellent surveys of the stability theory of equations (1) and its history we refer to
the books [25, Chs. 22-24, pp. 423-461] and [15, Ch. 3, pp. 193-368], cf. also [17].
In the present paper we treat higher order and implicit linear systems of difference
equations with rational coefficients

d∑
j=0

Rj(t)w(t+ j) = u(t), t ≥ n0, Rj ∈ C(t)p×`, w(t) ∈ C`, u(t) ∈ Cp, (3)

that may be homogeneous (u = 0) or inhomogeneous (u 6= 0). Here the entries of the
Rj belong to the field C(t) of rational functions in the indeterminate t and it is assumed
that no t ≥ n0 is a pole of any Rj so that Rj(t) ∈ Cp×` for all t ≥ n0. For all n ≥ n0
we identify Rj = (Rj(t))t≥n and therefore use the same letter for the indeterminate
and the time instants. For n ≥ n0 the interval n + N = [n,∞) := {t ∈ N; t ≥ n} is
the time-set with initial time n and the space of sequences

Cn+N = {a = (a(n), a(n+ 1), · · · ); ∀t ≥ n : a(t) ∈ C} (4)

is interpreted as the space of signals starting at time n. We identify

(Cp×`)n+N = (Cn+N)p×` 3 X = (Xij)i≤p,j≤` = (X(n), X(n+ 1), · · · ),
Xij ∈ Cn+N, X(t) ∈ Cp×`, Xij(t) = X(t)ij .

(5)

The homogeneous equations (3) give rise to the solution spaces or behaviors

∀n ≥ n0 : B(R,n) :=

w ∈ (Cn+N)`; ∀t ≥ n :

d∑
j=0

Rj(t)w(t+ j) = 0

 . (6)

Stability theory of these solution spaces concerns the behavior of the trajectories w(t)
for t→∞.
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Remark 1.1. We give some arguments for the suitability of F := C(t) as coefficient
field. The case of periodic coefficients is not discussed here since it can be reduced to
the LTI-theory.
(a) The following properties of F are decisive: (i) F is a field or, at least, a noetherian
domain. (ii) If a(t) belongs to F then so does a(t+ 1). (iii) For nonzero a ∈ F there is
n ≥ 0 such that no t ≥ n is a pole or zero of a. (iv) A rational function grows at most
polynomially.
(b) Rational functions have obvious advantages for numerical computations since they
are given by finitely many numbers. They appear as Padé approximants of more gen-
eral functions. They are often used in engineering models, cf. [2, (8.14), (8.15)], [27,
Appendix].
Assume that f(t) = tkg(t) ∈ C0[n0,∞), n0 > 0, k ∈ Z, is any continuous coef-
ficient function such that g(∞) := limt→∞ g(t) exists and define g1(t) := g(t−1) ∈
C0[0, n−10 ]. By the Stone-Weierstrass theorem there is a polynomial a1(t) that ap-
proximates g1 arbitrarily. Then the rational function a(t) := tka1(t−1) is a good
approximation for f on [n0,∞). Hence rational functions approximate a large class of
more general coefficient functions, but not all, for instance f(t) = 2 + sin(t). Such
approximations raise the problem of robustness, of course. Note moreover that for the
questions of stability the time instant n0 can be chosen as large as desired. So arbitrary
LTV-systems with continuous coefficient functions f(t) = tkg(t), k ∈ Z, and existing
g(∞) can be approximated for stability problems by the systems of this paper.
Linearization of a nonlinear system in the neighborhood of a nominal trajectory leads
to LTV-systems. Since this is only an approximation process the further approximation
of the coefficients by rational functions seems suitable.
In item 7. of Section 4 and more detailed in [4] we describe another larger coefficient
field with the properties (i)-(iv) [22, Ex. 1.2].
(c) For scalar state space systems x(t+ 1) = a(t)x(t) or, more generally, those of (1)
one may choose arbitrary a = (a(t))t≥n0 ∈ Cn0+N or A [25, p. 383]. It is surprising
that Ehrenpreis’ fundamental principle holds for arbitrary discrete, even multidimen-
sional behaviors with arbitrary varying coefficients [3, Thm. 2.1]. For the behavioral
stability theory such general coefficients are not suitable. We explain this for the con-
tinuous case where the effects are clearer. So consider differential equations for smooth
signals, the coefficient field of meromorphic coefficients [26], [16] and the differential
equation cos2(t)x′(t)−x(t) = 0 with its solution x(t) = c exp (tan(t)). The infinitely
many zeros (n + 1/2)π, n ∈ Z, of cos2(t) or poles of tan(t) are those time instants
where the system explodes. There is no reasonable asymptotic behavior of this system.
This suggests that the condition (iii) is essential for a reasonable stability theory. Due
to these singularities the quoted authors, see also [2, §5.4.2.2], omit the generally infi-
nite, discrete set of singularities from the time domain of the signals. This procedure,
however, does not solve the problem because a time domain with infinitely many gaps
is beyond engineering reality. Hence holomorphic or even continuous coefficients are
suitable for the stability theory of state space systems [25], [15], [14] , but not for that
of general behaviors.
(d) Coefficient rings of smooth functions are neither domains nor noetherian in general
and this is inherited by the associated rings of difference or differential operators. Al-
gebraic properties of these rings are not known, a behavioral duality theory cannot be
developed and there are no algebraic algorithms that are so important in the standard
LTI (linear time-invariant) systems theories.

In contrast to the LTI-case and in analogy to, for instance, [25, Defs. 22.1, 22.5]
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the whole family (B(R,n))n≥n0
of behaviors and not just B(R,n0) has to be investi-

gated where n0 depends on the equations. For the comparison of different systems of
equations (3) we introduce the equivalence relation of the behavior families from (6)
by

(B(R,n))n≥n0
≡ (B(R′, n))n≥n′0 :⇐⇒

∃n1 ≥ max(n0, n
′
0)∀n ≥ n1 : B(R,n) = B(R′, n).

(7)

The equivalence class is denoted by cl ((B(R,n))n≥n0
) (cl for class, not for closure)

and is called the behavior defined by (3), cf. Example 1.5.

Remark 1.2. To investigate cl ((B(R,n))n≥n0) for given equations (3) means to study
B(R,n) for n ≥ n1 ≥ n0 where n1 is a possibly large initial time. The transient
behavior of trajectories up to the time n1 is disregarded. This set-up is very suitable
for stability questions where the limits limt→∞ w(t) play a dominant part.

Principal Results 1.3. We prove a module-behavior duality for the new behaviors.
It implies the standard consequences for Willems’ elimination, the fundamental prin-
ciple, input/output decompositions and controllability. We characterize autonomous
behaviors and show that they are isomorphic to state space behaviors. Therefore the
examples in [25] are typical also for the autonomous LTV-behaviors of this paper. We
introduce a new notion of exponential stability (e.s.) of autonomous behaviors since
uniform exponential stability (u.e.s.) [25, Def. 22.5] is not preserved by behavior iso-
morphisms (cf. [25, Thm. 6.15] and Example 3.2) and therefore unsuitable for the
behavioral theory. We show that e.s. autonomous behaviors form a Serre subcategory
of the category of all behaviors. As corollaries we prove various stability and instability
results for autonomous behaviors.

Definition 1.4. A class of objects or a full subcategory S of an abelian category C is
called a Serre subcategory if it is closed under isomorphisms, subobjects, factor objects
and extensions.

We first introduce the operator algebra. The field C(t) is a difference field with its
natural automorphism α defined by α(h)(t) := h(t + 1) for h ∈ C(t). It gives rise to
the noncommutative skew-polynomial C-algebra A in an indeterminate q [19, §1.2]:

A := C(t)[q;α] = ⊕j∈NC(t)qj 3 f =
∑
j∈N

fjq
j , fj ∈ C(t),

with the multiplication (h1q
j1)(h2q

j2) = h1α
j1(h2)qj1+j2 for

h1, h2 ∈ C(t), αj1(h2)(t) = h2(t+ j1), qh(t) = h(t+ 1)q.

(8)

The qj , j ∈ N, are a C(t)-basis of A. By definition almost all (up to finitely many)
coefficients fj of f are zero. The algebra A is a left and right principal ideal domain
and its finitely generated (f.g.) modules are precisely known [19, Thm. 1.2.9, §5.7,
Cor. 5.7.19 ]. The category of left A-modules is denoted by AMod. The category
of f.g. left A-modules M with a given list of generators or, equivalently, a given
representation M = A1×`/U as factor module of a free module A1×` by a submodule
U and with the A-linear maps as morphisms is denoted by AModfg. Fliess [9], [10]
calls a module M with the additional structure M = A1×`/U a linear dynamic or
(discrete LTV-)system.
If the rows of R =

∑
j∈NRjq

j ∈ Ap×`, Rj ∈ C(t)p×`, generate U , i.e., U =
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A1×pR, and if no t ≥ n0 is a pole of any Rj we obtain the behaviors

∀n ≥ n0 : B(R,n) =

w ∈ (Cn+N)`; ∀t ≥ n :
∑
j∈N

Rj(t)w(t+ j) = 0

 and

B(U) := cl ((B(R,n)n≥n0
) .

(9)
Lemma 2.5 shows that B(U) depends on U only and not on the special choice of R.
We call B(U) the behavior defined by U or associated to A1×q/U , see Remark 1.2.

Example 1.5. Consider

U := Aq = A(tq) ⊂ A, hence B(Aq) = B(A(tq)), indeed

∀n ≥ 1 : B(q, n) = B(tq, n) =
{
w ∈ Cn+N; ∀k ≥ n+ 1 : w(k) = 0

}
, but

B(q, 0) =
{
w ∈ CN; ∀k ≥ 1 : w(k) = 0

}
(

B(tq, 0) =
{
w ∈ CN; ∀k ≥ 2 : w(k) = 0

}
.

(10)

Also B(A(t − 2)−1q) = B(Aq), but B((t − 2)−1q, n) is not defined for n ≤ 2. This
motivates the introduction of the equivalence relation (7).

In Cor. and Def. 2.7 we extend the construction of B(U) to a contravariant functor

A1×`/U 7→ B(U),(
ϕ : A1×`1/U1 → A1×`2/U2

)
7→ (B(ϕ) : B(U2)→ B(U1)) ,

Hom(B(U2),B(U1)) :=
{
B(ϕ); ϕ : A1×`1/U1 → A1×`2/U2

}
.

(11)

Notice that no Cn+N is canonically an A-module and that the behavior B(U) is not of
the form HomA(A1×`/U,W ) for a natural signal module AW .

Theorem 1.6. The functor (11) is a duality (contravariant equivalence). More pre-
cisely the following properties hold:

1. It transforms exact sequences of modules into exact sequences of behaviors.

2. For all A1×`1/U1,A
1×`2/U2 ∈A Modfg there is the C-linear isomorphism

HomA(A1×`1/U1,A
1×`2/U2) ∼= Hom(B(U2),B(U1)), ϕ 7→ B(ϕ). (12)

3. For all U1, U2 ⊆ A1×`:

U1 ⊆ U2 ⇐⇒ B(U2) ⊆ B(U1), especially U1 = U2 ⇐⇒ B(U2) = B(U1).
(13)

The injectivity of the map (12) replaces the cogenerator property of the signal mod-
ule C[q]CN in the standard discrete LTI-systems theory. Section 2 is devoted to the proof
of Thm. 1.6 in several steps. The last step is contained in Cor. 2.12 where the injectiv-
ity of (12) is proven. The surjectivity holds by definition in (11).
The following definition of e.s. of B(U) from (9) is justified by Lemma 3.7 and Ex-
ample 3.2 that show that e.s. is preserved by behavior isomorphisms, but u.e.s. is not.
A sequence (ϕ(n))n≥n0

∈ Cn0+N is called a sequence of at most polynomial growth
(p.g.s.) if

∃c ≥ 1∃m ∈ N∀n ≥ n0 : |ϕ(n)| ≤ cnm. (14)
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This p.g.s. is called positive, ϕ > 0, if ϕ(n) > 0 for all n ≥ n0. On all finite-
dimensional vector spaces C`, C1×` we use the maximum norm

‖v‖ := max {|vi|; i = 1, · · · , `} , v = (v1, · · · , v`) ∈ C1×`. (15)

Definition 1.7. The behavior B(U) from (9) is called exponentially stable if

∃n1 ≥ n0∃d ∈ N∃ρ with 0 < ρ < 1∃ p.g.s. ϕ ∈ Cn1+N with ϕ > 0

∀t ≥ n ≥ n1∀w ∈ B(R,n) : ‖w(t)‖ ≤ ϕ(n)ρt−n‖x(n)‖
where x(n) := (w(n), · · · , w(n+ d− 1)).

(16)

It is called uniformly exponentially stable if (ϕ(n))n≥n1 can be chosen constant.

An e.s. behavior B(U) is asymptotically stable in the sense that

∀n ≥ n1∀w ∈ B(R,n) : lim
t→∞

w(t) = 0. (17)

Nonuniform e.s. state space systems with a nondecreasing factor ϕ(n) are also defined
in [21, §3]. An e.s. behavior is always autonomous, but the trajectories w are not
uniquely determined by w(n) alone, but only by the initial vector x(n). Therefore
d ∈ N is required. E.s. like u.e.s. are analytic properties of the trajectories w of
the components B(R,n) of B(U) and are not defined by algebraic properties of the
module A1×`/U . At present there is no algebraic characterization of the modules
A1×`/U with e.s. B(U) nor is there such a characterization of Rugh’s u.e.s. state
space equations [25, Def. 22.5]. In the simplest case of state space equations x(t+1) =
Ax(t) with a constant matrix A ∈ Cn×n, however, e.s. of the corresponding behavior
means that A is asymptotically stable, i.e., that the spectrum spec(A), i.e., the set
of eigenvalues of A, belongs to the open unit disc D := {λ ∈ C; |λ| < 1}. More
generally, an autonomous LTI-behavior is asymptotically stable if and only if it is e.s.
in the sense of this paper.

Theorem 1.8. The exponentially stable behaviors form a Serre subcategory of the
category of all LTV-behaviors. This means that for an exact sequence of modules and
its dual exact behavior sequence

0→ A1×`1/U1
ϕ−→ A1×`2/U2

ψ−→ A1×`3/U3 → 0

0← B(U1)
B(ϕ)←− B(U2)

B(ψ)←− B(U3) ← 0
(18)

the behavior B(U2) is e.s. if and only B(U1) and B(U3) are e.s..

Corollary 1.9. The series interconnection of two input/output behaviors is e.s. if and
only if both building blocks are (cf. Section 4, item 5).

Thm. 1.8 and Cor. 1.9 are equivalent in the sense that the theorem also follows
easily from the corollary. Thm. 1.8 also holds for discrete LTI-behaviors where e.s.
behaviors are defined as autonomous behaviors whose characteristic variety (=set of
characteristic values) is contained in the open unit disc. The proof of the LTI-result is
algebraic and much simpler than that of Thm. 1.8.
Due to [7], for instance, most results of this paper are constructive. However, there
is presently no algorithm to check exponential stability in general. Continuous LTV-
systems have been treated more often and in more detail, see, for instance, the books
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[25] and [2] and the papers [12], [26], [14].
The Sections 2 resp. 3 are devoted to the proof of the main Theorems 1.6 resp. 1.8.
In Section 2.5 we moreover characterize autonomous LTV-behaviors. The Sections
3.5 and 3.6 are devoted to various stability and instability results for autonomous be-
haviors. In particular we also discuss the existence and properties of quasi-poles of
an autonomous behavior (cf. [2, §6.7.1]). In Section 4 we use the duality Thm. 1.6
to embed standard LTI-results into our LTV-frame-work and to derive LTV-analogues
of Willems’ elimination, the fundamental principle, input/output decompositions and
controllability. We refer to [2, Part 1, pp. 3-268] for algebraic background material.
Abbreviations: e.s.= exponentially stable, f.d.=finite-dimensional, f.g.=finitely gener-
ated, p.g.s.=sequence of at most polynomial growth, u.e.s.= uniformly e.s., w.l.o.g.=
without loss of generality, A•×•= the set of matrices with entries in A of all (suitable)
sizes,

2 LTV-systems

2.1 Complements of the basic data
We complete the general data of the Introduction.

Remark 2.1. The derivations of Section 2 hold for any base field instead of the com-
plex field C. The definition of e.s. needs analysis and therefore Section 3 can be carried
out over the fields R or C only. The signals w(t) are always functions of the real time
variable t, but in this paper the values of the signals may be complex. Since R ⊂ C the
complex theory contains the real one. Equations like eit = cos(t) + i sin(t) and the
complex eigenvalues of real matrices suggest to use complex coefficients and to use
A = C(t)[q;α] instead of R(t)[q;α], and this is done in this paper.

To write (3) as operator equation we also consider Cn+N as difference algebra. Its
multiplication, one-element and algebra endomorphism α : Cn+N → Cn+N are given
as

(ab)(t) := a(t)b(t), 1Cn+N := (
n
1, 1, · · · ), α(a)(t) := a(t+ 1), a, b ∈ CN, t ≥ n.

(19)
The endomorphism α is the standard forward shift. As in (8) the difference ring
(Cn+N, α) gives rise to the noncommutative skew-polynomial algebra [19, §1.2.3]

B(n) := Cn+N[q;α] = ⊕j∈NCn+Nqj 3 f =
∑
j∈N

fjq
j ,

(fiq
i)(gjq

j) = fiα
i(gj)q

i+j , fi, gj ∈ Cn+N, (αi(g))(t) = g(t+ i).

(20)

The C-algebra B(n) is neither a domain nor noetherian and, in contrast to A, little is
known about its algebraic properties and modules. There is the canonical action f ◦ w
of f =

∑
j fjq

j ∈ B(n) on w ∈ Cn+N, defined by

(f ◦ w)(t) :=
∑
j

fj(t)w(t+ j), (q ◦ w)(t) = w(t+ 1), f ∈ B(n), w ∈ Cn+N.

(21)
It makes Cn+N a B(n)-left module that is denoted by B(n)Cn+N. It is the most general
natural signal module for discrete LTV-systems theory. The action ◦ is extended to an
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action of a matrix R ∈ B(n)p×` on a vector w = (w1, · · · , w`)> ∈ (Cn+N)` by

R = (Rµ,ν)1≤µ≤p,1≤ν≤` =

d∑
j=0

Rjq
j ∈ B(n)p×`, Rµ,ν ∈ B(n), Rj ∈

(
Cn+N)p×` ,

R ◦ w :=

(∑̀
ν=1

Rµ,ν ◦ wν

)
µ=1,··· ,p

∈ (Cn+N)p,

∀t ≥ n : (R ◦ w)(t) =
∑
j

Rj(t)w(t+ j).

(22)
Note that there is no action of A on Cn+N since, for instance (t−n)−1◦w, w ∈ Cn+N,
is not defined.
Recall the poles and zeros of a nonzero rational function h ∈ C(t): Write h =
fg−1, f, g ∈ C[t], f, g 6= 0, with coprime f and g. A pole resp. a zero z ∈ C
of h is characterized by

f(z) 6= 0, g(z) = 0, h(z) :=∞ resp. f(z) = 0, g(z) 6= 0, h(z) = 0.

Then dom(h) = C \ {z ∈ C; h(z) =∞}
(23)

is the open domain of definition of h as function. For almost all n (up to finitely many)
the lattice n+ N is contained in dom(h) and we identify

h =
ident.

(h(t))t≥n ∈ Cn+N, n+ N ⊆ dom(h), since

∀n ∈ N∀h1, h2 ∈ C(t) with n+ N ⊆ dom(hi), i = 1, 2 :

(h1 = h2 ⇐⇒ (h1(t))t≥n = (h2(t))t≥n) .

(24)

For

R =
∑
j

Rjq
j ∈ Ap×`, Rj = (Rj,µ,ν)1≤µ≤p,1≤ν≤` ∈ C(t)p×`, define

dom(Rj) :=
⋂
µ,ν

dom(Rj,µ,ν), dom(R) :=
⋂
j

dom(Rj).
(25)

If n0 + N ⊆ dom(R) then

∀n ≥ n0 : Rj =
ident.

(Rj(t))t≥n ∈
(
Cn+N)p×` , R =

∑
j

Rjq
j ∈ B(n)p×` and

B(R,n) =
(6)

{
w ∈

(
Cn+N)` ; R ◦ w = 0

}
.

(26)
The last equation is the usual operator description of the behavior. The elements in
C\dom(Rj) resp. in C\dom(R) are called the poles of Rj resp. of R. The behaviors
B(R,n) are defined for all n ≥ n0 if and only if no t ≥ n0 is a pole of R. Since the
ring B(n) is noncommutative the behavior B(R,n) is a C-space only and not a Cn+N

or B(n)-module.

2.2 A directed system category
We formalize the equivalence relation from (7) in a more general situation with good
algebraic properties and introduce a new category B. The basic example for our ap-
proach is Example 2.2 below.
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Consider N as directed ordered set. A directed system over N of C-vector spaces is a
countable family

V = (Vi, gi)i∈N =
(
V0

g0−→ V1
g1−→ V2

g2−→ ....
)

(27)

of C-spaces Vi and C-linear maps gi. We identify a directed system (Vi, gi)i≥n with
the longer system

(Vi, gi)i≥n =
ident.

(Vi, gi)i≥0 :=

(
0→ · · · →

n−1
0 → Vn

gn−→ Vn+1 → · · ·
)
. (28)

A morphism from one such system to another is a family of C-linear maps

Φ = (Φi)i∈N : V = (Vi, gi)i∈N −→ V ′ = (V ′i , g
′
i)i∈N with

∀i ∈ N : Φi : Vi → V ′i , Φi+1gi = g′iΦi.
(29)

The set Hom(V, V ′) of all these morphisms is naturally a C-space. The composition
of morphisms is, of course, the componentwise one and with this the directed systems
form a category. It is abelian where kernels, cokernels etc. are formed componentwise.
We form the new category B as the quotient category of the direct system category
modulo the following equivalence relation ≡:

V = (Vi, gi)i∈N ≡ V ′ = (V ′i , g
′
i)i∈N :⇐⇒

∃n∀i ≥ n : Vi = V ′i , gi = g′i.
(30)

The equivalence class is denoted by cl(V ). These cl(V ) are the objects of B. With the
identification from (28) we obtain

cl ((Vi, gi)i≥0) = cl ((Vi, gi)i≥n) (31)

The study of cl ((Vi, gi)i≥0) means that of (Vi, gi)i≥n for possibly large n. For two
objects cl ((Vi, gi)i≥n0

) and cl
(
(V ′i , g

′
i)i≥n′0

)
we consider direct system morphisms

Φ := (Φi)i≥n1 : (Vi, gi)i≥n1 → (V ′i , g
′
i)i≥n1 ,

Ψ := (Ψi)i≥n2 : (Vi, gi)i≥n2 → (V ′i , g
′
i)i≥n2

(32)

where n1, n2 ≥ max(n0, n
′
0) and define the equivalence relation

Φ ≡ Ψ :⇐⇒ ∃n ≥ max(n1, n2)∀i ≥ n : Φi = Ψi. (33)

The equivalence class is denoted by cl(Φ). Then the set of morphisms from cl(V ) to
cl(V ′) is defined as

B(cl(V ), cl(V ′)) := Hom (cl(V ), cl(V ′)) :=

{cl(Φ); Φ = (Φi)i≥n : (Vi, gi)i≥n → (V ′i , g
′
i)i≥n} .

(34)

With the componentwise C-linear structure and composition we obtain the category B
of equivalence classes of directed systems. This is abelian too, kernels, cokernels and
images being also formed componentwise.
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Example 2.2. The signal spaces Cn+N, n ∈ N, give rise to the directed system(
C0+N → · · · → Cn+N projn−−−→ C(n+1)+N projn+1−−−−−→ · · ·

)
where

projn : Cn+N → Cn+1+N, w = (w(t))t≥n 7→ w|n+1+N := (w(t))t≥n+1,

andW := cl

(
C0+N → · · · → Cn+N projn−−−→ C(n+1)+N projn+1−−−−−→ · · ·

)
.

(35)

This directed system consists of C-algebras and C-algebra homomorphisms. Under the
assumptions of (9) we obtain the subsystems

B(R) := (B(R,n),projn)n≥n0 ⊆ ((Cn+N)`,projn)n≥n0 and

cl (B(R)) ⊆ W` = cl
(
((Cn+N)`,projn)n≥n0

)
.

(36)

Definition 2.3. The equivalence class cl(B(R)) from (36) is called the LTV-behavior
associated with the matrix R ∈ Ap×`.

2.3 The functor Modfg
A → B, A1×q/U 7→ B(U)

We are going to show that in (9) the behavior B(U) ⊆ W` is well-defined and that
the assignment A1×`/U 7→ B(U) from the objects of AModfg to those of B can be
canonically extended to a functor AModfg → B.
Assume the data from (9), ie.,

R =
∑
j

Rjq
j ∈ Ap×`, U = A1×pR, M = A1×`/U, n0 + N ⊆ dom(R),

∀n ≥ n0 : B(R,n) :=

w ∈ (Cn+N)`; ∀t ≥ n :
∑
j

Rj(t)w(t+ j) = 0

 .

(37)

The behaviorsB(R,n) require the knowledge ofU , the knowledge ofM alone does not
determine the representation M = A1×q/U . The standard basis δ = (δ1, · · · , δ`)> ∈
(A1×`)` gives rise to the column

w = (w1, · · · ,w`)
> ∈M `, wi := δi + U, (38)

of generators of M . Conversely, the epimorphism

ϕw : A1×` →M, ξ = ξδ 7→ ξw =
∑̀
i=1

ξiwi, with ϕw(δi) = wi, ker(ϕw) = U,

(39)
shows that the system of generators w of M determines both the dimension of A1×`

and its submodule U . Therefore the category AModfg of f.g. A-modules is defined
as indicated in the Introduction: The objects of the category are pairs (M,w) of f.g.
modules M with a given list w of generators or a given representation M = A1×`/U .
Notice that in M = A1×`/U a special system of generators of U , i.e., a representation
U = A1×pR or finite presentation (=exact sequence)

A1×p ◦R−→ A1×` can−→M → 0, R ∈ Ap×`, (40)
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is not assumed or part of the structure. A morphism ϕ : M = A1×`/U → M ′ =
A1×`′/U ′ is just an A-linear map without additional structure, i.e.,

Hom(A1×`/U,A1×`′/U ′) := HomA(M,M ′), (41)

and the composition of morphisms is also just that in AMod. If w and w′ are two lists
of generators of a f.g. M of possibly different lengths then (M,w) and (M,w′) are
different objects in AModfg and idM : (M,w) → (M,w′) is an isomorphism, but
not the identity. Exactness in AModfg is defined as that in AMod. A kernel of a map
ϕ : (M,w) → (M ′,w′) is (ker(ϕ : M →M ′),k) where k is any generating system
of ker(ϕ). The category AModfg is abelian and the kernel of a morphism is unique
up to isomorphism as in any abstract abelian category.

Example 2.4. This example explains the structural necessity of w or U already in the
LTI-theory.

M := A = A1 = Aw+ + Aw−, w+ = 1 + q, w− = 1− q.
U1 := ker(A→ A, 1 7→ 1) = 0,

U2 := ker(A1×2 → A, (ξ+, ξ−) 7→ ξ+w+ + ξ−w−) = A(1− q,−1− q).
(42)

Then B(U1) ∼= B(U2), but B(U1) 6= B(U2) where

W (n) = B(1, n) ∼= B((1− q,−1− q), n)

=
{

(w1
w2

) ∈W (n)2; w1(t)− w1(t+ 1)− w2(t)− w2(t+ 1) = 0
}
,

w ↔ (w1
w2

) , w(t) = w1(t) + w1(t+ 1) + w2(t)− w2(t+ 1).
(43)

Lemma 2.5. Assume a submodule U ⊆ A1×`, a matrix R ∈ Ap×` with U = A1×pR
and the data from (37). Then the object

B(U) : =
Def. (30)

cl ((B(R,n),projn)n≥n0) ∈ B (44)

depends on U only and not on the special choice of R, and hence (9) is justified.
Moreover U1 ⊆ U2 implies B(U2) ⊆ B(U1).

Proof. Assume that U1 = A1×p1R1 ⊆ U2 = A1×p2R2 ⊆ A1×`. Then there is a
matrix X ∈ Ap1×p2 such that R1 = XR2. Choose n1 ≥ n0 such that n1 + N ⊆
dom(R1) ∩ dom(R2) ∩ dom(X). Then

∀n ≥ n1 : R1 = XR2 ∈ B(n)p1×`

and B(R2, n) :=
{
w ∈

(
Cn+N)` ; R2 ◦ w = 0

}
⊆ B(R1, n)

=⇒ cl ((B(R2, n),projn)n≥n0
) = cl ((B(R2, n),projn)n≥n1

)

⊆ cl ((B(R1, n),projn)n≥n1
) .

(45)

If U1 = U2 the reverse inclusion follows likewise and implies the independence of
B(U) in (44) of the choice of R. Eq. (45) implies B(U2) ⊆ B(U1) if U1 ⊆ U2.

Next we extend the assignment A1×`/U 7→ B(U) to a contravariant functor. Let
Mi = A1×`i/Ui, i = 1, 2, be two f.g. modules and ϕ : M1 → M2 an A-linear map.
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Since A1×`1 is free ϕ can be embedded into various commutative diagrams with exact
rows

0 U1
// U1 A1×`1⊆ // A1×`1 M1

can1 // M1 0//

0 U2
// U2 A1×`2⊆ // A1×`2 M2

can2 // M2 0//

U1

U2

(◦P )|U1
��

A1×`1

A1×`2

◦P
��

M1

M2

ϕ=(◦P )ind
��

where P ∈ A`1×`2 , U1P ⊆ U2, ϕ(ξ + U1) = ξP + U2.

(46)

The following corollary is a standard result from module theory and follows easily
from the diagram in (46). It was used by Cluzeau and Quadrat in systems theory [8].

Corollary 2.6. (i) The map P 7→ (◦P )ind induces the isomorphism{
P ∈ A`1×`2 ; U1P ⊆ U2

}
/
{
P ∈ A`1×`2 ; A1×`1P ⊆ U2

} ∼= HomA(M1,M2).
(47)

(ii) The map (◦P )ind : A1×`1/U1 → A1×`2/U2 is an isomorphism if and only if it is
bijective or (◦P )−1ind = (◦Q)ind : A1×`2/U2 → A1×`1/U1 exists. The necessary and
sufficient conditions for Q ∈ A`2×`1 to satisfy (◦Q)ind = (◦P )−1ind are

U2Q ⊆ U1, A
1×`1(PQ− id`1) ⊆ U1, A

1×`2(QP − id`2) ⊆ U2. (48)

So the additional structure M = A1×`/U implies canonical matrix represen-
tations of the morphisms in AModfg, a fact that is well-known from f.d. vector
spaces with given bases. For the data from (46) and (47) we additionally assume that
Ui = A1×piRi. The condition A1×p1R1P = U1P ⊆ U2 = A1×p2R2 implies the
existence of X ∈ Ap1×p2 with R1P = XR2. Again we choose n1 sufficiently large
such that R1, R2, P,X ∈ B(n)•×• for n ≥ n1. For w ∈ B(R2, n) this implies

R1 ◦ (P ◦ w) = XR2 ◦ w = X ◦ (R2 ◦ w) = X ◦ 0 = 0 and hence

P◦ : B(R2, n) =
{
w ∈

(
Cn+N)`1 ; R2 ◦ w = 0

}
→ B(R1, n), w 7→ P ◦ w.

(49)

Corollary 2.7. For an A-linear map

ϕ = (◦P )ind : A1×`1/U1 → A1×`2/U2 define

P◦ := B(ϕ) := B ((◦P )ind) := cl ((P◦ : B(R2, n))→ B(R1, n))n≥n1
) :

B(U2) = cl ((B(R2, n),projn)n≥n1
)→ B(U1).

(50)

Then B(ϕ) is well-defined, i.e., independent of the choice of P , and the assignment

AModfg → B, A1×`/U 7→ B(U), ϕ = (◦P )ind 7→ B(ϕ) = P◦, (51)

is a contravariant additive functor.

Proof. Equation (49) implies P◦ : B(U2) → B(U1). If also ϕ = (◦P1)ind equation
(47) implies A1×`1(P1 − P ) ⊆ U2 = A1×`2R2 or, equivalently, the existence of
a matrix X such that P1 − P = XR2. For sufficiently large n2 ≥ n1 this implies
P1, P,X ∈ B(n)`1×`2 for n ≥ n2 and hence

∀w ∈ B(R2, n) : P1 ◦ w = P ◦ w +X ◦ (R2 ◦ w) = P ◦ w =⇒ P◦ = P1 ◦ . (52)

ThusB(ϕ) is well-defined. The functorial property and the additivity of this assignment
follow directly from the explicit construction of B(U) and B(ϕ), cf. the definition of
the category B in Section 2.2.
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Remark 2.8. If AW is any signal module and M = A1×`/U, U = A1×pR, then

BW (U) := U⊥ :=
{
w ∈W `; R ◦ w = 0

} ∼=
Malgrange

HomA(M,W ). (53)

This shows that B(U) is the analogue of HomA(M,W ) in standard behavioral systems
theory, but B(U) is not of this form for a natural W . Recall that AW is injective if and
only if HomA(−,W ) is exact and a cogenerator if and only if

HomA(M1,M2)→ HomC (HomA(M2,W ),HomA(M1,W )) , ϕ 7→ Hom(ϕ,W ),
(54)

is a monomorphism for all M1,M2 ∈A Mod.

2.4 The exactness of A1×`/U 7→ B(U)

In this section we prove the exactness of the functor A1×`/U 7→ B(U). This is the
analogue of the injectivity of the signal modules in the standard LTI-theory.
Consider f.g. modules Mi := A1×`i/Ui ∈A Modfg, i = 1, 2, 3, and a sequence of
A-linear maps

M1
ϕ=(◦P )ind−−−−−−−→M2

ψ=(◦Q)ind−−−−−−−→M3, U1P ⊆ U2, U2Q ⊆ U3. (55)

Application of the functor A1×`/U 7→ B(U) furnishes the sequence of behaviors

B(U1)
B(ϕ)=P◦←−−−−−− B(U2)

B(ψ)=Q◦←−−−−−− B(U3). (56)

First we prove that P◦ : B(U2) → B(U1) is an epimorphism if ϕ = (◦P )ind is
injective. The simplest case is that `1 = `2 = 1, U1 = U2 = 0, 0 6= P = Pdq

d + · · ·+
P0 ∈ A and Pd 6= 0. If n0 is chosen such that no t ≥ n0 is a pole of any Pi or a zero
of Pd then

P◦ : Cn+N = B(0, n)→ Cn+N = B(0, n), w 7→ P ◦ w = u, n ≥ n0,
with (P ◦ w)(t) = Pd(t)w(t+ d) + · · ·+ P0(t)w(t) = u(t),

(57)

is surjective since the last equation can be solved inductively. Therefore

P◦ :W = B(0) = cl((Cn+N)n≥n0
)→W (58)

is an epimorphism. In the general case let w = (w1, · · · ,w`1)> ∈ M `1
1 be the gener-

ating system of M1. Then there is v = (v1, · · · ,v`)> ∈M `
2 such that

M2 =

`1∑
i=1

Aϕ(wi) +
∑̀
j=1

Avj =⇒M2 = A1×`′2/U ′2

where `′2 = `1 + `, U ′2 = ker
(
A1×(`1+`) →M2, (ξ, η) 7→ ϕ(ξw) + ηv

)
.

(59)

We obtain a commutative diagram

A1×`1 A1×(`1+`)
◦(id`1

,0)
// A1×(`1+`) A1×`2◦Q //

M1 = A1×`1/U1 M2 = A1×(`1+`)/U ′2
ϕ // M2 = A1×(`1+`)/U ′2 M2 = A1×`2/U2

idM2 //

A1×`1

M1 = A1×`1/U1

can1

��

A1×(`1+`)

M2 = A1×(`1+`)/U ′2

can′2
��

A1×`2

M2 = A1×`2/U2

can2

��
(60)
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where Q is a suitable matrix that induces the identity isomorphism, i.e., (◦Q)ind =
idM2

, and therefore also the isomorphism Q◦ : B(U2) ∼= B(U ′2). It therefore suffices
to prove that (id`1 , 0)◦ : B(U ′2) → B(U1) is an epimorphism, i.e., surjective for large
n. By induction on ` we assume ` = 1 wlog.

Lemma 2.9. If
(◦P )ind : A1×`1/U1 → A1×(`1+1)/U2 (61)

is injective then P◦ : B(U2)→ B(U1) is an epimorphism.

Proof. By the preceding reduction steps we may assume that a special injective linear
map

(◦(id`1 , 0))ind : A1×`1/U1 → A1×(`1+1)/U2 (62)

is given. We have to show that

(id`1 , 0)◦ = proj : B(U2)→ B(U1), w = (w1, · · · , w`1 , w`1+1)> 7→ (w1, · · · , w`1)>,
(63)

is an epimorphism. Let

U2 = Ap2×(`1+1)R2, R2 = (R′2, R
′′
2 ) ∈ Ap2×(`1+1). (64)

Wlog we assume R′′2 6= 0. Then a := A1×p2R′′2 is a nonzero left ideal of A and cyclic
of the form

a = Af, 0 6= f = fdq
d + · · ·+ f0 ∈ A, fd 6= 0, hence R′′2 = Y2f, A

1×p2Y2 = A.

The relation module

K :=
{
ξ ∈ A1×p2 ; ξR′′2 = 0

}
= {ξ ∈ A; ξY2 = 0} ⊆ A1×p2

is free of dimension p2 − 1. Let the rows of X1 ∈ A(p2−1)×p2 be a basis of K. We
obtain the exact sequence of free modules

0→ A1×(p2−1) ◦X1−→ A1×p2 ◦Y2−→ A→ 0. (65)

In particular, X1 is a universal left annihilator ofR′′2 or Y2. Standard arguments furnish
a retraction Y1 ∈ Ap2×(p2−1) of X1 with X1Y1 = idp2−1 and a section X2 ∈ A1×p2

of Y2 with X2Y2 = 1 such that

0← A1×(p2−1) ◦Y1←− A1×p2 ◦X2←− A← 0 is exact too and

E1 := Y1X1 = E2
1 , E2 := Y2X2 = E2

2 , E1 + E2 = Y1X1 + Y2X2 = idp2 .
(66)

A simple computation yields

U1 = (◦(id`1 , 0))
−1

(U2) = A1×(p2−1)R1 with R1 := X1R
′
2 ∈ A(p2−1)×`1

and R′2 = idp2 R
′
2 = Y1X1R

′
2 + Y2X2R

′
2 = Y1R1 + Y2X2R

′
2.

(67)

Choose n0 such that none of the constructed matrices has a pole t ≥ n0 and that
fd(t) 6= 0 for t ≥ n0. Then

B(U2) = cl ((B(R2, n))n≥n0
) , B(U1) = cl ((B(R1, n))n≥n0

) ,

(id`1 , 0) : B(U2)→ B(U1), ∀n ≥ n0 : (id`1 , 0) : B(R2, n)→ B(R1, n).
(68)
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It now suffices to show the surjectivity of the maps in the last row: Let

v = (v1, · · · , v`1)> ∈ B(R1, n) =⇒ R1 ◦ v = X1R
′
2 ◦ v = 0 =⇒

(67)

R′2 ◦ v = Y1R1 ◦ v + Y2X2R
′
2 ◦ v = Y2X2R

′
2 ◦ v = Y2 ◦ (X2R

′
2 ◦ v).

(69)

According to (57) there is an u ∈ Cn+N with f ◦ u = X2R
′
2 ◦ v. We infer

R′2 ◦ v = R′2 ◦ (v1, · · · , v`1)> = Y2 ◦ f ◦ u = Y2f ◦ u = R′′2 ◦ u
=⇒ R2 ◦ (v1, · · · , v`1 ,−u)> = (R′2, R

′′
2 ) ◦ (v1, · · · , v`1 ,−u)> = R′2 ◦ v −R′′2 ◦ u = 0

=⇒ (v1, · · · , v`1 ,−u)> ∈ B(R2, n).
(70)

As required we have thus shown the surjectivity of

(id`1 , 0)◦ : B(R2, n)→ B(R1, n), (v1, · · · , v`1 ,−u)> 7→ v. (71)

Theorem 2.10. The functor

AModfg → B, M = A1×`/U 7→ B(U),

is exact, i.e., (56) is exact if (55) is exact.

Proof. The exactness of (55) implies

U ′3 := (◦Q)−1(U3) = A1×`1P + U2

=⇒ A1×`1/U1
(◦P )ind−−−−−→ A1×`2/U2

(◦ id`2
)ind−−−−−−→ A1×`2/U ′3 → 0

is exact and ψ factorizes as

ψ = (◦Q)ind : A1×`2/U2

(◦ id`2
)ind−−−−−−→ A1×`2/U ′3

(◦Q)ind,2−−−−−−→ A1×`3/U3

=⇒ Q◦ : B(U3)
Q◦−→ B(U ′3) ⊆ B(U2).

But
A1×`2/U ′3

(◦Q)ind,2−−−−−−→ A1×`3/U3 is injective
=⇒

Lemma 2.9
Q◦ : B(U3)→ B(U ′3) is an epimorphism

=⇒ im (Q◦ : B(U3)→ B(U2)) = B(U ′3).

Hence it remains to show that B(U ′3) = ker (P◦ : B(U2)→ B(U1)). Let

U2 = A1×p2R2 =⇒ U ′3 = A1×`1P + A1×p2R2 = A1×(`1+p2)
(
P
R2

)
.

As usual choose n0 such that none of the constructed matrices has a pole t ≥ n0. Then

B(U2) = cl ((B(R2, n))n≥n0
) , B(U ′3) = cl

(
(B(
(
P
R2

)
, n))n≥n0

)
∀n ≥ n0 : B(R2, n) =

{
w ∈ (Cn+N)`2 ; R2 ◦ w = 0

}
,

∀n ≥ n0 : B(
(
P
R2

)
, n) =

{
w ∈ (Cn+N)`2 ; R2 ◦ w = 0, P ◦ w = 0

}
=

= ker
(
P◦ : B(R2, n)→ (Cn+N)`1

)
=⇒ B(U ′3) = cl

(
B(
(
P
R2

)
, n)
)

= ker (P◦ : B(U2)→ B(U1)) .
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2.5 Autonomous behaviors
We prove the analogue of the cogenerator property of the standard signal modules for
the behaviors of this paper and simultaneously characterize autonomous behaviors.
A finitely generated A-module M1 = A1×`1/U1 = A1×`1/A1×p1R1 is isomorphic
to a direct sum of cyclic modules [19, Cor. 5.7.19]. Hence there is an isomorphism

M1 = A1×`1/U1
∼= A/Af1 × · · · ×A/Afr ×A1×(`2−r) = A1×`2/U2 =: M2

where r ≥ 0, fi ∈ A, degq(fi) > 0, U2 = A1×`2R2,

R2 = diag(f1, · · · , fr, 0, · · · , 0) ∈ A`2×`2 .
(72)

A special matrix R2 is called the Jacobson/Smith/Teichmüller/Nakayama-form of R1

and is computed with the help of euclidean division that is applicable in A and makes
it a euclidean ring. If R1 ∈ Q(t)[q;α]p1×`1 ⊂ Ap1×`1 = C(t)[q;α]p1×`1 then R2

and thus the fi can be computed with the the Jacobson package of [7]. The functor
A1×`/U 7→ B(U) is applied to the first line of (72) and implies the isomorphism

B(U1) ∼= B(U2) = B(Af1)× · · · × B(Afr)×W`2−r

whereW = B(0) = cl
(
· · ·Cn+N projn−−−→ Cn+1+N → · · ·

)
.

(73)

The systems B(Afj) are particularly simple: Consider, more generally, any

g = gdq
d + · · ·+ g0 ∈ A, degq(g) = d, i.e., gd 6= 0

=⇒ C(t)1×d ∼=
C(t)

A/Ag, (a0, · · · , ad−1) 7→
d−1∑
i=0

aiq
i + Ag, ai ∈ C(t),

=⇒ d = dimC(t)(A/Ag) <∞.

(74)

The preceding isomorphism follows via euclidean division. Choose n0 such that no
t ≥ n0 is a pole of any gi or a zero of gd. For all n ≥ n0 we obtain the isomorphisms

B(g, n) =
{
w ∈ Cn+N; ∀t ≥ n : gd(t)w(t+ d) + · · ·+ g0(t)w(t) = 0

} ∼= Cd

w 7→ (w(0), · · · , w(d− 1))>.
(75)

We conclude
∀n ≥ n0 : dimC(B(g, n)) = d and

(B(Ag) = cl ((B(g, n))n≥n0
) = 0 ⇐⇒ d = 0) .

(76)

Theorem 2.11. If M1 = A1×`1/U1 is nonzero then so is B(U1).

Proof. In (73)W is nonzero and so are the behaviors B(Afj) of C-dimension
degq(fj) > 0. Hence B(U1) is zero if and only if `2 = 0. Equation (72) implies
likewise that M1 = 0 if and only if `2 = 0.

Corollary 2.12. For Mi = A1×`i/Ui, i = 1, 2, the C-linear map

HomA(M1,M2)→ B(B(U2),B(U1)), ϕ = (◦P )ind 7→ B(ϕ) = P◦, (77)

is injective, and therefore

HomA(M1,M2) ∼= Hom(B(U2),B(U1)) := {B(ϕ); ϕ : M1 →M2} . (78)
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Therefore the exact functor AModfg → B, A1×`/U 7→ B(U), induces a duality
between AModfg and the subcategory {LTV-behaviors} of B whose objects are the
behaviors and whose morphisms are the behavior morphisms B(ϕ). The proof of Thm.
1.6 is thus complete.

Proof. Let ϕ : M1 = A1×`1/U1 → M2 = A1×`2/U2 and B(ϕ) = 0. The linear map
ϕ can be factorized as

M1
ϕ1−→M3 = A1×`3/U3

ϕ2−→M2, ϕ = ϕ2ϕ1,

where ϕ1 is an epimorphism and ϕ2 a monomorphism. This factorization is obtained
by the corresponding one in AMod with M3 := ϕ(M1) and by the choice of a list w3

of generators of M3 that induces the representation M3 = A1×`3/U3. This factoriza-
tion implies 0 = B(ϕ) = B(ϕ1)B(ϕ2) with an epimorphism B(ϕ2) and a monomor-
phism B(ϕ1) since A1×`/U 7→ B(U) is exact. We infer B(U3) = 0, hence M3 = 0
by Thm. 2.11 and ϕ = 0.

The torsion submodule tor(M) of M is the set of all elements x ∈ M that are
annihilated by some nonzero g ∈ A ( gx = 0). The isomorphism (72) then implies the
isomorphisms

tor(M1) ∼=
A

tor(M2) = ⊕rj=1A/Afj
∼=
C(t)

C(t)1×d, d :=

r∑
j=1

degq(fj), and

M1/ tor(M1) ∼=
A
M2/ tor(M2) ∼=

A
A`2−r.

(79)

The module M1 is called torsion (adjective) or a torsion module if M1 = tor(M1) and
torsionfree if tor(M1) = 0. In the latter case M1

∼= A`2−r is free.
Since A is a noetherian domain it has the quotient skew-field [19, Thm. 2.1.15]

K := quot(A) :=
{
a−1b; a, b ∈ A, a 6= 0

}
=
{
ba−1; a, b ∈ A, a 6= 0

}
⊃ A.

(80)
The rank of a matrix R ∈ Kk×` is defined by

rank(R) = dim
(
K(K1×kR)

)
= dim

(
(RK`)K

)
(81)

where the row space resp. column space of R are a left resp. a right K-space. For
R ∈ Ak×`, U := A1×kR and M := A1×`/U there is also the quotient module

K⊗A M =
ident.

{
a−1x; 0 6= a ∈ A, x ∈M

}
=

ident.
K1×`/KU,

x = ξ + U, ξ ∈ A1×` ⊂ K1×`, a−1x = a−1 ⊗ x = a−1ξ + KU.
(82)

The canonical map can : M → K ⊗A M, x 7→ 1 ⊗ x, has the kernel tor(M). The
rank of M is defined by

rank(M) := dimK(K⊗A M), hence
rank(R) = dim(AU) = dim(KKU) and rank(R) + rank(M) = `.

(83)

Lemma 2.13. For the data of (72) and (73) the following properties are equiva-
lent for the module M1 = A1×`1/U1, U1 = A1×p1R1, and behavior B(U1) =
cl ((B(R1, n))n≥n0

):
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(i) rank(M1) = 0 or rank(R1) = `1.

(ii) M1 is a torsion module.

(iii) d := dimC(t)(M1) <∞.

(iv) There are n0, d ∈ N such that ∀n ≥ n0 : dimC(B(R1, n)) = d.

Proof. (i) ⇐⇒ (ii): obvious. (ii) ⇐⇒ (iii): (79) with d =
∑r
j=1 degq(fj).

(iii) ⇐⇒ (iv): For sufficiently large n0 and n ≥ n0 we have

B(R1, n) ∼= B(R2, n) = B(f1, n)× · · · B(fr, n)× B(0, n)q2−r,

dimC (B(f1, n)× · · · B(fr, n)) =
(76)

r∑
j=1

degq(fj) = d, but dimC(B(0, n)) =∞.

(84)

Definition 2.14. If the conditions of Lemma 2.13 are satisfied the behavior B(U1) is
called autonomous.

Definition 2.15. Consider a f.g. moduleM = A1×`/U withU = A1×pR,R ∈ Ap×`,
n0 + N ⊆ dom(R) and the associated behaviors

∀n ≥ n0 : B(R,n) :=

w ∈ (Cn+N)` ; ∀t ≥ n :

k∑
j=0

Rj(t)w(t+ j) = 0

 ,

B(U) = cl ((B(R,n))n≥n0
) .

(85)

The behavior B(U) is called trajectory-autonomous (t-autonomous) of memory size d
if there are n1 ≥ n0 and d ∈ N such that

∀n ≥ n1 : B(R,n)→ Cdq, w 7→ (w(n), · · · , w(n+ d− 1)), is injective, (86)

but not necessarily bijective. This means that for sufficiently large n all trajectories
w ∈ B(R,n) with initial time n are uniquely determined by the initial data x(n) :=
(w(n), · · · , w(n+ d− 1)). The number d is obviously not unique.

Corollary 2.16. The behaviors B(Ag) from (74) resp. B(Af1)× · · · × B(Afr) from
(73) are obviously t-autonomous of memory sizes

degq(g) resp. max
{

degq(fj); j = 1, · · · , r
}
. (87)

Lemma 2.17. Trajectory-autonomy is preserved by isomorphisms.

Proof. Consider two isomorphic f.g. modules and their associated isomorphic behav-
iors (cf. Cor. 2.6):

Mi := A1×`i/Ui, Ui = A1×piRi, Ri ∈ Api×`i ,

ϕ = (◦P )ind : M1
∼= M2, B(ϕ) : B(U2) ∼= B(U1).

(88)
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Let P =
∑k
i=0 Pjq

j . Assume that B(U1) is t-autonomous with memory size d1 and
define d2 := d1 + k. There is an n1 such that

∀n ≥ n1 : P◦ : B(R2, n) ∼= B(R1, n), w2 7→ w1 := P ◦ w2,

and ∀t ≥ n ≥ n1 : w1(t) =

k∑
j=0

Pj(t)w2(t+ j), especially

∀i = 0, · · · , d1 − 1 : w1(n+ i) =

k∑
j=0

Pj(n+ i)w2(n+ i+ j).

(89)

If 0 ≤ i ≤ d1 − 1 and 0 ≤ j ≤ k then n ≤ n+ i+ j ≤ n+ d1 − 1 + k = n+ d2 − 1.
If w2(n) = · · · = w2(n+ d2 − 1) = 0 equation (89) implies w1(n) = · · · = w1(n+
d1− 1). Since B(U1) has memory size d1 this implies w1 = 0 and hence w2 = 0 since
P◦ in (89)is bijective. We conclude that B(U2) has memory size d2.

Theorem 2.18. A behavior B(U1) is t-autonomous if and only if it is autonomous.

Proof. This follows directly from the isomorphism (73) and the preceding lemma since
B(Af1) × · · · × B(Afr) is t-autonomous according to Cor. 2.16, but W = B(0) is
obviously not.

3 Exponentially stable (e.s.) behaviors
The main goal of Section 3 is the proof of Thm. 1.8.

3.1 Exponential stability for state space behaviors
We first recall the notion of uniform exponential stability for state space systems. We
endow all C`, ` ≥ 0, and matrix spaces C`×` with the maximum norm

∀v = (v1, · · · , v`)> ∈ C` : ‖v‖ := max {|vi|; 1 ≤ i ≤ `} ,
∀A ∈ C`×` : ‖A‖ := max

{
‖Av‖; v ∈ C`, ‖v‖ = 1

}
,

hence ∀v ∈ C` : ‖Av‖ ≤ ‖A‖‖v‖.
(90)

Definition 3.1. (cf. [25, Def. 22.5], (2)) A state space system

w(t+ 1) = A(t)w(t), A ∈
(
Cn0+N)`×` , or

∀t ≥ n ≥ n0 : w(t) = Φ(t, n)w(n), Φ(t, n) := A(t− 1) · · ·A(n),
(91)

is called uniformly exponentially stable (u.e.s.) if

∃c ≥ 1∃ρ ∈ R with 0 < ρ < 1∀t ≥ n ≥ n0∀w ∈ B(id` q −A,n) :

‖w(t)‖ ≤ cρt−n‖w(n)‖ or, equivalently, ‖Φ(t, n)‖ ≤ cρt−n.
(92)

Notice that Rugh [25] admits arbitrary A ∈
(
Cn0+N)`×` (mostly n0 = 0), hence

id` q − A ∈ B(n0)`×` (cf. (20)). The behavioral theory of this paper cannot be
extended from the field C(t) to the nonnoetherian ring Cn0+N with many zero-divisors.
The following example shows that u.e.s. is not preserved by behavior isomorphisms
and is therefore unsuitable for the behavioral LTV-theory of this paper.
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Example 3.2. Let

` := 2, A :=
( ρ1 0

0 ρ2

)
, 0 < ρ1 < ρ2 < 1, R := q id2−A, n ≥ 0,

B1(n) := B1(R,n) :=
{
w = (w1

w2
) ∈

(
Cn+N)2 ;w(t+ 1) = Aw(t)

}
= Cρt−n1 ⊕ Cρt−n2

X(t) := ( 1 t
0 1 ) ∈ Gl2(C[t]) ⊂ Gl2(A), B(t) := X(t+ 1)AX(t)−1

v(t) := X(t)w(t), B2 := X ◦ B1,
B2(n) := X ◦ B1(n) = {v(t) = X(t)w(t); w(t+ 1) = Aw(t)} =

=
{
v ∈

(
Cn+N)2 ; v(t+ 1) = B(t)v(t)

}
.

(93)
Notice that both B1 and B2 are state space behaviors as in [25], B1 is an LTI-behavior
with an asymptotically stable matrix and B2 is an LTV-behavior. Obviously

X◦ : B1(n) ∼= B2(n), w 7→ X ◦ w = Xw,

is an isomorphism of state space behaviors. But

X(t)−1 =
(
1 −t
0 1

)
=⇒ B(t) =

(
1 t+1
0 1

) ( ρ1 0
0 ρ2

) (
1 −t
0 1

)
=
(
ρ1 ρ2+(ρ2−ρ1)t
0 ρ2

)
=⇒ ∀t ≥ n ≥ 1∀v ∈ B2(n) : v1(t+ 1) = ρ1v1(t) + ρ2v2(t) + (ρ2 − ρ1)tv2(t)

=⇒ ∀n ≥ 1∀v ∈ B2(n) : v1(n+ 1) = ρ1v1(n) + ρ2v2(n) + (ρ2 − ρ1)nv2(n).
(94)

For any n ≥ 1 let vn := (vn1 , v
n
2 )> ∈ B2(n) be the unique trajectory with

vn1 (n) := vn2 (n) := 1 and hence ‖vn(n)‖ = max(|vn1 (n)|, |vn2 (n)|) = 1

=⇒ vn1 (n+ 1) = ρ1 + ρ2 + (ρ2 − ρ1)n =⇒ (ρ2 − ρ1)n ≤ ρ1 + ρ2 + |vn1 (n+ 1)|.
(95)

Assume that B2 is u.e.s. Then there are c ≥ 1 and ρ, 0 < ρ < 1, with

∀t ≥ n ≥ 1 : |vn1 (t)| ≤ ‖vn(t)‖ ≤ cρt−n‖vn(n)‖ = cρt−n

=⇒ |vn1 (n+ 1)| ≤ cρ =⇒
(96)
∀n ≥ 1 : (ρ2 − ρ1)n ≤ ρ1 + ρ2 + cρ. (96)

This is a contradiction and thus B2 is not u.e.s, but, of course, e.s.. A nontrivial com-
putation shows that for all ρ3 with ρ2 < ρ3 < 1 there is a c3 ≥ 1 such that

∀t ≥ n ≥ 1 : ‖ΦB(t, n)‖ = ‖B(t− 1) · · ·B(n)‖ ≤ ϕ(n)ρt−n3 with ϕ(n) := c3n.
(97)

The initial condition x(n) = (w(n), · · · , w(n + d − 1)) = 0 (cf. the definition)
and (16) imply w = 0. So an e.s. behavior is autonomous. For p ∈ C[t] and h ∈ C(t)
with n0 +N ⊆ dom(h) the sequences (p(n))n≥0 ∈ CN and (h(n))n≥n0

are obviously
p.g.s.. This implies that for any matrix A ∈ C(t)p×` and n0 + N ⊆ dom(A) also
the norm sequence (‖A(n)‖)n≥n0 is a p.g.s.. The sum and product of p.g.s. are again
such.

Corollary 3.3. Consider a matrix A(t) ∈ C(t)`×` that has no poles t ≥ n0, R :=
q idq −A ∈ A`×` and for all n ≥ n0 the associated state space behaviors

B(R,n) :=
{
w ∈

(
Cn+N

)`
; ∀t ≥ n : w(t+ 1) = A(t)w(t)

}
∼= C`, w 7→ w(n).
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Then B = cl ((B(R,n))n≥n0
) is e.s. if and only if there are n1 ≥ n0, a p.g.s. ϕ2 > 0

in Rn1+N and ρ2 with 0 < ρ2 < 1 such that

∀t ≥ n ≥ n1∀w ∈ B(R,n) : ‖w(t)‖ ≤ ρt−nϕ2(n)‖w(n)‖ or

‖Φ(t, n)‖ ≤ ϕ2(n)ρt−n, Φ(t, n) := A(t− 1) · · ·A(n).
(98)

The e.s. here differs from u.e.s. in Def. 3.1 by the additional p.g. factor ϕ2(n)
instead of a constant.

Proof. It has only to be shown that (98) is necessary. With x(n) := (w(n), · · · , w(n+
d− 1)) and ‖x(n)‖ = max {‖w(n+ i)‖; 0 ≤ i ≤ d− 1} equation (16) furnishes

∀t ≥ n ≥ n1 ≥ n0∀w ∈ B(R,n) : ‖w(t)‖ ≤ ρt−nϕ1(n)‖x(n)‖.

The norm sequence (‖A(n)‖)n≥n1
is a p.g.s. and so are

‖Φ(n+ i, n)‖ ≤ ‖A(n+ i− 1)‖ · · · ‖A(n)‖ and
ϕ(n) := max {‖Φ(n+ i, n)‖; 0 ≤ i ≤ d− 1} .

But

w(n+ i) = Φ(n+ i, n)w(n)

=⇒ ‖w(n+ i)‖ ≤ ‖Φ(n+ i, n)‖‖w(n)‖ ≤ ϕ(n)‖w(n)‖ =⇒ ‖x(n)‖ ≤ ϕ(n)‖w(n)‖
=⇒ ∀t ≥ n ≥ n1 : ‖w(t)‖ ≤ ρt−nϕ1(n)‖x(n)‖ ≤ ρt−nϕ1(n)ϕ(n)‖w(n)‖
= ρt−nϕ2(n)‖w(n)‖ with the p.g.s. ϕ2(n) := ϕ1(n)ϕ(n).

Corollary 3.4. If in the preceding corollary the matrixA is constant, i.e., A ∈ C`×` ⊂
C(t)`×`, thenw(t+1) = Aw(t) is e.s. if and only if the spectrum spec(A) is contained
in the open unit disc D := {z ∈ C; |z| < 1}.

Proof. It is well-known that spec(A) ⊂ D implies (98) with a constant ϕ2. Let,
conversely, (98) be satisfied and assume that λ is an eigenvalue of A with nonzero
eigenvector w(n). Then

w(t) = At−nw(n) = λt−nw(n) and |λ|t−n‖w(n)‖ = ‖w(t)‖ ≤ ϕ(n)ρt−n‖w(n)‖
with 0 < ρ < 1 =⇒ lim

t→∞
λt = 0 =⇒ |λ| < 1.

We apply Cor. 3.3 to any f := fdq
d + · · · + f0 ∈ A, degq(f) = d, and n0 ∈ N

such that no t ≥ n0 is a pole of any fi or a zero of fd. We first construct the usual
isomorphic state space system. Define

A :=

( 0 1 0 0 ··· 0 0
0 0 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ···
0 0 0 0 ··· 0 1

−f−1
d f0 −f−1

d f1 ··· ··· ··· ··· −f−1
d fd−1

)
∈ C(t)d×d, R := q idd−A ∈ Ad×d.

(99)
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With qd := (1, q, · · · , qd−1)> and δ0,d := (
0
1, 0, · · · ,

d−1
0 ) these data imply the stan-

dard A-linear isomorphism

(◦δ0,d)ind : A/Af
∼=←→ A1×d/A1×dR : (◦qd)ind,

η + Af → ηδ0,d + A1×dR = (
0
η, 0, · · · ,

d−1
0 ) + A1×dR

ξqd + Af =

d−1∑
i=0

ξiq
i + Af ← ξ + A1×d(q idd−A).

(100)

For n ≥ n0 this module isomorphism gives rise to the behavior isomorphism

B(f, n) =
{
w ∈ Cn+N; ∀t ≥ n : fd(t)w(t+ d) + · · ·+ f0(t)w(t) = 0

} ∼=
B(q idd−A,n) =

{
x ∈

(
Cn+N)d ; ∀t ≥ n : x(t+ 1) = A(t)x(t)

}
∼= Cd,

w(t) = x0(t)←→ x(t) = (x0(t), · · · , xd−1(t))> = (w(t), · · · , w(t+ d− 1))>

←→ x(n) = (w(n), · · · , w(n+ d− 1))>.
(101)

The preceding isomorphisms and Cor. 3.3 imply

Corollary 3.5. For f := fdq
d + · · · + f0, fd 6= 0, the behavior B(Af) is e.s. if and

only if there are n1, a p.g.s. ϕ with ϕ(n) > 0 and ρ (0 < ρ < 1) such that

∀t ≥ n ≥ n1∀w ∈ B(f, n) : |w(t)| ≤ ϕ(n)ρt−n max {|w(n+ i)|; 0 ≤ i ≤ d− 1} .
(102)

The isomorphisms (100) and (101) can be generalized in the following fashion.
Consider an arbitrary torsion module

M = A1×`/A1×pR ∼=
r⊕
j=1

A/Afj , 0 6= fj ∈ A = C(t)[q;α], dj := degq(fj) > 0,

(103)
and let Aj ∈ C(t)dj×dj be derived from fj like A from f in (99). We define R1 :=
diag(f1, · · · , fr) ∈ Ar×r, d :=

∑r
j=1 dj , A := diag(A1, · · · , Ar) ∈ C(t)d×d and

R2 = q idd−A and obtain the isomorphisms

M = A1×`/Ap×qR ∼= A1×r/A1×rR1
∼= A1×d/A1×dR2 (104)

where the second isomorphism in (104) is explicitly given by

(η1, · · · , ηr) + A1×rR1 → (η1δ0,d1 , · · · , ηrδ0,dr ) + A1×dR2,
(ξ1qd1 , · · · , ξrqdr ) + A1×rR1 ← (ξ1, · · · , ξr) + A1×dR2.

(105)

Theorem 3.6. For the torsion module M from (103) and the derived data from (104)
there are matrices P ∈ A`×d, Q ∈ Ad×` that induce an isomorphism (◦P )ind and its
inverse (◦Q)ind as follows:

(◦P )ind : M = A1×`/A1×pR
∼=←→ A1×d/A1×d(q idd−A) : (◦Q)ind

ω + A1×pR 7−→ ωP + A1×d(q idd−A)
ξQ+ A1×pR ←− [ ξ + A1×d(q idd−A).

(106)
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For sufficiently large n0 and n ≥ n0 these isomorphisms induce behavior isomor-
phisms

Q◦ : B(R,n) :=
{
w ∈

(
Cn+N)` ; R ◦ w = 0

} ∼=←→

B(q idd−A,n) =
{
x ∈

(
Cn+N)d ; x(t+ 1) = A(t)x(t)

}
: P◦,

w = P ◦ x←→ x = Q ◦ w, and hence

Q◦ : B(U) := cl ((B(R,n))n≥n0
)
∼=←→

B
(
A1×d(q idd−A)

)
:= cl ((B(q idd−A,n))n≥n0

) : P ◦ .

(107)

Moreover there are the C-linear isomorphisms

B(q idd−A,n) ∼= Cd, x 7→ x(n), x(t) := Φ(t, n)x(n), where

∀t ≥ n : Φ(t, n) := A(t− 1) · · ·A(n), Φ(n, n) = idd .
(108)

The isomorphism (108) means that for a given v ∈ Cd there is a unique trajectory x
with initial vector x(n) = v and x(t) = Φ(t, n)x(n). The behaviors B(q idd−A,n)
are d-dimensional over C.

The preceding theorem shows that autonomous behaviors are isomorphic to state
space behaviors that are the main subject of [25, Ch. 20-22].

3.2 Preservation of e.s. under behavior isomorphisms
Lemma 3.7. Exponential stability is preserved by isomorphisms, i.e., if
A1×`1/U1

∼= A1×`2/U2 and if B(U1) is e.s. then so is B(U2) (∼= B(U1)).

Proof. Let Ui = A1×piRi, i = 1, 2, and consider an isomorphism and its inverse

(◦P1)ind : A1×`1/U1

∼=←→ A1×`2/U2 : (◦P2)ind. (109)

Let Pi =
∑di
j=0 Pij(t)q

j , i = 1, 2. Then there is an n0 such that for all t ≥ n ≥ n0

P1◦ : B(R2, n)
∼=←→ B(R1, n) : (P1◦)−1 = P2◦

w2(t) =
∑d2
j=0 P2j(t)w1(t+ j) ←→ w1(t) =

∑d1
j=0 P1j(t)w2(t+ j).

(110)

Assume that B(U1) is e.s. and that for a p.g.s. ϕ1 > 0 and ρ1, 0 < ρ1 < 1,

∀t ≥ n ≥ n0∀w1 ∈ B(R1, n) : ‖w1(t)‖ ≤ ρt−n1 ϕ1(n)‖x1(n)‖
where x1(t) = (w1(t), · · · , w1(t+ d− 1)).

(111)

For w2 ∈ B(R2, n) define x2(t) := (w(t), · · · , w(t+ d+ d1 − 1)). Now let

w2 ∈ B(R2, n), w1 := P1 ◦ w2 =⇒ w2 = P2 ◦ w1,

hence w1(t) =

d1∑
j=0

P1j(t)w2(t+ j), w2(t) =

d2∑
i=0

P2i(t)w1(t+ i).
(112)
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Since the Pij are rational they are p.g. and therefore there are mi ∈ N and ci ≥ 1 such
that ‖Pij(t)‖ ≤ citmi for i = 1, 2, and 0 ≤ j ≤ di, hence

‖w2(t)‖ ≤
d2∑
i=0

‖P2i(t)‖‖w1(t+ i)‖ ≤ (d2 + 1)c2t
m2 max {‖w1(t+ i)‖; 0 ≤ i ≤ d2} .

Moreover ‖w1(t+ i)‖ ≤ ρt+i−n1 ϕ1(n)‖x1(n)‖ ≤ ρt−n1 ϕ1(n)‖x1(n)‖
=⇒ ‖w2(t)‖ ≤ (d2 + 1)c2t

m2ρt−n1 ϕ1(n)‖x1(n)‖.
(113)

Likewise

‖x1(n)‖ = max {‖w1(n+ i)‖; 0 ≤ i ≤ d− 1} and
‖w1(n+ i)‖ ≤ (d1 + 1)c1(n+ i)m1 max {‖w2(n+ i+ j)‖; 0 ≤ j ≤ d1}

=⇒ ‖x1(n)‖ ≤ (d1 + 1)c1(n+ d− 1)m1‖x2(n)‖
(114)

Inserting (114) into (113) furnishes

‖w2(t)‖ ≤
(113)

(d2 + 1)c2t
m2ρt−n1 ϕ1(n)‖x1(n)‖

≤ (d2 + 1)c2t
m2ρt−n1 ϕ1(n)(d1 + 1)c1(n+ d− 1)m1‖x2(n)‖

=
if t>n

c3(t− n)m2ρt−n1 (t/(t− n))
m2 (n+ d− 1)m1ϕ1(n)‖x2(n)‖

(115)

with c3 := (d1 + 1)(d2 + 1)c1c2 ≥ 1. We choose ρ2 with ρ1 < ρ2 < 1 and c4 ≥ 1
such that tm2ρt1 ≤ c4ρt2. Moreover t/(t− n) = 1 + n/(t− n) ≤ 1 + n for t > n and
hence

∀t > n ≥ n0 : ‖w2(t)‖ ≤ ρt−n2 ϕ2(n)‖x2(n)‖
where ϕ2(n) := c3c4(1 + n)m2(n+ d− 1)m1ϕ1(n) > 0

(116)

is also p.g.. We choose ϕ1(n) ≥ 1. This implies ϕ2(n) ≥ 1 and thus (116) also for
t = n and the e.s. of B(U2).

Thm. 3.6 and Lemma 3.7 imply that in connection with exponential stability of a
behavior one may assume that it is a state space behavior. It is an open question which
e.s. state space behaviors are isomorphic to u.e.s. ones.

3.3 The standard form of short exact sequences
We derive standard forms of short exact sequences (117) under isomorphism that es-
sentially simplify the proof of Thm. 1.8.
Consider the exact sequence

0→M1
ϕ−→M2

ψ−→M3 → 0 (117)

of f.g. A-modules. After the choice of presentations Mi = A1×`i/Ui the exact se-
quence (117) induces an exact behavior sequence

0← B1
B(ϕ)←− B2

B(ψ)←− B3 ← 0 (118)

Let

Mi = A1×`i/Ui, Ui = A1×piRi, Ri ∈ Api×`i , i = 1, 3,

cani : A1×`i →Mi, ξ 7→ ξ + Ui, wij := δj + Ui,wi := (wi1, · · · ,wi`i)
> ∈M `i

i ,
(119)
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be arbitrarily chosen such presentations where, as usual, the δj are the standard basis
vectors. Choose an inverse image v ∈ M `3

2 of w3 under ψ, ψ(v) = w3. Then w2 :=( v
ϕ(w1)

)
∈M `3+`1

2 is a generating system of M2 with its associated presentation, i.e.,

U2 := ker
(

can2 : A1×(`3+`1) →M2, (ξ, η) 7→ ξv + ηϕ(w1)
)
,

M2 =
ident.

A1×(`3+`1)/U2.
(120)

Remark 3.8. The following Lemma 3.9 is a special case of [6, Prop. V.2.2]. It was
rediscovered and applied to systems theory by Quadrat and Robertz in [24, Thm. 7,
§5] and [23, Thm. 7, §4]. The proof given here is more direct.

Lemma 3.9. For the data of (119) and (120) there is a matrix R ∈ Ap3×`1 such that

U2 = A1×(p3+p1)R2, R2 :=
(
R3 R
0 R1

)
∈ A(p3+p1)×(`3+`1). (121)

Proof. The choice of w2 induces a commutative diagram with exact rows and columns

0 U1
// U1 U2

// U2 U3
// U3 0//

0 A1×`1// A1×`1 A1×(`3+`1)
◦(0,id`1

)
// A1×(`3+`1) A1×`3

◦
(
id`3
0

)
// A1×`3 0//

0 M1
// M1 M2

ϕ // M2 M3
ψ // M3 0//

U1

A1×`1

⊆
��

U2

A1×(`3+`1)

⊆
��

U3

A1×`3

⊆
��

A1×`1

M1

can1

��

A1×(`3+`1)

M2

can2

��

A1×`3

M3

can3

��

(122)

The exactness of the first row is a consequence of the snake lemma [6, L. III.3.2-3].
By definition the rows (R3)i−, i = 1, · · · , p3, belong to U3. Since U2 → U3 is

surjective there are rows Ri− ∈ A1×`1 such that

((R3)i−, Ri−) ∈ U2 ⊆ A1×(`3+`1), i.e., (R3)i−v +Ri−ϕ(w1) = 0. (123)

LetR ∈ Ap3×`1 be the matrix with rowsRi− andR2 :=
(
R3 R
0 R1

)
∈ A(p3+p1)×(`3+`1).

Then

R2w2 =
(
R3 R
0 R1

) ( v
ϕ(w1)

)
=
(
R3v+Rϕ(w1)
ϕ(R1w1))

)
= ( 0

0 ) = 0

=⇒ R3v +Rϕ(w1) = 0, A1×(p3+p1)R2 ⊆ U2.
(124)

Let, conversely,

(ξ, η) ∈ U2 ⊆ A1×(`3+`1) =⇒ ξv + ηϕ(w1) = 0

=⇒ ξw3 =
ψ(v)=w3, ψϕ=0

ψ (ξv + ηϕ(w1)) = 0 =⇒ ξ ∈ U3 = A1×p3R3

=⇒ ∃ζ1 with ξ = ζ1R3 =⇒ ζ1R3v + ϕ(ηw1) = 0.

(125)

With the last equation of (124) this implies

ϕ ((η − ζ1R)w1) = 0 =⇒
ϕ injective

(η − ζ1R)w1 = 0

=⇒ η − ζ1R ∈ U1 = A1×p1R1 =⇒ ∃ζ2 : η − ζ1R = ζ2R1

=⇒ (ζ1, ζ2)R2 = (ζ1, ζ2)
(
R3 R
0 R1

)
= (ζ1R3, ζ1R+ ζ2R1) = (ξ, η)

=⇒ (ξ, η) ∈ A1×(p3+p1)R2 =⇒ U2 ⊆ A1×(p3+p1)R2.

(126)



3 EXPONENTIALLY STABLE (E.S.) BEHAVIORS 26

In the sequel we therefore assume w.l.o.g. that the exact sequence (117) has the
special form

0→ A1×`1/U1

(◦(0,id`1
))ind−→ A1×`2/U2

(◦
(
id`3
0

)
)ind

−→ A1×`3/U3 → 0

where Ui = A1×piRi, Ri ∈ Api×`i , i = 1, 2, 3,

`2 := `3 + `1, p2 := p3 + p1, R2 =
(
R3 R
0 R1

)
.

(127)

The corresponding exact sequences of behaviors are given by

0← B(U1)
(0,id`1

)◦
←− B(U2)

(
id`3
0

)
◦

←− B(U3)← 0
(128)

and for sufficiently large n0 and n ≥ n0

(
Cn+N)`10 oo

(
Cn+N)`3+`1(

Cn+N)`1 (0,id`1
)◦

oo
(
Cn+N)`3(

Cn+N)`3+`1 (
id`3
0

)
◦

oo 0
(
Cn+N)`3 oo

B(R1, n)0 oo B(R2, n)B(R1, n) oo B(R3, n)B(R2, n) oo 0B(R3, n) oo

(w3
w1

) , (w3
0 )w1

�oo w3(w3
w1

) , (w3
0 ) �oo

B(R1, n)

(
Cn+N)`1

⊆
OO

B(R2, n)

(
Cn+N)`3+`1

⊆
OO

B(R3, n)

(
Cn+N)`3

⊆
OO

B(Ri, n) =
{
wi ∈

(
Cn+N)`i ; Ri ◦ wi = 0

}
, i = 1, 2, 3,

B(R2, n) =
{

(w3
w1

) ∈
(
Cn+N)`3+`1 ; R3 ◦ w3 +R ◦ w1 = 0, R1 ◦ w1 = 0

}
.

(129)
Moreover we always assume w.l.o.g. that the matrices R1 and R3 have the state space
form from Thm. 3.6:

Ri = q id`i −Ai, Ai ∈ C(t)`i×`i , i = 1, 3,

∀n ≥ n0 : B(Ri, n) =
{
wi ∈

(
Cn+N)`i ; wi(t+ 1) = Ai(t)wi(t)

}
.

(130)

For B(R2, n) this implies

B(R2, n) =
{

(w3
w1

) ∈
(
Cn+N)`3+`1 ; (?)

}
where (?) w3(t+ 1) = A3(t)w3(t)− (R ◦ w1)(t), w1(t+ 1) = A1(t)w1(t)}.

(131)
The behaviors B(Ri, n) are `i-dimensional over C and indeed

B(R1, n) ∼= C`1 , w1 7→ w1(n), B(R2, n) ∼= C`3 , w3 7→ w3(n),

B(R2, n) ∼= C`3+`1 , (w3
w1

) 7→
(
w3(n)
w1(n)

)
with w1(t) = Φ1(t, n)w1(n), Φ1(t, n) = A1(t− 1) · · ·A1(n) and
w3(t+ 1) = A3(t)w3(t)− (R ◦ w1)(t).

(132)

3.4 The proof of Thm. 1.8
More generally than in (132) consider an inhomogeneous equation

w(t+ 1) = A(t)w(t) + u(t), A(t) ∈ C(t)`×`, t ≥ n ≥ n0, w, u ∈
(
Cn+N)` ,

(133)
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where, as always, A(t) has no poles t ≥ n0. From (2) we know

∀t ≥ n ≥ n0 : w(t) = Φ(t, n)w(n) +

t−1∑
i=n

Φ(t, i+ 1)u(i)

=⇒ ‖w(t)‖ ≤ ‖Φ(t, n)‖‖w(n)‖+

t−1∑
i=n

‖Φ(t, i+ 1)‖‖u(i)‖.

(134)

Lemma 3.10. Assume in (133) that B := B
(
A1×`(q id`−A)

)
is e.s. and that also the

sequence u is e.s. in the sense that there are n1 ≥ n0, a p.g.s. ϕ > 0 in Cn1+N and a
positive sequence a ∈ Cn1+N and ρ with 0 < ρ < 1 such that

∀t ≥ n ≥ n1 : ‖u(t)‖ ≤ ρt−nϕ(n)a(n).

Then every solution w of (133) is e.s. in the sense that there are n2 ≥ n1, a p.g.s.
ϕ2 > 0 in Cn2+N and ρ2 (0 < ρ2 < 1) such that

∀t ≥ n ≥ n2 : ‖w(t)‖ ≤ ρt−n2 ϕ2(n) max(‖w(n)‖, a(n)). (135)

Proof. By enlarging n1, ϕ > 0 and ρ, 0 < ρ < 1, we may assume w.l.o.g. that

∀t ≥ n ≥ n1 : ‖Φ(t, n)‖ ≤ ρt−nϕ(n), ‖u(t)‖ ≤ ρt−nϕ(n)a(n). (136)

Define n2 := n1 and b(n) := max(‖w(n)‖, a(n)). We insert the inequalities from
(136) into (134) and obtain

∀t ≥ n ≥ n1 : ‖w(t)‖ ≤ ρt−nϕ(n)‖w(n)‖+

t−1∑
i=n

ρt−i−1ϕ(i+ 1)ρi−nϕ(n)a(n).

(137)
Since ϕ is p.g. there are c1 ≥ 1 and m ∈ N such that |ϕ(t)| ≤ c1t

m and hence also
|ϕ(i+ 1)| ≤ c1tm for i ≤ t− 1. For t > n ≥ n1 equation (137) implies

‖w(t)‖ ≤ ϕ(n)ρt−n
(
1 + (t− n)ρ−1c1t

m
)
b(n)

≤ (t− n)m+1ρt−nϕ(n)

(
1 + c1ρ

−1
(

t

t− n

)m)
b(n).

(138)

Now choose ρ2 with ρ < ρ2 < 1 and c2 ≥ 1 such that tm+1ρt ≤ c2ρ
t
2. Moreover

t/(t− n) = 1 + n/(t− n) ≤ 1 + n for t > n and hence for t > n ≥ n1

‖w(t)‖ ≤ ρt−n2

(
1 + c1ρ

−1(1 + n)m
)
c2ϕ(n)b(n) = ρt−n2 ϕ2(n)b(n)

where ϕ2(n) =
(
1 + c1ρ

−1(1 + n)m
)
c2ϕ(n) ≥ 1 is a p.g.s..

(139)

Since ϕ2(n) ≥ 1 and ‖w(n)‖ ≤ b(n) (139) also holds for t = n.

The next theorem coincides with Thm. 1.8 and is the main result of this paper.

Theorem 3.11. Exponentially stable behaviors form a Serre subcategory of the abelian
category of all LTV-behaviors. For the data from (117), (118) or, w.l.o.g., from (127)
-(132) this means that B2 is e.s. if and only if B1 and B3 are.
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Proof. We assume (127)-(133). The time n0 below is always chosen sufficiently large.
1. B2 e.s. =⇒ B3 e.s.: There are a p.g.s. ϕ and ρ as usual such that

∀t ≥ n ≥ n0∀w2 = (w3
w1

) ∈ B(R2, n) :

‖w2(t)‖ = max(‖w3(t)‖, ‖w1(t)‖) ≤ ρt−nϕ(n)‖w2(n)‖.
(140)

For
w3 ∈ B(R3, n) define w2 := (w3

0 ) ∈ B(R2, n)

=⇒ ‖w3(t)‖ = ‖w2(t)‖, ‖w3(n)‖ = ‖w2(n)‖ =⇒ ‖w3(t)‖ ≤ ρt−nϕ(n)‖w3(n)‖.
This means that B3 is e.s..
2. B2 e.s. =⇒ B1 e.s.: Again (140) is assumed. Letw1 ∈ B(R1, n) and letw2 := (w3

w1
)

be the unique w2 ∈ B(R2, n) with w3(n) = 0 (cf. (132)) or

w3(t+ 1) = A3(t)w3(t)− (R ◦ w1)(t), w3(n) = 0

=⇒ ‖w1(n)‖ = max (0, ‖w1(n)‖) = max (‖w3(n), ‖w1(n)‖) = ‖w2(n)‖ and

‖w1(t)‖ ≤ max (‖w3(t) ‖w1(t)‖) = ‖w2(t)‖ ≤ ρt−nϕ(n)‖w2(n)‖
=⇒ ‖w1(t)‖ ≤ ρt−nϕ(n)‖w1(n)‖ =⇒ B(U1) e.s..

3. B1,B3 e.s. =⇒ B2 e.s.: For i = 1, 3 there are, as usual, p.g.s. ϕi, i = 1, 3, and ρi
such that

∀t ≥ n ≥ n0∀wi ∈ B(Ri, n) : ‖wi(t)‖ ≤ ρt−ni ϕi(n)‖wi(n)‖. (141)

Let

w2 = (w3
w1

) ∈ B(R2, n), R =
(
R3 R
0 R1

)
=⇒ w1 ∈ B(R1, n) and ‖w1(t)‖ ≤ ρt−n1 ϕ1(n)‖w1(n)‖ and

∀t ≥ n : w3(t+ 1) = A3(t)w3(t) + u(t), u := −R ◦ w1.

(142)

Let R =
∑d
i=0Bi(t)q

i, Bi ∈ C(t)p3×q1 and assume that no Bi(t) has a pole t ≥ n0.
The Bi(t) are rational and therefore of at most polynomial growth. Hence there are
c1 ≥ 1 and m ∈ N such that ‖Bi(t)‖ ≤ c1tm for all t ≥ n0. We conclude

∀t ≥ n : −u(t) = (R ◦ w1)(t) =
d∑
i=0

Bi(t)w1(t+ i)

=⇒ ‖u(t)‖ = ‖(R ◦ w1)(t)‖ ≤
d∑
i=0

‖Bi(t)‖‖w1(t+ i)‖

≤ (d+ 1)c1t
mρt−n1 ϕ1(n)‖w1(n)‖.

(143)

We choose ρ′1 with ρ1 < ρ′1 < 1 and c2 ≥ 1 such that tmρt1 ≤ c2ρ′t1 . Moreover

for t > n : tm < (t− n)m(1 + n)m =⇒
(143)
‖u(t)‖ ≤ ρ′t−n1 ϕ′1(n)‖w1(n)‖

with ϕ′1(n) := (d+ 1)c1c2(n+ 1)mϕ1(n)
(144)

This also holds for t = n due to (143). Obviously ϕ′1 is a p.g.s.. Thus u = −R ◦ w1 is
e.s. in the sense of Lemma 3.10 with a(n) = ‖w1(n)‖ and the lemma therefore implies
that there are a p.g.s. ϕ2 and ρ2 as usual such that for all t ≥ n ≥ n0
‖w3(t)‖ ≤ ρt−n2 ϕ2(n) max(‖w3(n)‖, ‖w1(n)‖)

=⇒ ‖w2(t)‖ = max(‖w3(t)‖, ‖w1(t)‖) ≤ ϕ4(n)ρt−n4 ‖w2(n)‖
(145)

where ϕ4 = max(ϕ2, ϕ1), ρ4 := max(ρ2, ρ1). Hence B2 is e.s..
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Corollary 3.12. Let f = f1f2 be a nonzero product in A, hence 0 6= Af ⊆ Af2.
Then f is exponentially stable if and only if f1 and f2 are.

Proof. The application of Thm. 3.11 to the exact sequences

0 A/Af1// A/Af1 A/Af
(◦f2)ind // A/Af A/Af2

can // A/Af2 0//

a+ Af1 af2 + Af, b+ Af� // af2 + Af, b+ Af b+ Af2
� //

B(Af1)0 oo B(Af)B(Af1)
B(f2)oo B(Af2)B(Af)

⊇oo 0B(Af2) oo

(146)

furnishes the result.

Consider any torsion module M = A1×`/U with U = A1×pR. The module M is
of finite length, i.e., artinian and noetherian, and admits a composition series

M = M0 )M1 ) · · · )M`−1 )M` = 0

with simple factors Si := Mi−1/Mi
∼= A/Api, 0 ( Api ( A, pi irreducible,

d(i) := degq(pi) = dimC(t)(Mi−1/Mi).
(147)

An element p ∈ A is irreducible if and only if Ap is a maximal left ideal or if and
only if A/Ap is a simple module. By the Jordan-Hölder theorem the simple factors
are unique up to their numbering and up to isomorphism. Hence the pi are unique
up to their numbering and up to similarity where f and g in A are called similar if
A/Af ∼=

A
A/Ag.

Corollary 3.13. With the data from (147) the behavior B(U) is e.s. if and only if all
behaviors B(Api), i = 1, · · · , `, are e.s..

Proof. Induction and Thm. 3.11 furnish the result by means of the exact sequences

0→Mi
⊂−→Mi−1 → Si → 0, Si ∼= A/Api. (148)

Modulo the Jacobson package of [7] for the algebra AQ := Q(t)[q;α] ⊃ Q[q]
and (72) the computation of a composition series of a f.g. module over AQ reduces
to the factorization of a nonzero f ∈ AQ into irreducible factors. For C instead of Q
such a factorization can only be approximated as is already the case for polynomials in
C[q] ⊃ Q[q].
Call a f.g. module M e.s. if for one and then all (cf. Lemma 3.7) representations
M = A1×`/U the behavior B(U) is e.s.. Due to Thms. 1.8, 3.11 the e.s. modules
form a Serre subcategory of the category of f.g. A-modules that are all noetherian.

Corollary 3.14. Every f.g. A-module M has a largest e.s. submodule Raes(M), and
moreover Raes(M/Raes(M)) = 0.

3.5 Special stability results
In Sections 3.5 and 3.6 we describe cases where e.s. or lack of e.s. can be checked
algebraically.
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The proof of the following result in [13, Satz 11] on a disturbed state space system
seems to contain an error and therefore we give a simple different proof similar to that
of [25, Thm. 24.7].

Lemma 3.15. (cf. [13, Satz 11]),[25, Thm. 24.7]) Consider the difference equation

w(t+ 1) = A(t)w(t) + f(w(t), t), t ≥ n0, A ∈ (Cn0+N)`×`, f : C` × N→ C`.
(149)

Assume that w(t + 1) = A(t)w(t) is uniformly exponentially stable (u.e.s.), i.e., that
there are ρ1 with 0 < ρ1 < 1 and c1 ≥ 1 such that

∀t ≥ n ≥ n0 : ‖Φ(t, n)‖ ≤ c1ρt−n1 where Φ(t, n) := A(t− 1) · · ·A(n). (150)

Also assume that ‖f(v, t)‖ ≤ ε‖v‖, ε > 0, for v ∈ C` and t ≥ n0.
If ε is sufficiently small then also (149) is u.e.s., i.e. there are ρ, 0 < ρ < 1, and c ≥ 1
such that

∀t ≥ n ≥ n0∀w ∈
(
Cn+N)` with w(t+ 1) = A(t)w(t) + f(w(t), t) :

‖w(t)‖ ≤ cρt−n‖w(n)‖.
(151)

Proof. The number ε is suitably chosen below. With u(t) := f(w(t), t) we obtain

w(t+ 1) = A(t)w(t) + u(t)

=⇒
(2)
∀t ≥ n ≥ n0 : w(t) = Φ(t, n)w(n) +

t−1∑
i=n

Φ(t, i+ 1)u(i)

=⇒
(2)
∀t ≥ n ≥ n0 : ‖w(t)‖ ≤ ‖Φ(t, n)‖‖w(n)‖+

t−1∑
i=n

‖Φ(t, i+ 1)‖‖u(i)‖.

(152)
We insert ‖u(i)‖ ≤ ε‖w(i)‖ and (150) into (152) and obtain

∀t ≥ n ≥ n0 : ‖w(t)‖ ≤ c1ρt−n1 ‖w(n)‖+

t−1∑
i=n

c1ρ
t−(i+1)
1 ε‖w(i)‖. (153)

With y(t) := ρ−t1 ‖w(t)‖ and λ := c1ρ
−1
1 ε the preceding inequality implies

y(t) ≤ c1y(n) +

t−1∑
i=n

c1ρ
−1
1 εy(i) = c1y(n) + λ

t−1∑
i=n

y(i). (154)

This suggests to define inductively

∀t ≥ n ≥ n0 : z(t) := c1y(n) + λ

t−1∑
i=n

z(i). (155)

Since c1 ≥ 1 this gives y(n) ≤ z(n) = c1y(n) and inductively, by (154), y(t) ≤ z(t)
for all t ≥ n. The sequence z(t), t ≥ n, satisfies the difference equation

z(n) = c1y(n), ∀t ≥ n : z(t+ 1) = (1 + λ)z(t) =⇒
z(t) = (1 + λ)t−nz(n) = c1(1 + λ)t−ny(n) =⇒ y(t) ≤ z(t) = c1(1 + λ)t−ny(n)

=⇒
ρt1y(t)=‖w(t)‖

‖w(t)‖ ≤ c1 (ρ1(1 + λ))
t−n ‖w(n)‖.

(156)



3 EXPONENTIALLY STABLE (E.S.) BEHAVIORS 31

But ρ1 < 1 and ρ1(1 + λ) = ρ1 + c1ε. Choose ε > 0 such that ρ := ρ1 + c1ε < 1,
Equation (156) implies ‖w(t)‖ ≤ c1ρt−n‖w(n)‖ for all t ≥ n ≥ n0, i.e., (151).

Example 3.16. This example shows that Lemma 3.15 does not hold if w(t + 1) =
A(t)w(t) is only e.s. and not u.e.s. From Ex. 3.2 and Lemma 3.7 we know that for
0 < ρ1 < ρ2 < 1 the system

w(t+ 1) = B(t)w(t), t ≥ 0, B(t) :=
(
ρ1 ρ2+(ρ2−ρ1)t
0 ρ2

)
∈ C[t]2×2 ⊂ C(t)2×2

(157)
is e.s., but not u.e.s. Define

C(t) :=
(

0 0
2(ρ2+(ρ2−ρ1)t)−1 0

)
,

A1(t) := B(t) + C(t) =
(

ρ1 ρ2+(ρ2−ρ1)t
2(ρ2+(ρ2−ρ1)t)−1 ρ2

)
Φ1(t, n) := A1(t− 1) ∗ · · · ∗A1(n).

(158)

We conclude

det(A1(t)) = ρ1ρ2 − 2, |det(Φ1(t, n))| = (2− ρ1ρ2)t−n

=⇒ lim
t→∞

C(t) = 0, lim
t→∞

|det(Φ1(t, n))| =∞. (159)

Hence the system w(t+ 1) = B(t)w(t) is e.s. and the disturbed system
w(t+ 1) = (B(t) + C(t))w(t), t > 0, is not although limt→∞ C(t) = 0.

In the following corollary we consider a state space equation

w(t+ 1) = A(t)w(t), A ∈ C(t)`×`, n0 + N ⊆ dom(A), t ≥ n0. (160)

Moreover we assume that the rational matrix A(t) is proper, i.e., that

A(∞) := lim
t→∞

A(t) exists =⇒

lim
t→∞

(A(t)−A(∞)) = 0 and w(t+ 1) = A(∞)w(t) + (A(t)−A(∞))w(t).

(161)
The matrices A(t) resp. A(∞) give rise to an LTV- resp. LTI-state space system.

Corollary 3.17. If A(t) in (160) is proper then w(t + 1) = A(t)w(t) is u.e.s. if and
only if w(t + 1) = A(∞)w(t) is (u.)e.s. or, in other terms, spec(A(∞)) ⊂ D =
{z ∈ C; |z| < 1}.

Proof. Recall that u.e.s. and e.s. are equivalent for constant matrices. For any

ε > 0∃n1 ≥ n0∀t ≥ n1 : ‖A(t)−A(∞)‖ ≤ ε =⇒ ‖(A(t)−A(∞))w(t)‖ ≤ ε‖w(t)‖.

This and Lemma 3.15 now imply the corollary.

It is open whether the e.s. of w(t + 1) = A(t)w(t) instead of its u.e.s. and the
existence of A(∞) also imply spec(A(∞)) ⊂ D.

Corollary 3.18. Let f = qd + ad−1q
d−1 + · · · + a0 ∈ A = C(t)[q;α] and assume

that all aj , j = 0, · · · , d− 1, are proper. Define

aj(∞) := lim
t→∞

aj(t) and f∞ := qd + ad−1(∞)qd−1 + · · ·+ a0(∞) ∈ C[q]. (162)

Then the behavior B(Af) is u.e.s. if and only if all roots of f∞ belong to D.



3 EXPONENTIALLY STABLE (E.S.) BEHAVIORS 32

If in f = q − b, b ∈ C(t), the coefficient b is not proper then limt→∞ |b(t)| =
∞ and B(Af) is not e.s. If B(Af) is e.s., w ∈ B(f, n) and hence w(t) = b(t −
1) · · · b(n)w(n) the e.s. ofw implies |b(∞)| < 1 and hence the u.e.s. of (q−b)◦w = 0.
Thus B(A(q − b)) is e.s. if and only |b(∞)| < 1.

Corollary 3.19. (cf. [2, Thm. 1037]) Assume the data of (147) and in addition that
all coefficients aij(t) ∈ C(t) of the pi = qd(i) +

∑d(i)−1
j=0 aijq

j ∈ A with Mi−1/Mi
∼=

A/Api are proper. If all roots of all polynomials pi,∞ = qd(i) +
∑d(i)−1
j=0 aij(∞)qj ∈

C[q] belong to D then the behavior B(U) is e.s. .
If all d(i) = 1 or pi = q − bi, bi := −ai0, then B(U) is e.s. if and only if |bi(∞)| < 1
for all i.

Definition 3.20. If the bi in Cor. 3.19 exist they are called quasi-poles of B(U).

3.6 Special instability results
The following theorem is an unstable counter-part of Cor. 3.17. Its proof is an adaption
of that of [5, Thm. 2] where the authors prove an analogue for nonlinear difference
equations of an instability result of Chetaev for differential equations; cf. also [25,
Thm. 23.6]. In the following let ‖y‖ resp. ‖y‖2 denote the maximum norm resp. the
2-norm on Cq . They obviously satisfy ‖y‖ ≤ ‖y‖2 ≤ q1/2‖y‖.

Theorem 3.21. Consider the system (160) with proper A(t) and assume that A(∞)
has at least one eigenvalue α with |α| > 1. Then

∃n1 ≥ n0∃ρ1 > 1∀n ≥ n1∃w(n) ∈ C`, w(n) 6= 0,∀t ≥ n :

‖w(t)‖2 ≥ ρt−n1 ‖w(n)‖2, hence also ‖w(t)‖ ≥ q−1/2ρt−n1 ‖w(n)‖.
(163)

In particular, the system w(t+ 1) = A(t)w(t) is not e.s.

Proof. 1. The proof needs several steps and uses ideas from Lyapunov’s stability the-
ory. For a matrix H = (Hij)i,j ∈ C`×` let H∗ with (H∗)ij := Hji be its adjoint. For
y ∈ C` this implies y∗y = ‖y‖22. The matrix H is hermitian if H = H∗. We choose
ρ > 0 such that

|α|−1 < ρ < 1 and ∀λ, µ ∈ spec(A(∞)) : ρ2λµ 6= 1

and define A1(t) := ρA(t), B := A1(∞) = ρA(∞).
(164)

Then spec(B) = ρ spec(A(∞)) contains ρα with |ρα| > 1 and thus A1(t) satisfies
the same hypotheses as A(t). Moreover λµ 6= 1 for all λ, µ ∈ spec(B). By [18, Thm.
5.2.3] we infer the existence of a hermitian matrix P with

B∗PB − P + I = 0, I := id`, P = P ∗. Define

V (y) = −y∗Py ∈ R for y ∈ C` =⇒ V (By) = V (y) + ‖y‖22.
(165)

The function V is a quadratic form. Choose an ε > 0 such that I + ε(I − B∗B) is
positive definite. Then

B∗(P + εI)B − (P + εI) + I + ε(I −B∗B) = 0. (166)

SinceB has the eigenvalue ραwith |ρα| > 1 the Lyapunov criterion implies that P+εI
is not positive definite and hence

∃y ∈ C`, y 6= 0, with y∗(P + εI)y = −V (y) + ε‖y‖22 ≤ 0 =⇒ V (y) > 0. (167)
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2. Consider any hermitian matrix H = H∗ ∈ C`×`. A standard matrix result says that

λmax := max(spec(H)) = max06=y∈C` ‖y‖−22 (y∗Hy) and

|y∗Hy| ≤ ρ(H)‖y‖22 with ρ(H) := max {|λ|; λ ∈ spec(H)} .
(168)

For H = −P from above equation (167) implies that λmax > 0 and hence

∀y ∈ C` : V (y) = y∗(−P )y ≤ λmax‖y‖22, ∃ym ∈ C` : V (ym) = λmax‖ym‖22 > 0.
(169)

We now compute V (A1(t)y) for t ≥ n0. Since A1(t) is proper and B = A1(∞)
we write A1(t) = B + t−1C(t) with proper and thus bounded C(t) and conclude

V (A1(t)y) = y∗(B + t−1C(t))∗(−P )(B + t−1C(t))y =

y∗B∗(−P )By + t−1y∗H(t)y = V (By) + t−1y∗H(t)y

=
(165)

V (y) + ‖y‖22 + t−1y∗H(t)y

(170)

where H(t) is rational, proper, hermitian and bounded. Since H(t) is bounded so is
spec(H(t)). Define

σ := sup

|λ|; λ ∈ ⋃
t≥n0

spec(H(t))

 <∞ =⇒
(168)

∀y∀t ≥ n0 : |y∗H(t)y| ≤ σ‖y‖22 =⇒
(170)

V (A1(t)y) ≥ V (y) +
(
1− t−1σ

)
‖y‖22.

(171)
Choose n1 ≥ n0 such that

n1 ≥ max(n0, 2σ) =⇒ ∀t ≥ n1 : 1− t−1σ ≥ 1/2

=⇒ ∀t ≥ n1∀y : V (A1(t)y) ≥
(171)

V (y) + 2−1‖y‖22 ≥
(169)

(1 + 2−1λ−1max)V (y).

(172)
3. According to (169) choose a nonzero y ∈ C` with V (y) = λmax‖y‖22 > 0. Let
n ≥ n1 and consider the system y(t + 1) = A1(t)y(t), t ≥ n, y(n) = y. Equation
(172) furnishes

∀t ≥ n : V (y(t+ 1)) ≥
(
1 + 2−1λ−1max)

)
V (y(t)), V (y(n)) = λmax‖y(n‖22 > 0

=⇒
induction

V (y(t)) ≥
(
1 + 2−1λ−1max

)t−n
V (y(n))

=⇒
(169)

λmax‖y(t)‖22 ≥
(
1 + 2−1λ−1max

)t−n
λmax‖y(n)‖22

=⇒ ∀t ≥ n : ‖y(t)‖2 ≥
(

(1 + 2−1λ−1max)1/2
)t−n

‖y(n)‖2.
(173)

Finally consider the system

w(t+ 1) = A(t)w(t), t ≥ n, with V (w(n)) = λmax‖w(n)‖22 > 0 (174)
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and define y(t) := ρtw(t) with ρ from (164), especially y(n) = ρnw(n). Then

y(t+ 1) = ρt+1w(t+ 1) = ρA(t)ρtw(t) = A1(t)y(t), y(n) = ρnw(n) and

V (y(n)) = λmax‖y(n)‖22

=⇒
(173)
∀t ≥ n : ‖y(t)‖2 ≥

(
(1 + 2−1λ−1max)1/2

)t−n
‖y(n)‖2

=⇒ ∀t ≥ n : ‖w(t)‖2 ≥ ρt−n1 ‖w(n)‖2 with ρ1 := (1 + 2−1λ−1max)1/2ρ−1 > 1.
(175)

Definition 3.22. Let R ∈ Ap×`, U := A1×pR, B := B(U) and n0 + N ⊆ dom(R).
The behavior B is called exponentially unstable (e.unst.) if

∃n1 ≥ n0∀n ≥ n1∃w ∈ B(R,n)∃d ∈ N∃ρ > 1∃c > 0∀t ≥ n : cρt ≤ ‖x(t)‖
where x(t) := (w(t), · · · , w(t+ d)).

(176)
The trajectory w from (176) is also called e.unst..

It is obvious that in Thm. 3.21 the behavior B(A1×`(qI −A)) is e.unst..

Lemma 3.23. Exponential instability is preserved by isomorphisms.

Proof. We use the data from Lemma 3.7 and obtain for sufficiently large n1 ≥ n0 and
n ≥ n1 surjections P1◦ : B(R2, n) → B(R1, n). Assume that w1 ∈ B(R1, n) is an
e.unst. trajectory, i.e.,

∀t ≥ n : c1ρ
t
1 ≤ ‖x1(t)‖, x1(t) := (w1(t), · · · , w1(t+d)), d ∈ N, c1 > 0, ρ1 > 1.

Let w2 ∈ B(R2, n) be an inverse image with w1 = P1 ◦w2. As in the proof of Lemma
3.7 we derive the existence of c2 > 0 and m ∈ N such that

∀t ≥ n : ‖w1(t)‖ ≤ c2tm max(‖w2(t)‖, · · · , ‖w2(t+ d1)‖) =⇒
∀t ≥ n : ‖x1(t)‖ ≤ c2tm+d‖x2(t)‖, x2(t) := (w2(t), · · · , w2(t+ d+ d1)) =⇒

∀t ≥ n :
c1ρ

t
1

c2tm+d
≤ ‖x2(t)‖.

For any 1 < ρ2 < ρ1 there is a c3 > 0 such that

c2t
m+d ≤ c3ρt2, t ≥ 1 =⇒ ∀t ≥ n :

c1ρ
t
1

c3ρt2
≤ ‖x2(t)‖ =⇒

c4ρ
t
3 ≤ ‖x2(t)‖, c4 := c1c

−1
3 , ρ3 := ρ1ρ

−1
2 > 1.

Corollary 3.24. If under the assumptions of (117) and (118) the behaviors B1 or B3
are exponentially unstable then so is B2.

Proof. Due to Lemma 3.23 the proof proceeds like 1. and 2. of that of Thm. 3.11.

Corollary 3.25. If under the assumptions of (147) all pi are proper and at least one
pi,∞ (cf. Cor. 3.19) has a root of absolute value > 1 then the behavior B(U) is
exponentially unstable.
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4 Standard consequences of the duality theorem
We show that the duality theorem Thm. 1.6 and especially the exactness of the dual-
ity functor imply various important results well-known from LTI-systems theory. The
proofs are slight variants of those of the corresponding LTI-results.
1. Connection with the LTI-theory: The relevant LTI-theory is that with the signal
module C[q]CN where C[q](⊂ A) is the commutative polynomial algebra of difference
operators with constant coefficients. The partial fraction decomposition furnishes

C(t) = ⊕∞i=0Cti ⊕⊕z∈C ⊕∞i=1 C(t− z)−i, hence also

A = ⊕∞j=0C(t)qj = ⊕∞i=0t
iC[q]⊕⊕z∈C ⊕∞i=1 (t− z)−iC[q].

(177)

This implies that the right C[q]-module AC[q] is free and therefore faithfully flat [1,
Prop. I.3.9], i.e. the functor

C[q]Mod→A Mod, M 7→ A⊗C[q] M, (178)

preserves and reflects exact sequences. In particular, [1, Prop. I.3.9]

∀V ⊆C[q] C[q]1×` : V = C[q]1×` ∩AV where

AV = A⊗C[q] V ⊆ A⊗C[q] C[q]1×` = A1×`.
(179)

If V = C[q]1×kR, R ∈ C[q]k×`, then AV = A1×kR and the associated LTI- resp.
LTV-behaviors are

V ⊥ :=
{
w ∈ (CN)`; R ◦ w = 0

}
= B(R, 0) resp. B(AV ) = cl ((B(R,n))n≥0) .

(180)
If V1, V2 ⊆ C[q]1×` are two submodules the cogenerator property of C[q]CN, Thm. 1.6,
(3), and (179) imply

V1 ⊆ V2 ⇐⇒ V ⊥2 ⊆ V ⊥1 ⇐⇒ AV1 ⊆ AV2 ⇐⇒ B(AV2) ⊆ B(AV1). (181)

These equivalences also follow from the isomorphisms

qn◦ : Cn+N ∼= CN, qn◦ : B(R,n) ∼= B(R, 0). (182)

Hence the map

{LTI-behaviors} → {LTV-behaviors} , V ⊥ 7→ B(AV ), (183)

is injective and preserves and reflects inclusions. Therefore we identify

∀R ∈ C[q]k×`, V := C[q]1×kR : B(R, 0) = V ⊥ = B(AV ) = cl ((B(R,n))n≥0) .
(184)

Due to (178) and (184) the LTI-theory of C[q]CN-behaviors is fully embedded into the
LTV-theory of this paper.
2. Exponential stability in the LTI- resp. LTV-theory: As in item 1. consider R ∈
C[q]k×` and V = C[q]1×kR. Assume that V ⊥ = B(R, 0) ⊂

(
CN)` is autonomous,

i.e., rank(R) = `. The characteristic variety of the torsion module M = C[q]1×`/V
or of the behavior V ⊥ is

char(M) := char(V ⊥) = {λ ∈ C; rank(R(λ)) < rank(R) = `} ={
λ ∈ C; V ⊥

⋂
C[t]`λt 6= 0

}
where C[t]λt := C(N) for λ = 0.

(185)
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The characteristic variety gives rise to the modal decomposition

V ⊥ =
⊕

λ∈char(V ⊥)

(
V ⊥

⋂
C[t]`λt

)
. (186)

It implies that V ⊥ is asymptotically or exponentially stable if and only if char(V ⊥) ⊂
D := {z ∈ C; |z| < 1} . The Smith form implies an isomorphism

M ∼=
r∏
i=1

C[q]/C[q]fi, fi ∈ C[q], degq(fi) > 0 =⇒

char(M) =

r⋃
i=1

VC(fi), VC(fi) := {λ ∈ C; fi(λ) = 0} .
(187)

Hence V ⊥ is asymptotically stable if and only if all roots of all fi lie in D. The
isomorphism in (187) also implies

A1×`/AV ∼= A⊗C[q] M ∼=
r∏
i=1

A/Afi =⇒ B(AV ) ∼=
r∏
i=1

B(Afi). (188)

According to Cor. and Def. 3.19 B(AV ) is e.s. in the sense of this paper if and only if
all roots of all fi lie in D. Hence asymptotic stability of the LTI-behavior V ⊥ and the
LTV-e.s. of B(AV ) coincide.
3. Willems’ elimination: Let

P ∈ A`2×`1 , U1 ⊆ A1×`1 , B1 := B(U1),

U2 := (◦P )−1(U1) :=
{
η ∈ A1×`2 ; ηP ∈ U1

}
, B2 := B(U2).

(189)

The monomorphism (◦P )ind : A1×`2/U2 → A1×`1/U1, η + U2 7→ ηP + U1, and
Thm. 1.6,(1), imply the epimorphism

P◦ : B(U1)→ B(U2) or P ◦ B(U1) = B(U2). (190)

Hence the image of a behavior under a difference operator P ∈ A`2×`1 is again a
behavior. In Willems’ language the behaviors of this paper admit elimination. Note
that Willems considered projections of the form

P = (id`2 , 0) ∈ A`2×(`2+n) and P◦ : (wx ) 7→ w (191)

only and thus eliminated the n so-called latent variables xi, for instance the state x.
4. Ehrenpreis’ fundamental principle: Consider the behaviorW = cl

(
(Cn+N)n≥0

)
=

B(0) and an exact sequence of modules and its dual exact sequence of behaviors

A1×`3 ◦Q−→ A1×`2 ◦P−→ A1×`1 , hence A1×`3Q =
{
η ∈ A1×`2 ; ηP = 0

}
,

W`1 P◦−→W`2 Q◦−→W`3 , hence P ◦W`1 = ker(Q◦),
=⇒ ∃n1∀n ≥ n1 : P ◦ (Cn+N)`1 =

{
u ∈ (Cn+N)`2 ; Q ◦ u = 0

}
.

(192)

This implies that for n ≥ n1 the equation P ◦ w = u, u ∈ (Cn+N)`2 , has a solution
w ∈ (Cn+N)`1 if and only if Q ◦ u = 0 or η ◦ u = 0 if ηP = 0.
5. Input/output structures: Let R ∈ Ak×` ⊂ Kk×` of rank p := rank(R) where
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K := quot(A) (cf. (80)-(82)). Then there are various choices of p columns of R that
are a basis of the column space RK` of R. After the standard column permutation one
writes R = (P,−Q) ∈ Kk×(p+m), ` = p+m, and obtains rank(R) = rank(P ) = p
and the unique transfer matrix H ∈ Kp×m with PH = Q. Define

U := A1×k(P,−Q), U0 := A1×kP, M := A1×(p+m)/U, M0 := A1×p/U0,

B := B(U), B0 := B(U0).
(193)

Since P ∈ Ak×p and rank(P ) = p the module M0 is torsion and B0 is autonomous.
In analogy to the LTI-case the sequence of A-modules

0→ A1×m (◦(0,idm))ind−−−−−−−−→M = A1×(p+m)/U

(
◦
(
idp

0

))
ind−−−−−−−−→M0 = A1×p/U0 → 0

(◦(0, idm))ind : η 7→ (0, η) + U,
(
◦
(
idp

0

))
ind

: (ξ, η) + U 7→ ξ + U0

(194)
is exact. Conversely, the exactness of this sequence and the torsion property of M0

imply rank(P,−Q) = rank(P ) = p. The decomposition R = (P,−Q) is called
an input/output (IO) decomposition or structure of R, M or B. The description by
the exactness of (194) shows that the structure depends on M , but not on the special
choice of R. The exactness of the module sequence (194) implies that of the behavior
sequence (W = cl

(
(Cn+N)n≥0

)
)

0→ B0
(
idp

0

)
◦

−−−−−→ B (0,idm)◦−−−−−→ Wm → 0
y 7→ ( y0 ) , ( yu ) 7→ u

. (195)

For sufficiently large n1 and n ≥ n1 this implies the exactness of

0→ B(P, n)

(
idp

0

)
◦

−−−−−→ B((P,−Q), n)
(0,idm)◦−−−−−→

(
Cn+N)m → 0

y 7→ ( y0 ) , ( yu ) 7→ u

where B(P, n) =
{
y ∈

(
Cn+N)p ; P ◦ y = 0

}
and

B((P,−Q), n) =
{

( yu ) ∈
(
Cn+N)p+m ; P ◦ y = Q ◦ u

}
.

(196)

Hence the component u of a trajectory ( yu ) of B((P,−Q), n), n ≥ n1, is free, i.e.,
can be freely chosen as input, but there is no larger component with this property. Up
to the introduction of the initial time n1 this is the standard LTI-result.
The e.s. of an IO-behavior B is defined by that of its autonomous part B0. Using this
we finally prove Cor. 1.9 with the help of [11, §2.4]. With the data from (129) and
(130) consider, for sufficiently large n, IO-behaviors

B̃1(n) :=
{

(w1
u1

) ∈
(
Cn+N)`1+k ;R1 ◦ w1 +Q ◦ u1 = 0

}
,

B̃3(n) :=
{

(w3
u3

) ∈
(
Cn+N)`3+`1 ;R3 ◦ w3 +R ◦ u3 = 0

} (197)

where (R1, Q) ∈ A`1×(`1+k). The conditions Ri ∈ A`i×`i and rank(Ri) = `i for
i = 1, 3 imply that these B̃i are indeed IO-behaviors. The series interconnection of
first B̃1 and then B̃3 is given by

B̃(n) :=
{(

w3
w1
u1

)
∈
(
Cn+N)`3+`1+k ;R3 ◦ w3 +R ◦ w1 = 0, R1 ◦ w1 +Q ◦ u1 = 0

}
(198)
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and is itself an IO-behavior with input u1. Its autonomous part is

B̃0(n) :=
{

(w3
w1

) ∈
(
Cn+N)`3+`1 ;R3 ◦ w3 +R ◦ w1 = 0, R1 ◦ w1 = 0

}
=

(129)
B2(n).

(199)
So Cor. 1.9 is indeed a simple consequence of Thm. 1.8.

6. Controllability: The behavior B(U), U ⊆ A1×`, is called controllable if its
module M = A1×`/U is torsionfree and thus free, cf. (79). This is equivalent to the
existence of an image representation (Willems) or parametrization (Pommaret), i.e.,
an epimorphism P◦ : Wm = B(0)m → B(U), i.e., of surjections P◦ : W (n)m →
B(R,n) for sufficiently large n ≥ n1. This also means that trajectories of B(U) can
be concatenated as usual, but only after the time instant n1. If tor(M) = V/U then
Bcont(U) := B(V ) is the largest controllable subbehavior of B(U). The isomorphisms
(72), (79) imply tor(M) ∼=

∏r
i=1 A/Afi and M ∼= A`2−r × tor(M) and thus the

controllable-autonomous decomposition

B(U) ∼=W`2−r ×

(
r∏
i=1

B(Afi)

)
. (200)

7. A larger coefficient field than C(t), cf. [22, Ex. 1.2]: Considerm ≥ 1 and the locally
convergent Laurent series a(z) =

∑∞
i=k aiz

i, k ∈ Z,with σ(a) := lim supi≥0
i
√
|ai| <

∞. Standard complex variable theory shows that a(z) is a holomorphic function in the
annulus

{
z ∈ C; 0 < |z| < σ(a)−1

}
. Therefore the function f(t) := a(t−1/m) of the

real variable t is a smooth function in the interval (σ(a)m,∞), in particular it has no
poles for t > σ(a)m. Also there is a τ > σ(a)m such that f(t) has no zeros for t ≥ τ .
Like in the case of rational functions we identify f = (f(t))t∈N,t>σ(a)m . These se-
quences form a field F that has the properties (i)-(iv) of Remark 1.1,(a). The field F is
isomorphic to the algebraic closure of the field C〈〈z〉〉 of locally convergent Laurent se-
ries and contains C(t) = C(t−1). Examples for such sequences are

(
t cos(t−1/2)

)
t≥1

or (exp(t−1))t≥0, but not (cos(t))t≥0.
8. Stabilization: In [20] the method of this paper and that of [3] are used for the
construction and (Kučera-Youla)-parametrization of all stabilizing compensators for
tracking, disturbance rejection and model matching of a stabilizible LTV-differential
system. The differential analogue of Thm. 1.8 turns out to be a decisive tool.
Acknowledgement: We thank the three reviewers and the associate editor for their
comprehensive reports, valuable criticism and various suggestions that essentially im-
proved the paper’s presentation.
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