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We study implicit systems of linear time-varying (LTV) difference equations with rational coefficients of arbitrary order and their solution spaces, called discrete LTV-behaviors. The signals are sequences, i.e. functions from the discrete time set of natural numbers into the complex numbers. The difference field of rational functions with complex coefficients gives rise to a noncommutative skewpolynomial algebra of difference operators that act on sequences via left shift. For this paper it is decisive that the ring of operators is a principal ideal domain and that nonzero rational functions have only finitely many poles and zeros and grow at most polynomially. Due to the poles a new definition of behaviors is required. For the latter we derive the important categorical duality between finitely generated left modules over the ring of operators and behaviors. The duality theorem implies the usual consequences for Willems' elimination, the fundamental principle, input/output decompositions and controllability. The generalization to autonomous discrete LTV-behaviors of the standard definition of uniformly exponentially stable (u.e.s.) state space systems is unsuitable since u.e.s. is not preserved by behavior isomorphisms. We define exponentially stable (e.s.) discrete LTV-behaviors by a new analytic condition on its trajectories. These e.s. behaviors are autonomous and asymptotically stable. Our principal result states that e.s. behaviors form a Serre category, i.e., are closed under isomorphisms, subbehaviors, factor behaviors and extensions or, equivalently, that the series connection of two e.s. input/output behaviors is e.s. if and only the two blocks are. As corollaries we conclude various stability and instability results for autonomous behaviors. There is presently no algebraic characterization and test for e.s. of behaviors, but otherwise the results are constructive.

Introduction

Stability theory for linear time-varying (LTV) discrete systems has been mainly developed for the discrete time set N = {natural numbers} and Kalman's state space equations x(t + 1) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t) + D(t)u(t), t ∈ N, x(t) ∈ C n , u(t) ∈ C m , y(t) ∈ C p with matrices A(t), B(t), C(t), D(t) ∈ C •×•

(1) of suitable sizes. The complex field C is often replaced by the real field R. We write C n := C n×1 resp. C 1×n for the space of column-resp. row-vectors. The vectors x(t), u(t) resp. y(t) are the state, input resp. output at the time instant t ∈ N. If an initial time t 0 , an initial state x(t 0 ) and an input (u(t)) t≥t0 are chosen all x(t) and y(t) for t ≥ t 0 can be computed [25, (21) on p. 392] via

x(t) = Φ(t, t 0 )x(t 0 ) + t-1 i=t0 Φ(t, i + 1)B(i)u(i), y(t) = C(t)x(t) + D(t)u(t), with Φ(t, t 0 ) = A(t -1) • • • A(t 0 ). (2) 
For excellent surveys of the stability theory of equations [START_REF] Bourbaki | Commutative Algebra[END_REF] and its history we refer to the books [START_REF] Rugh | Linear System Theory[END_REF] and [START_REF] Hinrichsen | Mathematical Systems Theory I[END_REF]Ch. 3,, cf. also [START_REF] Kamen | A Transfer-Function Approach to Linear Time-Varying Discrete-Time Systems[END_REF].

In the present paper we treat higher order and implicit linear systems of difference equations with rational coefficients d j=0 R j (t)w(t + j) = u(t), t ≥ n 0 , R j ∈ C(t) p× , w(t) ∈ C , u(t) ∈ C p , (3) that may be homogeneous (u = 0) or inhomogeneous (u = 0). Here the entries of the R j belong to the field C(t) of rational functions in the indeterminate t and it is assumed that no t ≥ n 0 is a pole of any R j so that R j (t) ∈ C p× for all t ≥ n 0 . For all n ≥ n 0 we identify R j = (R j (t)) t≥n and therefore use the same letter for the indeterminate and the time instants. For n ≥ n 0 the interval n + N = [n, ∞) := {t ∈ N; t ≥ n} is the time-set with initial time n and the space of sequences

C n+N = {a = (a(n), a(n + 1), • • • ); ∀t ≥ n : a(t) ∈ C} (4) 
is interpreted as the space of signals starting at time n. We identify

(C p× ) n+N = (C n+N ) p× X = (X ij ) i≤p,j≤ = (X(n), X(n + 1), • • • ), X ij ∈ C n+N , X(t) ∈ C p× , X ij (t) = X(t) ij . (5) 
The homogeneous equations [START_REF] Bourlès | The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients[END_REF] give rise to the solution spaces or behaviors

∀n ≥ n 0 : B(R, n) :=    w ∈ (C n+N ) ; ∀t ≥ n : d j=0 R j (t)w(t + j) = 0    . (6) 
Stability theory of these solution spaces concerns the behavior of the trajectories w(t) for t → ∞.

Remark 1.1. We give some arguments for the suitability of F := C(t) as coefficient field. The case of periodic coefficients is not discussed here since it can be reduced to the LTI-theory.

(a) The following properties of F are decisive: (i) F is a field or, at least, a noetherian domain. (ii) If a(t) belongs to F then so does a(t + 1). (iii) For nonzero a ∈ F there is n ≥ 0 such that no t ≥ n is a pole or zero of a. (iv) A rational function grows at most polynomially.

(b) Rational functions have obvious advantages for numerical computations since they are given by finitely many numbers. They appear as Padé approximants of more general functions. They are often used in engineering models, cf. [2, (8.14), (8.15)], [START_REF] Zidane | Linear time-varying control of the vibrations of flexible structures[END_REF]Appendix]. Assume that f (t) = t k g(t) ∈ C 0 [n 0 , ∞), n 0 > 0, k ∈ Z, is any continuous coefficient function such that g(∞) := lim t→∞ g(t) exists and define g 1 (t) := g(t -1 ) ∈ C 0 [0, n -1 0 ]. By the Stone-Weierstrass theorem there is a polynomial a 1 (t) that approximates g 1 arbitrarily. Then the rational function a(t) := t k a 1 (t -1 ) is a good approximation for f on [n 0 , ∞). Hence rational functions approximate a large class of more general coefficient functions, but not all, for instance f (t) = 2 + sin(t). Such approximations raise the problem of robustness, of course. Note moreover that for the questions of stability the time instant n 0 can be chosen as large as desired. So arbitrary LTV-systems with continuous coefficient functions f (t) = t k g(t), k ∈ Z, and existing g(∞) can be approximated for stability problems by the systems of this paper. Linearization of a nonlinear system in the neighborhood of a nominal trajectory leads to LTV-systems. Since this is only an approximation process the further approximation of the coefficients by rational functions seems suitable. In item 7. of Section 4 and more detailed in [START_REF] Bourlès | Weak exponential stability of linear timevarying differential behaviors[END_REF] we describe another larger coefficient field with the properties (i)-(iv) [START_REF] Van Der Put | Galois Theory of Difference Equations[END_REF]Ex. 1.2]. (c) For scalar state space systems x(t + 1) = a(t)x(t) or, more generally, those of (1) one may choose arbitrary a = (a(t)) t≥n0 ∈ C n0+N or A [25, p. 383]. It is surprising that Ehrenpreis' fundamental principle holds for arbitrary discrete, even multidimensional behaviors with arbitrary varying coefficients [START_REF] Bourlès | The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients[END_REF]Thm. 2.1]. For the behavioral stability theory such general coefficients are not suitable. We explain this for the continuous case where the effects are clearer. So consider differential equations for smooth signals, the coefficient field of meromorphic coefficients [START_REF] Zerz | An Algebraic Analysis Approach to Linear Time-varying Systems[END_REF], [START_REF] Ilchmann | A Behavioral Approach to Time-Varying Linear Systems: Part 1: General Theory[END_REF] and the differential equation cos 2 (t)x (t)-x(t) = 0 with its solution x(t) = c exp (tan(t)). The infinitely many zeros (n + 1/2)π, n ∈ Z, of cos 2 (t) or poles of tan(t) are those time instants where the system explodes. There is no reasonable asymptotic behavior of this system. This suggests that the condition (iii) is essential for a reasonable stability theory. Due to these singularities the quoted authors, see also [2, §5.4.2.2], omit the generally infinite, discrete set of singularities from the time domain of the signals. This procedure, however, does not solve the problem because a time domain with infinitely many gaps is beyond engineering reality. Hence holomorphic or even continuous coefficients are suitable for the stability theory of state space systems [START_REF] Rugh | Linear System Theory[END_REF], [START_REF] Hinrichsen | Mathematical Systems Theory I[END_REF], [START_REF] Hill | Exponential stability of time-varying linear systems[END_REF] , but not for that of general behaviors. (d) Coefficient rings of smooth functions are neither domains nor noetherian in general and this is inherited by the associated rings of difference or differential operators. Algebraic properties of these rings are not known, a behavioral duality theory cannot be developed and there are no algebraic algorithms that are so important in the standard LTI (linear time-invariant) systems theories.

In contrast to the LTI-case and in analogy to, for instance, [START_REF] Rugh | Linear System Theory[END_REF]Defs. 22.1,22.5] the whole family (B(R, n)) n≥n0 of behaviors and not just B(R, n 0 ) has to be investigated where n 0 depends on the equations. For the comparison of different systems of equations [START_REF] Bourlès | The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients[END_REF] we introduce the equivalence relation of the behavior families from [START_REF] Cartan | Homological Algebra[END_REF] by

(B(R, n)) n≥n0 ≡ (B(R , n)) n≥n 0 : ⇐⇒ ∃n 1 ≥ max(n 0 , n 0 )∀n ≥ n 1 : B(R, n) = B(R , n). (7) 
The equivalence class is denoted by cl ((B(R, n)) n≥n0 ) (cl for class, not for closure) and is called the behavior defined by (3), cf. Example 1.5.

Remark 1.2. To investigate cl ((B(R, n)) n≥n0 ) for given equations ( 3) means to study B(R, n) for n ≥ n 1 ≥ n 0 where n 1 is a possibly large initial time. The transient behavior of trajectories up to the time n 1 is disregarded. This set-up is very suitable for stability questions where the limits lim t→∞ w(t) play a dominant part.

Principal Results 1.3. We prove a module-behavior duality for the new behaviors. It implies the standard consequences for Willems' elimination, the fundamental principle, input/output decompositions and controllability. We characterize autonomous behaviors and show that they are isomorphic to state space behaviors. Therefore the examples in [START_REF] Rugh | Linear System Theory[END_REF] are typical also for the autonomous LTV-behaviors of this paper. We introduce a new notion of exponential stability (e.s.) of autonomous behaviors since uniform exponential stability (u.e.s.) [START_REF] Rugh | Linear System Theory[END_REF]Def. 22.5] is not preserved by behavior isomorphisms (cf. [START_REF] Rugh | Linear System Theory[END_REF]Thm. 6.15] and Example 3.2) and therefore unsuitable for the behavioral theory. We show that e.s. autonomous behaviors form a Serre subcategory of the category of all behaviors. As corollaries we prove various stability and instability results for autonomous behaviors.

Definition 1.4. A class of objects or a full subcategory S of an abelian category C is called a Serre subcategory if it is closed under isomorphisms, subobjects, factor objects and extensions.

We first introduce the operator algebra. The field C(t) is a difference field with its natural automorphism α defined by α(h)(t) := h(t + 1) for h ∈ C(t). It gives rise to the noncommutative skew-polynomial C-algebra A in an indeterminate q [19, §1.2]:

A := C(t)[q; α] = ⊕ j∈N C(t)q j f = j∈N f j q j , f j ∈ C(t), with the multiplication (h 1 q j1 )(h 2 q j2 ) = h 1 α j1 (h 2 )q j1+j2 for h 1 , h 2 ∈ C(t), α j1 (h 2 )(t) = h 2 (t + j 1 ), qh(t) = h(t + 1)q. (8)
The q j , j ∈ N, are a C(t)-basis of A. By definition almost all (up to finitely many) coefficients f j of f are zero. The algebra A is a left and right principal ideal domain and its finitely generated (f.g.) modules are precisely known [19, Thm. 1.2.9, §5.7, Cor. 5.7.19 ]. The category of left A-modules is denoted by A Mod. The category of f.g. left A-modules M with a given list of generators or, equivalently, a given representation M = A 1× /U as factor module of a free module A 1× by a submodule U and with the A-linear maps as morphisms is denoted by A Mod fg . Fliess [START_REF] Fliess | Some basic structural properties of generalized linear systems[END_REF], [START_REF] Fliess | Reversible Linear and Nonlinear Discrete-Time Dynamics[END_REF] calls a module M with the additional structure M = A 1× /U a linear dynamic or (discrete LTV-)system. If the rows of R = j∈N R j q j ∈ A p× , R j ∈ C(t) p× , generate U , i.e., U = A 1×p R, and if no t ≥ n 0 is a pole of any R j we obtain the behaviors

∀n ≥ n 0 : B(R, n) =    w ∈ (C n+N ) ; ∀t ≥ n : j∈N R j (t)w(t + j) = 0    and B(U ) := cl ((B(R, n) n≥n0 ) . (9 
) Lemma 2.5 shows that B(U ) depends on U only and not on the special choice of R. We call B(U ) the behavior defined by U or associated to A 1×q /U , see Remark 1.2.

Example 1.5. Consider

U := Aq = A(tq) ⊂ A, hence B(Aq) = B(A(tq)), indeed ∀n ≥ 1 : B(q, n) = B(tq, n) = w ∈ C n+N ; ∀k ≥ n + 1 : w(k) = 0 , but B(q, 0) = w ∈ C N ; ∀k ≥ 1 : w(k) = 0 B(tq, 0) = w ∈ C N ; ∀k ≥ 2 : w(k) = 0 . (10) Also B(A(t -2) -1 q) = B(Aq), but B((t -2) -1 q, n) is not defined for n ≤ 2.
This motivates the introduction of the equivalence relation [START_REF] Chyzak | OreModules: A symbolic package for the study of multidimensional linear systems[END_REF].

In Cor. and Def. 2.7 we extend the construction of B(U ) to a contravariant functor

A 1× /U → B(U ), ϕ : A 1× 1 /U 1 → A 1× 2 /U 2 → (B(ϕ) : B(U 2 ) → B(U 1 )) , Hom(B(U 2 ), B(U 1 )) := B(ϕ); ϕ : A 1× 1 /U 1 → A 1× 2 /U 2 . (11) 
Notice that no C n+N is canonically an A-module and that the behavior B(U ) is not of the form Hom A (A 1× /U, W ) for a natural signal module A W .

Theorem 1.6. The functor (11) is a duality (contravariant equivalence). More precisely the following properties hold:

1. It transforms exact sequences of modules into exact sequences of behaviors.

For all

A 1× 1 /U 1 , A 1× 2 /U 2 ∈ A Mod fg there is the C-linear isomorphism Hom A (A 1× 1 /U 1 , A 1× 2 /U 2 ) ∼ = Hom(B(U 2 ), B(U 1 )), ϕ → B(ϕ). (12) 3. For all U 1 , U 2 ⊆ A 1× : U 1 ⊆ U 2 ⇐⇒ B(U 2 ) ⊆ B(U 1 ), especially U 1 = U 2 ⇐⇒ B(U 2 ) = B(U 1 ). ( 13 
)
The injectivity of the map (12) replaces the cogenerator property of the signal module C[q] C N in the standard discrete LTI-systems theory. Section 2 is devoted to the proof of Thm. 1.6 in several steps. The last step is contained in Cor. 2.12 where the injectivity of ( 12) is proven. The surjectivity holds by definition in [START_REF] Fliess | Discussing some examples of linear system interconnections[END_REF]. The following definition of e.s. of B(U ) from ( 9) is justified by Lemma 3.7 and Example 3.2 that show that e.s. is preserved by behavior isomorphisms, but u.e.s. is not.

A sequence (ϕ(n)) n≥n0 ∈ C n0+N is called a sequence of at most polynomial growth (p.g.s.) if ∃c ≥ 1∃m ∈ N∀n ≥ n 0 : |ϕ(n)| ≤ cn m . ( 14 
)
This p.g.s. is called positive, ϕ > 0, if ϕ(n) > 0 for all n ≥ n 0 . On all finitedimensional vector spaces C , C 1× we use the maximum norm

v := max {|v i |; i = 1, • • • , } , v = (v 1 , • • • , v ) ∈ C 1× . ( 15 
)
Definition 1.7. The behavior B(U ) from ( 9) is called exponentially stable if

∃n 1 ≥ n 0 ∃d ∈ N∃ρ with 0 < ρ < 1∃ p.g.s. ϕ ∈ C n1+N with ϕ > 0 ∀t ≥ n ≥ n 1 ∀w ∈ B(R, n) : w(t) ≤ ϕ(n)ρ t-n x(n) where x(n) := (w(n), • • • , w(n + d -1)). (16) 
It is called uniformly exponentially stable if (ϕ(n)) n≥n1 can be chosen constant.

An e.s. behavior B(U ) is asymptotically stable in the sense that

∀n ≥ n 1 ∀w ∈ B(R, n) : lim t→∞ w(t) = 0. ( 17 
)
Nonuniform e.s. state space systems with a nondecreasing factor ϕ(n) are also defined in [21, §3]. An e.s. behavior is always autonomous, but the trajectories w are not uniquely determined by w(n) alone, but only by the initial vector x(n). Theorem 1.8. The exponentially stable behaviors form a Serre subcategory of the category of all LTV-behaviors. This means that for an exact sequence of modules and its dual exact behavior sequence

0 → A 1× 1 /U 1 ϕ -→ A 1× 2 /U 2 ψ -→ A 1× 3 /U 3 → 0 0 ← B(U 1 ) B(ϕ) ←- B(U 2 ) B(ψ) ←- B(U 3 ) ← 0 (18) 
the behavior B(U 2 ) is e.s. if and only B(U 1 ) and B(U 3 ) are e.s..

Corollary 1.9. The series interconnection of two input/output behaviors is e.s. if and only if both building blocks are (cf. Section 4, item 5).

Thm. 1.8 and Cor. 1.9 are equivalent in the sense that the theorem also follows easily from the corollary. Thm. 1.8 also holds for discrete LTI-behaviors where e.s. behaviors are defined as autonomous behaviors whose characteristic variety (=set of characteristic values) is contained in the open unit disc. The proof of the LTI-result is algebraic and much simpler than that of Thm. 1.8. Due to [START_REF] Chyzak | OreModules: A symbolic package for the study of multidimensional linear systems[END_REF], for instance, most results of this paper are constructive. However, there is presently no algorithm to check exponential stability in general. Continuous LTVsystems have been treated more often and in more detail, see, for instance, the books [START_REF] Rugh | Linear System Theory[END_REF] and [START_REF] Bourlès | Linear Time-Varying Systems[END_REF] and the papers [START_REF] Fröhler | Continuous time-varying linear systems[END_REF], [START_REF] Zerz | An Algebraic Analysis Approach to Linear Time-varying Systems[END_REF], [START_REF] Hill | Exponential stability of time-varying linear systems[END_REF]. The Sections 2 resp. 3 are devoted to the proof of the main Theorems 1.6 resp. 1.8. In Section 2.5 we moreover characterize autonomous LTV-behaviors. The Sections 3.5 and 3.6 are devoted to various stability and instability results for autonomous behaviors. In particular we also discuss the existence and properties of quasi-poles of an autonomous behavior (cf. [2, §6.7.1]). In Section 4 we use the duality Thm. 1.6 to embed standard LTI-results into our LTV-frame-work and to derive LTV-analogues of Willems' elimination, the fundamental principle, input/output decompositions and controllability. We refer to [2, Part 1, pp. for algebraic background material. Abbreviations: e.s.= exponentially stable, f.d.=finite-dimensional, f.g.=finitely generated, p.g.s.=sequence of at most polynomial growth, u.e.s.= uniformly e.s., w.l.o.g.= without loss of generality, A •×• = the set of matrices with entries in A of all (suitable) sizes,

LTV-systems 2.1 Complements of the basic data

We complete the general data of the Introduction.

Remark 2.1. The derivations of Section 2 hold for any base field instead of the complex field C. The definition of e.s. needs analysis and therefore Section 3 can be carried out over the fields R or C only. The signals w(t) are always functions of the real time variable t, but in this paper the values of the signals may be complex. Since R ⊂ C the complex theory contains the real one. Equations like e it = cos(t) + i sin(t) and the complex eigenvalues of real matrices suggest to use complex coefficients and to use A = C(t)[q; α] instead of R(t)[q; α], and this is done in this paper.

To write (3) as operator equation we also consider C n+N as difference algebra. Its multiplication, one-element and algebra endomorphism α : C n+N → C n+N are given as

(ab)(t) := a(t)b(t), 1 C n+N := ( n 1, 1, • • • ), α(a)(t) := a(t + 1), a, b ∈ C N , t ≥ n. (19) 
The endomorphism α is the standard forward shift. As in [START_REF] Cluzeau | Factoring and decomposing a class of linear functional systems[END_REF] 

B(n) := C n+N [q; α] = ⊕ j∈N C n+N q j f = j∈N f j q j , (f i q i )(g j q j ) = f i α i (g j )q i+j , f i , g j ∈ C n+N , (α i (g))(t) = g(t + i). (20) 
The C-algebra B(n) is neither a domain nor noetherian and, in contrast to A, little is known about its algebraic properties and modules. There is the canonical action f • w of f = j f j q j ∈ B(n) on w ∈ C n+N , defined by 

(f • w)(t) := j f j (t)w(t + j), (q • w)(t) = w(t + 1), f ∈ B(n), w ∈ C n+N .
= (w 1 , • • • , w ) ∈ (C n+N ) by R = (R µ,ν ) 1≤µ≤p,1≤ν≤ = d j=0 R j q j ∈ B(n) p× , R µ,ν ∈ B(n), R j ∈ C n+N p× , R • w := ν=1 R µ,ν • w ν µ=1,••• ,p ∈ (C n+N ) p , ∀t ≥ n : (R • w)(t) = j R j (t)w(t + j). (22)
Note that there is no action of A on C n+N since, for instance (t-n) -1 •w, w ∈ C n+N , is not defined. Recall the poles and zeros of a nonzero rational function h ∈ C(t): Write h = f g -1 , f, g ∈ C[t], f, g = 0, with coprime f and g. A pole resp. a zero z ∈ C of h is characterized by

f (z) = 0, g(z) = 0, h(z) := ∞ resp. f (z) = 0, g(z) = 0, h(z) = 0. Then dom(h) = C \ {z ∈ C; h(z) = ∞} (23) 
is the open domain of definition of h as function. For almost all n (up to finitely many) the lattice n + N is contained in dom(h) and we identify

h = ident. (h(t)) t≥n ∈ C n+N , n + N ⊆ dom(h), since ∀n ∈ N∀h 1 , h 2 ∈ C(t) with n + N ⊆ dom(h i ), i = 1, 2 : (h 1 = h 2 ⇐⇒ (h 1 (t)) t≥n = (h 2 (t)) t≥n ) . (24) 
For

R = j R j q j ∈ A p× , R j = (R j,µ,ν ) 1≤µ≤p,1≤ν≤ ∈ C(t) p× , define dom(R j ) := µ,ν dom(R j,µ,ν ), dom(R) := j dom(R j ). (25) 
If

n 0 + N ⊆ dom(R) then ∀n ≥ n 0 : R j = ident. (R j (t)) t≥n ∈ C n+N p× , R = j R j q j ∈ B(n) p× and B(R, n) = (6) w ∈ C n+N ; R • w = 0 . ( 26 
)
The last equation is the usual operator description of the behavior. The elements in C \ dom(R j ) resp. in C \ dom(R) are called the poles of R j resp. of R. The behaviors B(R, n) are defined for all n ≥ n 0 if and only if no t ≥ n 0 is a pole of R. Since the ring B(n) is noncommutative the behavior B(R, n) is a C-space only and not a C n+N or B(n)-module.

A directed system category

We formalize the equivalence relation from [START_REF] Chyzak | OreModules: A symbolic package for the study of multidimensional linear systems[END_REF] in a more general situation with good algebraic properties and introduce a new category B. The basic example for our approach is Example 2.2 below.

Consider N as directed ordered set. A directed system over N of C-vector spaces is a countable family

V = (V i , g i ) i∈N = V 0 g0 -→ V 1 g1 -→ V 2 g2 -→ .... (27) 
of C-spaces V i and C-linear maps g i . We identify a directed system (V i , g i ) i≥n with the longer system

(V i , g i ) i≥n = ident. (V i , g i ) i≥0 := 0 → • • • → n-1 0 → V n gn -→ V n+1 → • • • . ( 28 
)
A morphism from one such system to another is a family of C-linear maps

Φ = (Φ i ) i∈N : V = (V i , g i ) i∈N -→ V = (V i , g i ) i∈N with ∀i ∈ N : Φ i : V i → V i , Φ i+1 g i = g i Φ i . (29) 
The set Hom(V, V ) of all these morphisms is naturally a C-space. The composition of morphisms is, of course, the componentwise one and with this the directed systems form a category. It is abelian where kernels, cokernels etc. are formed componentwise.

We form the new category B as the quotient category of the direct system category modulo the following equivalence relation ≡:

V = (V i , g i ) i∈N ≡ V = (V i , g i ) i∈N : ⇐⇒ ∃n∀i ≥ n : V i = V i , g i = g i . (30) 
The equivalence class is denoted by cl(V ). These cl(V ) are the objects of B. With the identification from (28) we obtain

cl ((V i , g i ) i≥0 ) = cl ((V i , g i ) i≥n ) (31) 
The study of cl ((V i , g i ) i≥0 ) means that of (V i , g i ) i≥n for possibly large n. For two objects cl ((V i , g i ) i≥n0 ) and cl (V i , g i ) i≥n 0 we consider direct system morphisms

Φ := (Φ i ) i≥n1 : (V i , g i ) i≥n1 → (V i , g i ) i≥n1 , Ψ := (Ψ i ) i≥n2 : (V i , g i ) i≥n2 → (V i , g i ) i≥n2 (32) 
where n 1 , n 2 ≥ max(n 0 , n 0 ) and define the equivalence relation

Φ ≡ Ψ : ⇐⇒ ∃n ≥ max(n 1 , n 2 )∀i ≥ n : Φ i = Ψ i . ( 33 
)
The equivalence class is denoted by cl(Φ). Then the set of morphisms from cl(V ) to cl(V ) is defined as

B(cl(V ), cl(V )) := Hom (cl(V ), cl(V )) := {cl(Φ); Φ = (Φ i ) i≥n : (V i , g i ) i≥n → (V i , g i ) i≥n } . ( 34 
)
With the componentwise C-linear structure and composition we obtain the category B of equivalence classes of directed systems. This is abelian too, kernels, cokernels and images being also formed componentwise.

Example 2.2. The signal spaces C n+N , n ∈ N, give rise to the directed system

C 0+N → • • • → C n+N proj n ---→ C (n+1)+N proj n+1 -----→ • • • where proj n : C n+N → C n+1+N , w = (w(t)) t≥n → w| n+1+N := (w(t)) t≥n+1 ,
and

W := cl C 0+N → • • • → C n+N proj n ---→ C (n+1)+N proj n+1 -----→ • • • . (35) 
This directed system consists of C-algebras and C-algebra homomorphisms. Under the assumptions of ( 9) we obtain the subsystems

B(R) := (B(R, n), proj n ) n≥n0 ⊆ ((C n+N ) , proj n ) n≥n0 and cl (B(R)) ⊆ W = cl ((C n+N ) , proj n ) n≥n0 . ( 36 
)
Definition 2.3. The equivalence class cl(B(R)) from ( 36) is called the LTV-behavior associated with the matrix R ∈ A p× .

The functor Mod

fg A → B, A 1×q /U → B(U )
We are going to show that in (9) the behavior B(U ) ⊆ W is well-defined and that the assignment A 1× /U → B(U ) from the objects of A Mod fg to those of B can be canonically extended to a functor A Mod fg → B.

Assume the data from ( 9), ie.,

R = j R j q j ∈ A p× , U = A 1×p R, M = A 1× /U, n 0 + N ⊆ dom(R), ∀n ≥ n 0 : B(R, n) :=    w ∈ (C n+N ) ; ∀t ≥ n : j R j (t)w(t + j) = 0    . ( 37 
)
The behaviors B(R, n) require the knowledge of U , the knowledge of M alone does not determine the representation

M = A 1×q /U . The standard basis δ = (δ 1 , • • • , δ ) ∈ (A 1× ) gives rise to the column w = (w 1 , • • • , w ) ∈ M , w i := δ i + U, (38) 
of generators of M . Conversely, the epimorphism

ϕ w : A 1× → M, ξ = ξδ → ξw = i=1 ξ i w i , with ϕ w (δ i ) = w i , ker(ϕ w ) = U, (39) 
shows that the system of generators w of M determines both the dimension of A 1× and its submodule U . Therefore the category A Mod fg of f.g. A-modules is defined as indicated in the Introduction: The objects of the category are pairs (M, w) of f.g. modules M with a given list w of generators or a given representation M = A 1× /U . Notice that in M = A 1× /U a special system of generators of U , i.e., a representation U = A 1×p R or finite presentation (=exact sequence)

A 1×p •R -→ A 1× can -→ M → 0, R ∈ A p× , (40) 
is not assumed or part of the structure. A morphism ϕ : M = A 1× /U → M = A 1× /U is just an A-linear map without additional structure, i.e.,

Hom(A 1× /U, A 1× /U ) := Hom A (M, M ), (41) 
and the composition of morphisms is also just that in A Mod. If w and w are two lists of generators of a f.g. M of possibly different lengths then (M, w) and (M, w ) are different objects in A Mod fg and id M : (M, w) → (M, w ) is an isomorphism, but not the identity. Exactness in A Mod fg is defined as that in A Mod. A kernel of a map

ϕ : (M, w) → (M , w ) is (ker(ϕ : M → M ), k)
where k is any generating system of ker(ϕ). The category A Mod fg is abelian and the kernel of a morphism is unique up to isomorphism as in any abstract abelian category.

Example 2.4. This example explains the structural necessity of w or U already in the LTI-theory.

M := A = A1 = Aw + + Aw -, w + = 1 + q, w -= 1 -q. U 1 := ker(A → A, 1 → 1) = 0, U 2 := ker(A 1×2 → A, (ξ + , ξ -) → ξ + w + + ξ -w -) = A(1 -q, -1 -q). ( 42 
) Then B(U 1 ) ∼ = B(U 2 ), but B(U 1 ) = B(U 2 )
where

W (n) = B(1, n) ∼ = B((1 -q, -1 -q), n) = ( w1 w2 ) ∈ W (n) 2 ; w 1 (t) -w 1 (t + 1) -w 2 (t) -w 2 (t + 1) = 0 , w ↔ ( w1 w2 ) , w(t) = w 1 (t) + w 1 (t + 1) + w 2 (t) -w 2 (t + 1). ( 43 
)
Lemma 2.5. Assume a submodule U ⊆ A 1× , a matrix R ∈ A p× with U = A 1×p R and the data from (37). Then the object

B(U ) : = Def. (30) cl ((B(R, n), proj n ) n≥n0 ) ∈ B ( 44 
)
depends on U only and not on the special choice of R, and hence (9

) is justified. Moreover U 1 ⊆ U 2 implies B(U 2 ) ⊆ B(U 1 ). Proof. Assume that U 1 = A 1×p1 R 1 ⊆ U 2 = A 1×p2 R 2 ⊆ A 1× . Then there is a matrix X ∈ A p1×p2 such that R 1 = XR 2 . Choose n 1 ≥ n 0 such that n 1 + N ⊆ dom(R 1 ) ∩ dom(R 2 ) ∩ dom(X). Then ∀n ≥ n 1 : R 1 = XR 2 ∈ B(n) p1× and B(R 2 , n) := w ∈ C n+N ; R 2 • w = 0 ⊆ B(R 1 , n) =⇒ cl ((B(R 2 , n), proj n ) n≥n0 ) = cl ((B(R 2 , n), proj n ) n≥n1 ) ⊆ cl ((B(R 1 , n), proj n ) n≥n1 ) . (45) 
If U 1 = U 2 the reverse inclusion follows likewise and implies the independence of

B(U ) in (44) of the choice of R. Eq. (45) implies B(U 2 ) ⊆ B(U 1 ) if U 1 ⊆ U 2 .
Next we extend the assignment A 1× /U → B(U ) to a contravariant functor. Let M i = A 1× i /U i , i = 1, 2, be two f.g. modules and ϕ : M 1 → M 2 an A-linear map.

Since A 1× 1 is free ϕ can be embedded into various commutative diagrams with exact rows

0 U 1 / / U 1 A 1× 1 ⊆ / / A 1× 1 M 1 can1 / / M 1 0 / / 0 U 2 / / U 2 A 1× 2 ⊆ / / A 1× 2 M 2 can2 / / M 2 0 / / U 1 U 2 (•P )| U 1 A 1× 1 A 1× 2 •P M 1 M 2 ϕ=(•P ) ind where P ∈ A 1× 2 , U 1 P ⊆ U 2 , ϕ(ξ + U 1 ) = ξP + U 2 . ( 46 
)
The following corollary is a standard result from module theory and follows easily from the diagram in (46). It was used by Cluzeau and Quadrat in systems theory [START_REF] Cluzeau | Factoring and decomposing a class of linear functional systems[END_REF].

Corollary 2.6. (i) The map P → (•P ) ind induces the isomorphism

P ∈ A 1× 2 ; U 1 P ⊆ U 2 / P ∈ A 1× 2 ; A 1× 1 P ⊆ U 2 ∼ = Hom A (M 1 , M 2 ). ( 47 
) (ii) The map (•P ) ind : A 1× 1 /U 1 → A 1× 2 /U 2 is an isomorphism if and only if it is bijective or (•P ) -1 ind = (•Q) ind : A 1× 2 /U 2 → A 1× 1 /U 1 exists. The necessary and sufficient conditions for Q ∈ A 2 × 1 to satisfy (•Q) ind = (•P ) -1 ind are U 2 Q ⊆ U 1 , A 1× 1 (P Q -id 1 ) ⊆ U 1 , A 1× 2 (QP -id 2 ) ⊆ U 2 . ( 48 
)
So the additional structure M = A 1× /U implies canonical matrix representations of the morphisms in A Mod fg , a fact that is well-known from f.d. vector spaces with given bases. For the data from ( 46) and (47) we additionally assume that

U i = A 1×pi R i . The condition A 1×p1 R 1 P = U 1 P ⊆ U 2 = A 1×p2 R 2 implies the existence of X ∈ A p1×p2 with R 1 P = XR 2 . Again we choose n 1 sufficiently large such that R 1 , R 2 , P, X ∈ B(n) •×• for n ≥ n 1 . For w ∈ B(R 2 , n) this implies R 1 • (P • w) = XR 2 • w = X • (R 2 • w) = X • 0 = 0 and hence P • : B(R 2 , n) = w ∈ C n+N 1 ; R 2 • w = 0 → B(R 1 , n), w → P • w. ( 49 
)
Corollary 2.7. For an A-linear map

ϕ = (•P ) ind : A 1× 1 /U 1 → A 1× 2 /U 2 define P • := B(ϕ) := B ((•P ) ind ) := cl ((P • : B(R 2 , n)) → B(R 1 , n)) n≥n1 ) : B(U 2 ) = cl ((B(R 2 , n), proj n ) n≥n1 ) → B(U 1 ). (50) 
Then B(ϕ) is well-defined, i.e., independent of the choice of P , and the assignment

A Mod fg → B, A 1× /U → B(U ), ϕ = (•P ) ind → B(ϕ) = P •, (51) 
is a contravariant additive functor.

Proof. Equation (49

) implies P • : B(U 2 ) → B(U 1 ). If also ϕ = (•P 1 ) ind equation (47) implies A 1× 1 (P 1 -P ) ⊆ U 2 = A 1× 2 R 2 or
, equivalently, the existence of a matrix X such that P 1 -P = XR 2 . For sufficiently large n 2 ≥ n 1 this implies

P 1 , P, X ∈ B(n) 1 × 2 for n ≥ n 2 and hence ∀w ∈ B(R 2 , n) : P 1 • w = P • w + X • (R 2 • w) = P • w =⇒ P • = P 1 • . (52)
Thus B(ϕ) is well-defined. The functorial property and the additivity of this assignment follow directly from the explicit construction of B(U ) and B(ϕ), cf. the definition of the category B in Section 2.2.

Remark 2.8.

If A W is any signal module and M = A 1× /U, U = A 1×p R, then B W (U ) := U ⊥ := w ∈ W ; R • w = 0 ∼ = Malgrange Hom A (M, W ). ( 53 
)
This shows that B(U ) is the analogue of Hom A (M, W ) in standard behavioral systems theory, but B(U ) is not of this form for a natural W . Recall that A W is injective if and only if Hom A (-, W ) is exact and a cogenerator if and only if

Hom A (M 1 , M 2 ) → Hom C (Hom A (M 2 , W ), Hom A (M 1 , W )) , ϕ → Hom(ϕ, W ), ( 54 
) is a monomorphism for all M 1 , M 2 ∈ A Mod.

The exactness of

A 1× /U → B(U )
In this section we prove the exactness of the functor A 1× /U → B(U ). This is the analogue of the injectivity of the signal modules in the standard LTI-theory. Consider f.g. modules M i := A 1× i /U i ∈ A Mod fg , i = 1, 2, 3, and a sequence of A-linear maps

M 1 ϕ=(•P ) ind -------→ M 2 ψ=(•Q) ind -------→ M 3 , U 1 P ⊆ U 2 , U 2 Q ⊆ U 3 . (55) 
Application of the functor A 1× /U → B(U ) furnishes the sequence of behaviors

B(U 1 ) B(ϕ)=P • ← ------B(U 2 ) B(ψ)=Q• ← ------B(U 3 ). (56) 
First we prove that P

• : B(U 2 ) → B(U 1 ) is an epimorphism if ϕ = (•P ) ind is injective. The simplest case is that 1 = 2 = 1, U 1 = U 2 = 0, 0 = P = P d q d + • • • + P 0 ∈ A and P d = 0.
If n 0 is chosen such that no t ≥ n 0 is a pole of any P i or a zero of P d then

P • : C n+N = B(0, n) → C n+N = B(0, n), w → P • w = u, n ≥ n 0 , with (P • w)(t) = P d (t)w(t + d) + • • • + P 0 (t)w(t) = u(t), (57) 
is surjective since the last equation can be solved inductively. Therefore

P • : W = B(0) = cl((C n+N ) n≥n0 ) → W (58) 
is an epimorphism. In the general case let w = (w

1 , • • • , w 1 ) ∈ M 1 1 be the gener- ating system of M 1 . Then there is v = (v 1 , • • • , v ) ∈ M 2 such that M 2 = 1 i=1 Aϕ(w i ) + j=1 Av j =⇒ M 2 = A 1× 2 /U 2 where 2 = 1 + , U 2 = ker A 1×( 1+ ) → M 2 , (ξ, η) → ϕ(ξw) + ηv . (59)
We obtain a commutative diagram

A 1× 1 A 1×( 1 + ) •(id 1 ,0) / / A 1×( 1+ ) A 1× 2 •Q / / M 1 = A 1× 1 /U 1 M 2 = A 1×( 1+ ) /U 2 ϕ / / M 2 = A 1×( 1+ ) /U 2 M 2 = A 1× 2 /U 2 id M 2 / / A 1× 1 M 1 = A 1× 1 /U 1 can1 A 1×( 1+ ) M 2 = A 1×( 1+ ) /U 2 can 2 A 1× 2 M 2 = A 1× 2 /U 2 can2 ( 60 
)
where Q is a suitable matrix that induces the identity isomorphism, i.e., (•Q) ind = id M2 , and therefore also the isomorphism Q

• : B(U 2 ) ∼ = B(U 2 ). It therefore suffices to prove that (id 1 , 0)• : B(U 2 ) → B(U 1
) is an epimorphism, i.e., surjective for large n. By induction on we assume = 1 wlog.

Lemma 2.9.

If (•P ) ind : A 1× 1 /U 1 → A 1×( 1+1) /U 2 (61) is injective then P • : B(U 2 ) → B(U 1
) is an epimorphism.

Proof. By the preceding reduction steps we may assume that a special injective linear map

(•(id 1 , 0)) ind : A 1× 1 /U 1 → A 1×( 1+1) /U 2 (62) 
is given. We have to show that

(id 1 , 0)• = proj : B(U 2 ) → B(U 1 ), w = (w 1 , • • • , w 1 , w 1 +1 ) → (w 1 , • • • , w 1 ) , (63) is an epimorphism. Let U 2 = A p2×( 1+1) R 2 , R 2 = (R 2 , R 2 ) ∈ A p2×( 1+1) . ( 64 
)
Wlog we assume R 2 = 0. Then a := A 1×p2 R 2 is a nonzero left ideal of A and cyclic of the form

a = Af, 0 = f = f d q d + • • • + f 0 ∈ A, f d = 0, hence R 2 = Y 2 f, A 1×p2 Y 2 = A.
The relation module

K := ξ ∈ A 1×p2 ; ξR 2 = 0 = {ξ ∈ A; ξY 2 = 0} ⊆ A 1×p2
is free of dimension p 2 -1. Let the rows of X 1 ∈ A (p2-1)×p2 be a basis of K. We obtain the exact sequence of free modules

0 → A 1×(p2-1) •X1 -→ A 1×p2 •Y2 -→ A → 0. (65) 
In particular,

X 1 is a universal left annihilator of R 2 or Y 2 . Standard arguments furnish a retraction Y 1 ∈ A p2×(p2-1) of X 1 with X 1 Y 1 = id p2-1 and a section X 2 ∈ A 1×p2 of Y 2 with X 2 Y 2 = 1 such that 0 ← A 1×(p2-1) •Y1 ←-A 1×p2 •X2 ←-A ← 0 is exact too and E 1 := Y 1 X 1 = E 2 1 , E 2 := Y 2 X 2 = E 2 2 , E 1 + E 2 = Y 1 X 1 + Y 2 X 2 = id p2 .
(66) A simple computation yields

U 1 = (•(id 1 , 0)) -1 (U 2 ) = A 1×(p2-1) R 1 with R 1 := X 1 R 2 ∈ A (p2-1)× 1 and R 2 = id p2 R 2 = Y 1 X 1 R 2 + Y 2 X 2 R 2 = Y 1 R 1 + Y 2 X 2 R 2 . ( 67 
)
Choose n 0 such that none of the constructed matrices has a pole t ≥ n 0 and that

f d (t) = 0 for t ≥ n 0 . Then B(U 2 ) = cl ((B(R 2 , n)) n≥n0 ) , B(U 1 ) = cl ((B(R 1 , n)) n≥n0 ) , (id 1 , 0) : B(U 2 ) → B(U 1 ), ∀n ≥ n 0 : (id 1 , 0) : B(R 2 , n) → B(R 1 , n). ( 68 
)
It now suffices to show the surjectivity of the maps in the last row: Let

v = (v 1 , • • • , v 1 ) ∈ B(R 1 , n) =⇒ R 1 • v = X 1 R 2 • v = 0 =⇒ (67) R 2 • v = Y 1 R 1 • v + Y 2 X 2 R 2 • v = Y 2 X 2 R 2 • v = Y 2 • (X 2 R 2 • v). (69) 
According to (57) there is an

u ∈ C n+N with f • u = X 2 R 2 • v. We infer R 2 • v = R 2 • (v 1 , • • • , v 1 ) = Y 2 • f • u = Y 2 f • u = R 2 • u =⇒ R 2 • (v 1 , • • • , v 1 , -u) = (R 2 , R 2 ) • (v 1 , • • • , v 1 , -u) = R 2 • v -R 2 • u = 0 =⇒ (v 1 , • • • , v 1 , -u) ∈ B(R 2 , n).
(70) As required we have thus shown the surjectivity of

(id 1 , 0)• : B(R 2 , n) → B(R 1 , n), (v 1 , • • • , v 1 , -u) → v. ( 71 
)
Theorem 2.10. The functor

A Mod fg → B, M = A 1× /U → B(U ), is exact, i.e., ( 56 
) is exact if (55) is exact.
Proof. The exactness of (55) implies

U 3 := (•Q) -1 (U 3 ) = A 1× 1 P + U 2 =⇒ A 1× 1 /U 1 (•P ) ind -----→ A 1× 2 /U 2 (• id 2 ) ind ------→ A 1× 2 /U 3 → 0
is exact and ψ factorizes as

ψ = (•Q) ind : A 1× 2 /U 2 (• id 2 ) ind ------→ A 1× 2 /U 3 (•Q) ind,2 ------→ A 1× 3 /U 3 =⇒ Q• : B(U 3 ) Q• -→ B(U 3 ) ⊆ B(U 2 ). But A 1× 2 /U 3 (•Q) ind,2 ------→ A 1× 3 /U 3 is injective =⇒ Lemma 2.9 Q• : B(U 3 ) → B(U 3 ) is an epimorphism =⇒ im (Q• : B(U 3 ) → B(U 2 )) = B(U 3 ).
Hence it remains to show that B(U 3 ) = ker (P

• : B(U 2 ) → B(U 1 )). Let U 2 = A 1×p2 R 2 =⇒ U 3 = A 1× 1 P + A 1×p2 R 2 = A 1×( 1+p2) P R2 .
As usual choose n 0 such that none of the constructed matrices has a pole t ≥ n 0 . Then

B(U 2 ) = cl ((B(R 2 , n)) n≥n0 ) , B(U 3 ) = cl (B( P R2 , n)) n≥n0 ∀n ≥ n 0 : B(R 2 , n) = w ∈ (C n+N ) 2 ; R 2 • w = 0 , ∀n ≥ n 0 : B( P R2 , n) = w ∈ (C n+N ) 2 ; R 2 • w = 0, P • w = 0 = = ker P • : B(R 2 , n) → (C n+N ) 1 =⇒ B(U 3 ) = cl B( P R2 , n) = ker (P • : B(U 2 ) → B(U 1 )) .

Autonomous behaviors

We prove the analogue of the cogenerator property of the standard signal modules for the behaviors of this paper and simultaneously characterize autonomous behaviors.

A finitely generated A-module [START_REF] Mcconnell | Noncommutative Noetherian Rings[END_REF]Cor. 5.7.19]. Hence there is an isomorphism

M 1 = A 1× 1 /U 1 = A 1× 1 /A 1×p1 R 1 is isomorphic to a direct sum of cyclic modules
M 1 = A 1× 1 /U 1 ∼ = A/Af 1 × • • • × A/Af r × A 1×( 2-r) = A 1× 2 /U 2 =: M 2 where r ≥ 0, f i ∈ A, deg q (f i ) > 0, U 2 = A 1× 2 R 2 , R 2 = diag(f 1 , • • • , f r , 0, • • • , 0) ∈ A 2× 2 .
(72) A special matrix R 2 is called the Jacobson/Smith/Teichmüller/Nakayama-form of R 1 and is computed with the help of euclidean division that is applicable in A and makes it a euclidean ring.

If R 1 ∈ Q(t)[q; α] p1× 1 ⊂ A p1× 1 = C(t)[q; α] p1× 1 then R 2
and thus the f i can be computed with the the Jacobson package of [START_REF] Chyzak | OreModules: A symbolic package for the study of multidimensional linear systems[END_REF]. The functor A 1× /U → B(U ) is applied to the first line of (72) and implies the isomorphism

B(U 1 ) ∼ = B(U 2 ) = B(Af 1 ) × • • • × B(Af r ) × W 2-r where W = B(0) = cl • • • C n+N proj n ---→ C n+1+N → • • • . ( 73 
)
The systems B(Af j ) are particularly simple: Consider, more generally, any

g = g d q d + • • • + g 0 ∈ A, deg q (g) = d, i.e., g d = 0 =⇒ C(t) 1×d ∼ = C(t) A/Ag, (a 0 , • • • , a d-1 ) → d-1 i=0 a i q i + Ag, a i ∈ C(t), =⇒ d = dim C(t) (A/Ag) < ∞. (74) 
The preceding isomorphism follows via euclidean division. Choose n 0 such that no t ≥ n 0 is a pole of any g i or a zero of g d . For all n ≥ n 0 we obtain the isomorphisms

B(g, n) = w ∈ C n+N ; ∀t ≥ n : g d (t)w(t + d) + • • • + g 0 (t)w(t) = 0 ∼ = C d w → (w(0), • • • , w(d -1)) . (75) We conclude ∀n ≥ n 0 : dim C (B(g, n)) = d and (B(Ag) = cl ((B(g, n)) n≥n0 ) = 0 ⇐⇒ d = 0) . (76) 
Theorem 2.11.

If M 1 = A 1× 1 /U 1 is nonzero then so is B(U 1 ).
Proof. In (73) W is nonzero and so are the behaviors B(Af j ) of C-dimension deg q (f j ) > 0. Hence B(U 1 ) is zero if and only if 2 = 0. Equation (72) implies likewise that M 1 = 0 if and only if 2 = 0.

Corollary 2.12.

For M i = A 1× i /U i , i = 1, 2, the C-linear map Hom A (M 1 , M 2 ) → B(B(U 2 ), B(U 1 )), ϕ = (•P ) ind → B(ϕ) = P •, (77) 
is injective, and therefore

Hom A (M 1 , M 2 ) ∼ = Hom(B(U 2 ), B(U 1 )) := {B(ϕ); ϕ : M 1 → M 2 } . ( 78 
)
Therefore the exact functor A Mod fg → B, A 1× /U → B(U ), induces a duality between A Mod fg and the subcategory {LTV-behaviors} of B whose objects are the behaviors and whose morphisms are the behavior morphisms B(ϕ). The proof of Thm. 1.6 is thus complete.

Proof. Let ϕ :

M 1 = A 1× 1 /U 1 → M 2 = A 1× 2 /U 2 and B(ϕ) = 0.
The linear map ϕ can be factorized as

M 1 ϕ1 -→ M 3 = A 1× 3 /U 3 ϕ2 -→ M 2 , ϕ = ϕ 2 ϕ 1 ,
where ϕ 1 is an epimorphism and ϕ 2 a monomorphism. This factorization is obtained by the corresponding one in A Mod with M 3 := ϕ(M 1 ) and by the choice of a list w 3 of generators of M 3 that induces the representation M 3 = A 1× 3 /U 3 . This factorization implies 0 = B(ϕ) = B(ϕ 1 )B(ϕ 2 ) with an epimorphism B(ϕ 2 ) and a monomorphism B(ϕ 1 ) since A 1× /U → B(U ) is exact. We infer B(U 3 ) = 0, hence M 3 = 0 by Thm. 2.11 and ϕ = 0.

The torsion submodule tor(M ) of M is the set of all elements x ∈ M that are annihilated by some nonzero g ∈ A ( gx = 0). The isomorphism (72) then implies the isomorphisms

tor(M 1 ) ∼ = A tor(M 2 ) = ⊕ r j=1 A/Af j ∼ = C(t) C(t) 1×d , d := r j=1 deg q (f j ), and 
M 1 / tor(M 1 ) ∼ = A M 2 / tor(M 2 ) ∼ = A A 2-r . (79) 
The module M 1 is called torsion (adjective) or a torsion module if M 1 = tor(M 1 ) and torsionfree if tor(M 1 ) = 0. In the latter case 

M 1 ∼ = A 2-
K := quot(A) := a -1 b; a, b ∈ A, a = 0 = ba -1 ; a, b ∈ A, a = 0 ⊃ A. ( 80 
)
The rank of a matrix R ∈ K k× is defined by

rank(R) = dim K (K 1×k R) = dim (RK ) K (81) 
where the row space resp. column space of R are a left resp. a right K-space. For R ∈ A k× , U := A 1×k R and M := A 1× /U there is also the quotient module

K ⊗ A M = ident. a -1 x; 0 = a ∈ A, x ∈ M = ident. K 1× /KU, x = ξ + U, ξ ∈ A 1× ⊂ K 1× , a -1 x = a -1 ⊗ x = a -1 ξ + KU. (82) 
The canonical map can :

M → K ⊗ A M, x → 1 ⊗ x, has the kernel tor(M ). The rank of M is defined by rank(M ) := dim K (K ⊗ A M ), hence rank(R) = dim( A U ) = dim( K KU ) and rank(R) + rank(M ) = . ( 83 
)
Lemma 2.13. For the data of (72) and (73) the following properties are equivalent for the module

M 1 = A 1× 1 /U 1 , U 1 = A 1×p1 R 1 , and behavior B(U 1 ) = cl ((B(R 1 , n)) n≥n0 ): (i) rank(M 1 ) = 0 or rank(R 1 ) = 1 .
(ii) M 1 is a torsion module.

(iii

) d := dim C(t) (M 1 ) < ∞.
(iv) There are n 0 , d ∈ N such that ∀n ≥ n 0 : dim

C (B(R 1 , n)) = d.
Proof. (i) ⇐⇒ (ii): obvious. (ii) ⇐⇒ (iii): (79) with d = r j=1 deg q (f j ). (iii) ⇐⇒ (iv): For sufficiently large n 0 and n ≥ n 0 we have

B(R 1 , n) ∼ = B(R 2 , n) = B(f 1 , n) × • • • B(f r , n) × B(0, n) q2-r , dim C (B(f 1 , n) × • • • B(f r , n)) = (76) r j=1 deg q (f j ) = d, but dim C (B(0, n)) = ∞.
(84) Definition 2.14. If the conditions of Lemma 2.13 are satisfied the behavior B(U 1 ) is called autonomous. Definition 2.15. Consider a f.g. module M = A 1× /U with U = A 1×p R, R ∈ A p× , n 0 + N ⊆ dom(R) and the associated behaviors 

∀n ≥ n 0 : B(R, n) :=    w ∈ C n+N ; ∀t ≥ n : k j=0 R j (t)w(t + j) = 0    , B(U ) = cl ((B(R, n)) n≥n0 ) .
deg q (g) resp. max deg q (f j ); j = 1, • • • , r . (87) 
Lemma 2.17. Trajectory-autonomy is preserved by isomorphisms.

Proof. Consider two isomorphic f.g. modules and their associated isomorphic behaviors (cf. Cor. 2.6):

M i := A 1× i /U i , U i = A 1×pi R i , R i ∈ A pi× i , ϕ = (•P ) ind : M 1 ∼ = M 2 , B(ϕ) : B(U 2 ) ∼ = B(U 1 ). (88) 
Let P = k i=0 P j q j . Assume that B(U 1 ) is t-autonomous with memory size d 1 and define d 2 := d 1 + k. There is an n 1 such that ∀n ≥ n 1 : P

• : B(R 2 , n) ∼ = B(R 1 , n), w 2 → w 1 := P • w 2 , and ∀t ≥ n ≥ n 1 : w 1 (t) = k j=0 P j (t)w 2 (t + j), especially ∀i = 0, • • • , d 1 -1 : w 1 (n + i) = k j=0 P j (n + i)w 2 (n + i + j). (89) If 0 ≤ i ≤ d 1 -1 and 0 ≤ j ≤ k then n ≤ n + i + j ≤ n + d 1 -1 + k = n + d 2 -1. If w 2 (n) = • • • = w 2 (n + d 2 -1) = 0 equation (89) implies w 1 (n) = • • • = w 1 (n + d 1 -1)
. Since B(U 1 ) has memory size d 1 this implies w 1 = 0 and hence w 2 = 0 since P • in (89)is bijective. We conclude that B(U 2 ) has memory size d 2 .

Theorem 2.18. A behavior B(U 1 ) is t-autonomous if and only if it is autonomous.

Proof. This follows directly from the isomorphism (73) and the preceding lemma since B(Af 1 ) × • • • × B(Af r ) is t-autonomous according to Cor. 2.16, but W = B(0) is obviously not.

Exponentially stable (e.s.) behaviors

The main goal of Section 3 is the proof of Thm. 1.8.

Exponential stability for state space behaviors

We first recall the notion of uniform exponential stability for state space systems. We endow all C , ≥ 0, and matrix spaces C × with the maximum norm 

∀v = (v 1 , • • • , v ) ∈ C : v := max {|v i |; 1 ≤ i ≤ } , ∀A ∈ C × : A := max Av ; v ∈ C , v = 1 , hence ∀v ∈ C : Av ≤ A v .
w(t + 1) = A(t)w(t), A ∈ C n0+N × , or ∀t ≥ n ≥ n 0 : w(t) = Φ(t, n)w(n), Φ(t, n) := A(t -1) • • • A(n), (91) 
is called uniformly exponentially stable (u.e.s.) if

∃c ≥ 1∃ρ ∈ R with 0 < ρ < 1∀t ≥ n ≥ n 0 ∀w ∈ B(id q -A, n) : w(t) ≤ cρ t-n w(n) or, equivalently, Φ(t, n) ≤ cρ t-n . ( 92 
)
Notice that Rugh [START_REF] Rugh | Linear System Theory[END_REF] admits arbitrary A ∈ C n0+N × (mostly n 0 = 0), hence id q -A ∈ B(n 0 ) × (cf. [START_REF] Oberst | Stabilizing compensators for linear time-varying differential systems[END_REF]). The behavioral theory of this paper cannot be extended from the field C(t) to the nonnoetherian ring C n0+N with many zero-divisors.

The following example shows that u.e.s. is not preserved by behavior isomorphisms and is therefore unsuitable for the behavioral LTV-theory of this paper.

Example 3.2. Let := 2, A := ρ1 0 0 ρ2 , 0 < ρ 1 < ρ 2 < 1, R := q id 2 -A, n ≥ 0, B 1 (n) := B 1 (R, n) := w = ( w1 w2 ) ∈ C n+N 2 ; w(t + 1) = Aw(t) = Cρ t-n 1 ⊕ Cρ t-n 2 X(t) := ( 1 t 0 1 ) ∈ Gl 2 (C[t]) ⊂ Gl 2 (A), B(t) := X(t + 1)AX(t) -1 v(t) := X(t)w(t), B 2 := X • B 1 , B 2 (n) := X • B 1 (n) = {v(t) = X(t)w(t); w(t + 1) = Aw(t)} = = v ∈ C n+N 2 ; v(t + 1) = B(t)v(t) .
(93) Notice that both B 1 and B 2 are state space behaviors as in [START_REF] Rugh | Linear System Theory[END_REF], B 1 is an LTI-behavior with an asymptotically stable matrix and B 2 is an LTV-behavior. Obviously

X• : B 1 (n) ∼ = B 2 (n), w → X • w = Xw,
is an isomorphism of state space behaviors. But

X(t) -1 = 1 -t 0 1 =⇒ B(t) = 1 t+1 0 1 ρ1 0 0 ρ2 1 -t 0 1 = ρ1 ρ2+(ρ2-ρ1)t 0 ρ2 =⇒ ∀t ≥ n ≥ 1∀v ∈ B 2 (n) : v 1 (t + 1) = ρ 1 v 1 (t) + ρ 2 v 2 (t) + (ρ 2 -ρ 1 )tv 2 (t) =⇒ ∀n ≥ 1∀v ∈ B 2 (n) : v 1 (n + 1) = ρ 1 v 1 (n) + ρ 2 v 2 (n) + (ρ 2 -ρ 1 )nv 2 (n). (94) For any n ≥ 1 let v n := (v n 1 , v n 2 ) ∈ B 2 (n) be the unique trajectory with v n 1 (n) := v n 2 (n) := 1 and hence v n (n) = max(|v n 1 (n)|, |v n 2 (n)|) = 1 =⇒ v n 1 (n + 1) = ρ 1 + ρ 2 + (ρ 2 -ρ 1 )n =⇒ (ρ 2 -ρ 1 )n ≤ ρ 1 + ρ 2 + |v n 1 (n + 1)|.
(95) Assume that B 2 is u.e.s. Then there are c ≥ 1 and ρ, 0 < ρ < 1, with

∀t ≥ n ≥ 1 : |v n 1 (t)| ≤ v n (t) ≤ cρ t-n v n (n) = cρ t-n =⇒ |v n 1 (n + 1)| ≤ cρ =⇒ (96) ∀n ≥ 1 : (ρ 2 -ρ 1 )n ≤ ρ 1 + ρ 2 + cρ. (96) 
This is a contradiction and thus B 2 is not u.e.s, but, of course, e.s.. A nontrivial computation shows that for all ρ 3 with ρ 2 < ρ 3 < 1 there is a c 3 ≥ 1 such that

∀t ≥ n ≥ 1 : Φ B (t, n) = B(t -1) • • • B(n) ≤ ϕ(n)ρ t-n 3 with ϕ(n) := c 3 n. ( 97 
)
The initial condition

x(n) = (w(n), • • • , w(n + d - 1 
)) = 0 (cf. the definition) and ( 16) imply w = 0. So an e.s. behavior is autonomous. For p ∈ C[t] and h ∈ C(t) with n 0 + N ⊆ dom(h) the sequences (p(n)) n≥0 ∈ C N and (h(n)) n≥n0 are obviously p.g.s.. This implies that for any matrix A ∈ C(t) p× and n 0 + N ⊆ dom(A) also the norm sequence ( A(n) ) n≥n0 is a p.g.s.. The sum and product of p.g.s. are again such.

Corollary 3.3. Consider a matrix A(t) ∈ C(t) × that has no poles t ≥ n 0 , R := q id q -A ∈ A × and for all n ≥ n 0 the associated state space behaviors

B(R, n) := w ∈ C n+N ; ∀t ≥ n : w(t + 1) = A(t)w(t) ∼ = C , w → w(n). Then B = cl ((B(R, n)) n≥n0
) is e.s. if and only if there are n 1 ≥ n 0 , a p.g.s. ϕ 2 > 0 in R n1+N and ρ 2 with 0 < ρ 2 < 1 such that

∀t ≥ n ≥ n 1 ∀w ∈ B(R, n) : w(t) ≤ ρ t-n ϕ 2 (n) w(n) or Φ(t, n) ≤ ϕ 2 (n)ρ t-n , Φ(t, n) := A(t -1) • • • A(n). (98) 
The e.s. here differs from u.e.s. in Def. 3.1 by the additional p.g. factor ϕ 2 (n) instead of a constant.

Proof. It has only to be shown that (98) is necessary. With x(n

) := (w(n), • • • , w(n + d -1)) and x(n) = max { w(n + i) ; 0 ≤ i ≤ d -1} equation (16) furnishes ∀t ≥ n ≥ n 1 ≥ n 0 ∀w ∈ B(R, n) : w(t) ≤ ρ t-n ϕ 1 (n) x(n) .
The norm sequence ( A(n) ) n≥n1 is a p.g.s. and so are Proof. It is well-known that spec(A) ⊂ D implies (98) with a constant ϕ 2 . Let, conversely, (98) be satisfied and assume that λ is an eigenvalue of A with nonzero eigenvector w(n). Then

Φ(n + i, n) ≤ A(n + i -1) • • • A(n) and ϕ(n) := max { Φ(n + i, n) ; 0 ≤ i ≤ d -1} . But w(n + i) = Φ(n + i, n)w(n) =⇒ w(n + i) ≤ Φ(n + i, n) w(n) ≤ ϕ(n) w(n) =⇒ x(n) ≤ ϕ(n) w(n) =⇒ ∀t ≥ n ≥ n 1 : w(t) ≤ ρ t-n ϕ 1 (n) x(n) ≤ ρ t-n ϕ 1 (n)ϕ(n) w(n) = ρ t-n ϕ 2 (n) w(n) with the p.g.s. ϕ 2 (n) := ϕ 1 (n)ϕ(n).
w(t) = A t-n w(n) = λ t-n w(n) and |λ| t-n w(n) = w(t) ≤ ϕ(n)ρ t-n w(n) with 0 < ρ < 1 =⇒ lim t→∞ λ t = 0 =⇒ |λ| < 1.

We apply Cor. 3.3 to any

f := f d q d + • • • + f 0 ∈ A, deg q (f ) = d,
and n 0 ∈ N such that no t ≥ n 0 is a pole of any f i or a zero of f d . We first construct the usual isomorphic state space system. Define

A := 0 1 0 0 ••• 0 0 0 0 1 0 ••• 0 0 ••• ••• ••• ••• ••• ••• ••• 0 0 0 0 ••• 0 1 -f -1 d f0 -f -1 d f1 ••• ••• ••• ••• -f -1 d f d-1 ∈ C(t) d×d , R := q id d -A ∈ A d×d . ( 99 
)
With q d := (1, q, • • • , q d-1 ) and δ 0,d := (

0 1, 0, • • • , d-1
0 ) these data imply the standard A-linear isomorphism

(•δ 0,d ) ind : A/Af ∼ = ←→ A 1×d /A 1×d R : (•q d ) ind , η + Af → ηδ 0,d + A 1×d R = ( 0 η, 0, • • • , d-1 0 ) + A 1×d R ξq d + Af = d-1 i=0 ξ i q i + Af ← ξ + A 1×d (q id d -A).
(100)

For n ≥ n 0 this module isomorphism gives rise to the behavior isomorphism

B(f, n) = w ∈ C n+N ; ∀t ≥ n : f d (t)w(t + d) + • • • + f 0 (t)w(t) = 0 ∼ = B(q id d -A, n) = x ∈ C n+N d ; ∀t ≥ n : x(t + 1) = A(t)x(t) ∼ = C d , w(t) = x 0 (t) ←→ x(t) = (x 0 (t), • • • , x d-1 (t)) = (w(t), • • • , w(t + d -1)) ←→ x(n) = (w(n), • • • , w(n + d -1)) .
(101) The preceding isomorphisms and Cor. 3.3 imply Af) is e.s. if and only if there are n 1 , a p.g.s. ϕ with ϕ(n) > 0 and ρ (0

Corollary 3.5. For f := f d q d + • • • + f 0 , f d = 0, the behavior B(
< ρ < 1) such that ∀t ≥ n ≥ n 1 ∀w ∈ B(f, n) : |w(t)| ≤ ϕ(n)ρ t-n max {|w(n + i)|; 0 ≤ i ≤ d -1} . ( 102 
)
The isomorphisms (100) and ( 101) can be generalized in the following fashion.

Consider an arbitrary torsion module

M = A 1× /A 1×p R ∼ = r j=1 A/Af j , 0 = f j ∈ A = C(t)[q; α], d j := deg q (f j ) > 0,
(103) and let A j ∈ C(t) dj ×dj be derived from f j like A from f in (99). We define d×d and R 2 = q id d -A and obtain the isomorphisms

R 1 := diag(f 1 , • • • , f r ) ∈ A r×r , d := r j=1 d j , A := diag(A 1 , • • • , A r ) ∈ C(t)
M = A 1× /A p×q R ∼ = A 1×r /A 1×r R 1 ∼ = A 1×d /A 1×d R 2 ( 104 
)
where the second isomorphism in ( 104) is explicitly given by

(η 1 , • • • , η r ) + A 1×r R 1 → (η 1 δ 0,d1 , • • • , η r δ 0,dr ) + A 1×d R 2 , (ξ 1 q d1 , • • • , ξ r q dr ) + A 1×r R 1 ← (ξ 1 , • • • , ξ r ) + A 1×d R 2 . ( 105 
)
Theorem 3.6. For the torsion module M from (103) and the derived data from (104) there are matrices P ∈ A ×d , Q ∈ A d× that induce an isomorphism (•P ) ind and its inverse (•Q) ind as follows:

(•P ) ind : M = A 1× /A 1×p R ∼ = ←→ A 1×d /A 1×d (q id d -A) : (•Q) ind ω + A 1×p R -→ ωP + A 1×d (q id d -A) ξQ + A 1×p R ←- ξ + A 1×d (q id d -A). ( 106 
)
For sufficiently large n 0 and n ≥ n 0 these isomorphisms induce behavior isomorphisms

Q• : B(R, n) := w ∈ C n+N ; R • w = 0 ∼ = ←→ B(q id d -A, n) = x ∈ C n+N d ; x(t + 1) = A(t)x(t) : P •, w = P • x ←→ x = Q • w, and hence Q• : B(U ) := cl ((B(R, n)) n≥n0 ) ∼ = ←→ B A 1×d (q id d -A) := cl ((B(q id d -A, n)) n≥n0 ) : P • . ( 107 
)
Moreover there are the C-linear isomorphisms

B(q id d -A, n) ∼ = C d , x → x(n), x(t) := Φ(t, n)x(n), where ∀t ≥ n : Φ(t, n) := A(t -1) • • • A(n), Φ(n, n) = id d . ( 108 
)
The isomorphism (108) means that for a given v ∈ C d there is a unique trajectory x with initial vector

x(n) = v and x(t) = Φ(t, n)x(n). The behaviors B(q id d -A, n) are d-dimensional over C.
The preceding theorem shows that autonomous behaviors are isomorphic to state space behaviors that are the main subject of [START_REF] Rugh | Linear System Theory[END_REF].

Preservation of e.s. under behavior isomorphisms

Lemma 3.7. Exponential stability is preserved by isomorphisms, i.e., if

A 1× 1 /U 1 ∼ = A 1× 2 /U 2 and if B(U 1 ) is e.s. then so is B(U 2 ) ( ∼ = B(U 1 )).
Proof. Let U i = A 1×pi R i , i = 1, 2, and consider an isomorphism and its inverse

(•P 1 ) ind : A 1× 1 /U 1 ∼ = ←→ A 1× 2 /U 2 : (•P 2 ) ind . ( 109 
) Let P i = di j=0 P ij (t)q j , i = 1, 2.
Then there is an n 0 such that for all t ≥ n ≥ n 0

P 1 • : B(R 2 , n) ∼ = ←→ B(R 1 , n) : (P 1 •) -1 = P 2 • w 2 (t) = d2 j=0 P 2j (t)w 1 (t + j) ←→ w 1 (t) = d1 j=0 P 1j (t)w 2 (t + j). ( 110 
)
Assume that B(U 1 ) is e.s. and that for a p.g.s.

ϕ 1 > 0 and ρ 1 , 0 < ρ 1 < 1, ∀t ≥ n ≥ n 0 ∀w 1 ∈ B(R 1 , n) : w 1 (t) ≤ ρ t-n 1 ϕ 1 (n) x 1 (n) where x 1 (t) = (w 1 (t), • • • , w 1 (t + d -1)). ( 111 
)
For

w 2 ∈ B(R 2 , n) define x 2 (t) := (w(t), • • • , w(t + d + d 1 -1)). Now let w 2 ∈ B(R 2 , n), w 1 := P 1 • w 2 =⇒ w 2 = P 2 • w 1 , hence w 1 (t) = d1 j=0 P 1j (t)w 2 (t + j), w 2 (t) = d2 i=0 P 2i (t)w 1 (t + i). ( 112 
)
Since the P ij are rational they are p.g. and therefore there are m i ∈ N and c i ≥ 1 such that P ij (t) ≤ c i t mi for i = 1, 2, and 0 ≤ j ≤ d i , hence

w 2 (t) ≤ d2 i=0 P 2i (t) w 1 (t + i) ≤ (d 2 + 1)c 2 t m2 max { w 1 (t + i) ; 0 ≤ i ≤ d 2 } . Moreover w 1 (t + i) ≤ ρ t+i-n 1 ϕ 1 (n) x 1 (n) ≤ ρ t-n 1 ϕ 1 (n) x 1 (n) =⇒ w 2 (t) ≤ (d 2 + 1)c 2 t m2 ρ t-n 1 ϕ 1 (n) x 1 (n) . (113) Likewise x 1 (n) = max { w 1 (n + i) ; 0 ≤ i ≤ d -1} and w 1 (n + i) ≤ (d 1 + 1)c 1 (n + i) m1 max { w 2 (n + i + j) ; 0 ≤ j ≤ d 1 } =⇒ x 1 (n) ≤ (d 1 + 1)c 1 (n + d -1) m1 x 2 (n) (114)
Inserting ( 114) into (113) furnishes

w 2 (t) ≤ (113) (d 2 + 1)c 2 t m2 ρ t-n 1 ϕ 1 (n) x 1 (n) ≤ (d 2 + 1)c 2 t m2 ρ t-n 1 ϕ 1 (n)(d 1 + 1)c 1 (n + d -1) m1 x 2 (n) = if t>n c 3 (t -n) m2 ρ t-n 1 (t/(t -n)) m2 (n + d -1) m1 ϕ 1 (n) x 2 (n) (115) with c 3 := (d 1 + 1)(d 2 + 1)c 1 c 2 ≥ 1. We choose ρ 2 with ρ 1 < ρ 2 < 1 and c 4 ≥ 1 such that t m2 ρ t 1 ≤ c 4 ρ t 2 . Moreover t/(t -n) = 1 + n/(t -n) ≤ 1 + n for t > n and hence ∀t > n ≥ n 0 : w 2 (t) ≤ ρ t-n 2 ϕ 2 (n) x 2 (n) where ϕ 2 (n) := c 3 c 4 (1 + n) m2 (n + d -1) m1 ϕ 1 (n) > 0 (116)
is also p.g.. We choose ϕ 1 (n) ≥ 1. This implies ϕ 2 (n) ≥ 1 and thus (116) also for t = n and the e.s. of B(U 2 ).

Thm. 3.6 and Lemma 3.7 imply that in connection with exponential stability of a behavior one may assume that it is a state space behavior. It is an open question which e.s. state space behaviors are isomorphic to u.e.s. ones.

The standard form of short exact sequences

We derive standard forms of short exact sequences (117) under isomorphism that essentially simplify the proof of Thm. 1.8. Consider the exact sequence

0 → M 1 ϕ -→ M 2 ψ -→ M 3 → 0 (117) 
of f.g. A-modules. After the choice of presentations M i = A 1× i /U i the exact sequence (117) induces an exact behavior sequence

0 ← B 1 B(ϕ) ←-B 2 B(ψ) ←-B 3 ← 0 (118) 
Let

M i = A 1× i /U i , U i = A 1×pi R i , R i ∈ A pi× i , i = 1, 3, can i : A 1× i → M i , ξ → ξ + U i , w ij := δ j + U i , w i := (w i1 , • • • , w i i ) ∈ M i i , (119) 
be arbitrarily chosen such presentations where, as usual, the δ j are the standard basis vectors. Choose an inverse image v ∈ M 3 2 of w 3 under ψ, ψ(v) = w 3 . Then

w 2 := v ϕ(w1) ∈ M 3+ 1
2 is a generating system of M 2 with its associated presentation, i.e.,

U 2 := ker can 2 : A 1×( 3+ 1) → M 2 , (ξ, η) → ξv + ηϕ(w 1 ) , M 2 = ident.
A 1×( 3+ 1) /U 2 .

(120)

Remark 3.8. The following Lemma 3.9 is a special case of [6, Prop. V. Lemma 3.9. For the data of (119) and (120) there is a matrix R ∈ A p3× 1 such that

U 2 = A 1×(p3+p1) R 2 , R 2 := R3 R 0 R1 ∈ A (p3+p1)×( 3+ 1) . (121) 
Proof. The choice of w 2 induces a commutative diagram with exact rows and columns

0 U 1 / / U 1 U 2 / / U 2 U 3 / / U 3 0 / / 0 A 1× 1 / / A 1× 1 A 1×( 3 + 1 ) •(0,id 1 ) / / A 1×( 3+ 1) A 1× 3 • id 3 0 / / A 1× 3 0 / / 0 M 1 / / M 1 M 2 ϕ / / M 2 M 3 ψ / / M 3 0 / / U 1 A 1× 1 ⊆ U 2 A 1×( 3 + 1 ) ⊆ U 3 A 1× 3 ⊆ A 1× 1 M 1 can1 A 1×( 3+ 1) M 2 can2 A 1× 3 M 3 can3 (122)
The exactness of the first row is a consequence of the snake lemma [6, L. III.3.2 -3].

By definition the rows (R

3 ) i-, i = 1, • • • , p 3 , belong to U 3 . Since U 2 → U 3 is surjective there are rows R i-∈ A 1× 1 such that ((R 3 ) i-, R i-) ∈ U 2 ⊆ A 1×( 3+ 1) , i.e., (R 3 ) i-v + R i-ϕ(w 1 ) = 0. (123) 
Let R ∈ A p3× 1 be the matrix with rows R i-and R 2 :

= R3 R 0 R1 ∈ A (p3+p1)×( 3 + 1 ) . Then R 2 w 2 = R3 R 0 R1 v ϕ(w1) = R3v+Rϕ(w1) ϕ(R1w1)) = ( 0 0 ) = 0 =⇒ R 3 v + Rϕ(w 1 ) = 0, A 1×(p3+p1) R 2 ⊆ U 2 . (124) 
Let, conversely,

(ξ, η) ∈ U 2 ⊆ A 1×( 3 + 1 ) =⇒ ξv + ηϕ(w 1 ) = 0 =⇒ ξw 3 = ψ(v)=w3, ψϕ=0 ψ (ξv + ηϕ(w 1 )) = 0 =⇒ ξ ∈ U 3 = A 1×p3 R 3 =⇒ ∃ζ 1 with ξ = ζ 1 R 3 =⇒ ζ 1 R 3 v + ϕ(ηw 1 ) = 0. (125) 
With the last equation of (124) this implies

ϕ ((η -ζ 1 R)w 1 ) = 0 =⇒ ϕ injective (η -ζ 1 R)w 1 = 0 =⇒ η -ζ 1 R ∈ U 1 = A 1×p1 R 1 =⇒ ∃ζ 2 : η -ζ 1 R = ζ 2 R 1 =⇒ (ζ 1 , ζ 2 )R 2 = (ζ 1 , ζ 2 ) R3 R 0 R1 = (ζ 1 R 3 , ζ 1 R + ζ 2 R 1 ) = (ξ, η) =⇒ (ξ, η) ∈ A 1×(p3+p1) R 2 =⇒ U 2 ⊆ A 1×(p3+p1) R 2 . (126) 
In the sequel we therefore assume w.l.o.g. that the exact sequence (117) has the special form

0 → A 1× 1 /U 1 (•(0,id 1 )) ind -→ A 1× 2 /U 2 (• id 3 0 ) ind -→ A 1× 3 /U 3 → 0 where U i = A 1×pi R i , R i ∈ A pi× i , i = 1, 2, 3, 2 := 3 + 1 , p 2 := p 3 + p 1 , R 2 = R3 R 0 R1 . (127) 
The corresponding exact sequences of behaviors are given by

0 ← B(U 1 ) (0,id 1 )• ←-B(U 2 ) id 3 0 • ←-B(U 3 ) ← 0 (128) 
and for sufficiently large n 0 and n ≥ n 0

C n+N 1 0 o o C n+N 3+ 1 C n+N 1 (0,id 1 )• o o C n+N 3 C n+N 3+ 1 id 3 0 • o o 0 C n+N 3 o o B(R 1 , n) 0 o o B(R 2 , n) B(R 1 , n) o o B(R 3 , n) B(R 2 , n) o o 0 B(R 3 , n) o o ( w3 w1 ) , ( w3 
0 ) w 1 o o w 3 ( w3 w1 ) , ( w3 
0 ) o o B(R 1 , n) C n+N 1 ⊆ O O B(R 2 , n) C n+N 3+ 1 ⊆ O O B(R 3 , n) C n+N 3 ⊆ O O B(R i , n) = w i ∈ C n+N i ; R i • w i = 0 , i = 1, 2, 3, B(R 2 , n) = ( w3 w1 ) ∈ C n+N 3+ 1 ; R 3 • w 3 + R • w 1 = 0, R 1 • w 1 = 0 . (129) 
Moreover we always assume w.l.o.g. that the matrices R 1 and R 3 have the state space form from Thm. 3.6:

R i = q id i -A i , A i ∈ C(t) i× i , i = 1, 3, ∀n ≥ n 0 : B(R i , n) = w i ∈ C n+N i ; w i (t + 1) = A i (t)w i (t) . (130) 
For B(R 2 , n) this implies

B(R 2 , n) = ( w3 w1 ) ∈ C n+N 3+ 1 ; ( ) where 
( ) w 3 (t + 1) = A 3 (t)w 3 (t) -(R • w 1 )(t), w 1 (t + 1) = A 1 (t)w 1 (t)}. (131) The behaviors B(R i , n) are i -dimensional over C and indeed B(R 1 , n) ∼ = C 1 , w 1 → w 1 (n), B(R 2 , n) ∼ = C 3 , w 3 → w 3 (n), B(R 2 , n) ∼ = C 3+ 1 , ( w3 w1 ) → w3(n) w1(n) with w 1 (t) = Φ 1 (t, n)w 1 (n), Φ 1 (t, n) = A 1 (t -1) • • • A 1 (n) and w 3 (t + 1) = A 3 (t)w 3 (t) -(R • w 1 )(t). (132) 
3.4 The proof of Thm. 1.8

More generally than in (132) consider an inhomogeneous equation

w(t + 1) = A(t)w(t) + u(t), A(t) ∈ C(t) × , t ≥ n ≥ n 0 , w, u ∈ C n+N , (133) 
where, as always, A(t) has no poles t ≥ n 0 . From (2) we know

∀t ≥ n ≥ n 0 : w(t) = Φ(t, n)w(n) + t-1 i=n Φ(t, i + 1)u(i) =⇒ w(t) ≤ Φ(t, n) w(n) + t-1 i=n Φ(t, i + 1) u(i) . (134) 
Lemma 3.10. Assume in (133) that B := B A 1× (q id -A) is e.s. and that also the sequence u is e.s. in the sense that there are n 1 ≥ n 0 , a p.g.s. ϕ > 0 in C n1+N and a positive sequence a ∈ C n1+N and ρ with 0 < ρ < 1 such that

∀t ≥ n ≥ n 1 : u(t) ≤ ρ t-n ϕ(n)a(n).
Then every solution w of (133) is e.s. in the sense that there are n 2 ≥ n 1 , a p.g.s.

ϕ 2 > 0 in C n2+N and ρ 2 (0 < ρ 2 < 1) such that ∀t ≥ n ≥ n 2 : w(t) ≤ ρ t-n 2 ϕ 2 (n) max( w(n) , a(n)). (135) 
Proof. By enlarging n 1 , ϕ > 0 and ρ, 0 < ρ < 1, we may assume w.l.o.g. that

∀t ≥ n ≥ n 1 : Φ(t, n) ≤ ρ t-n ϕ(n), u(t) ≤ ρ t-n ϕ(n)a(n). (136) 
Define n 2 := n 1 and b(n) := max( w(n) , a(n)). We insert the inequalities from (136) into (134) and obtain

∀t ≥ n ≥ n 1 : w(t) ≤ ρ t-n ϕ(n) w(n) + t-1 i=n ρ t-i-1 ϕ(i + 1)ρ i-n ϕ(n)a(n).
(137) Since ϕ is p.g. there are c 1 ≥ 1 and m ∈ N such that |ϕ(t)| ≤ c 1 t m and hence also

|ϕ(i + 1)| ≤ c 1 t m for i ≤ t -1. For t > n ≥ n 1 equation (137) implies w(t) ≤ ϕ(n)ρ t-n 1 + (t -n)ρ -1 c 1 t m b(n) ≤ (t -n) m+1 ρ t-n ϕ(n) 1 + c 1 ρ -1 t t -n m b(n). (138) 
Now choose ρ 2 with ρ < ρ 2 < 1 and

c 2 ≥ 1 such that t m+1 ρ t ≤ c 2 ρ t 2 . Moreover t/(t -n) = 1 + n/(t -n) ≤ 1 + n for t > n and hence for t > n ≥ n 1 w(t) ≤ ρ t-n 2 1 + c 1 ρ -1 (1 + n) m c 2 ϕ(n)b(n) = ρ t-n 2 ϕ 2 (n)b(n) where ϕ 2 (n) = 1 + c 1 ρ -1 (1 + n) m c 2 ϕ(n) ≥ 1 is a p.g.s.. ( 139 
) Since ϕ 2 (n) ≥ 1 and w(n) ≤ b(n) (139) also holds for t = n.
The next theorem coincides with Thm. 1.8 and is the main result of this paper. 

∀t ≥ n ≥ n 0 ∀w 2 = ( w3 w1 ) ∈ B(R 2 , n) : w 2 (t) = max( w 3 (t) , w 1 (t) ) ≤ ρ t-n ϕ(n) w 2 (n) . (140) 
For

w 3 ∈ B(R 3 , n) define w 2 := ( w3 0 ) ∈ B(R 2 , n) =⇒ w 3 (t) = w 2 (t) , w 3 (n) = w 2 (n) =⇒ w 3 (t) ≤ ρ t-n ϕ(n) w 3 (n) .
This means that B 3 is e.s.. 2. B 2 e.s. =⇒ B 1 e.s.: Again (140) is assumed. Let w 1 ∈ B(R 1 , n) and let w 2 := ( w3 w1 ) be the unique w 2 ∈ B(R 2 , n) with w 3 (n) = 0 (cf. (132)) or 

w 3 (t + 1) = A 3 (t)w 3 (t) -(R • w 1 )(t), w 3 (n) = 0 =⇒ w 1 (n) = max (0, w 1 (n) ) = max ( w 3 (n), w 1 (n) ) = w 2 (n) and w 1 (t) ≤ max ( w 3 (t) w 1 (t) ) = w 2 (t) ≤ ρ t-n ϕ(n) w 2 (n) =⇒ w 1 (t) ≤ ρ t-n ϕ(n) w 1 (n) =⇒ B(U 1 ) e.s.
ρ i such that ∀t ≥ n ≥ n 0 ∀w i ∈ B(R i , n) : w i (t) ≤ ρ t-n i ϕ i (n) w i (n) . (141) 
Let

w 2 = ( w3 w1 ) ∈ B(R 2 , n), R = R3 R 0 R1 =⇒ w 1 ∈ B(R 1 , n) and w 1 (t) ≤ ρ t-n 1 ϕ 1 (n) w 1 (n) and ∀t ≥ n : w 3 (t + 1) = A 3 (t)w 3 (t) + u(t), u := -R • w 1 . (142) 
Let R = d i=0 B i (t)q i , B i ∈ C(t) p3×q1 and assume that no B i (t) has a pole t ≥ n 0 . The B i (t) are rational and therefore of at most polynomial growth. Hence there are c 1 ≥ 1 and m ∈ N such that B i (t) ≤ c 1 t m for all t ≥ n 0 . We conclude

∀t ≥ n : -u(t) = (R • w 1 )(t) = d i=0 B i (t)w 1 (t + i) =⇒ u(t) = (R • w 1 )(t) ≤ d i=0 B i (t) w 1 (t + i) ≤ (d + 1)c 1 t m ρ t-n 1 ϕ 1 (n) w 1 (n) . (143) We choose ρ 1 with ρ 1 < ρ 1 < 1 and c 2 ≥ 1 such that t m ρ t 1 ≤ c 2 ρ t 1 . Moreover for t > n : t m < (t -n) m (1 + n) m =⇒ (143) u(t) ≤ ρ t-n 1 ϕ 1 (n) w 1 (n) with ϕ 1 (n) := (d + 1)c 1 c 2 (n + 1) m ϕ 1 (n) (144)
This also holds for t = n due to (143). Obviously ϕ 1 is a p.g.s.. Thus u = -R • w 1 is e.s. in the sense of Lemma 3.10 with a(n) = w 1 (n) and the lemma therefore implies that there are a p.g.s. ϕ 2 and ρ 2 as usual such that for all t ≥ n ≥ n 0

w 3 (t) ≤ ρ t-n 2 ϕ 2 (n) max( w 3 (n) , w 1 (n) ) =⇒ w 2 (t) = max( w 3 (t) , w 1 (t) ) ≤ ϕ 4 (n)ρ t-n 4 w 2 (n) (145) 
where ϕ 4 = max(ϕ 2 , ϕ 1 ), ρ 4 := max(ρ 2 , ρ 1 ). Hence B 2 is e.s..

The proof of the following result in [START_REF] Hahn | Über die Anwendung der Methode von Ljapunov auf Differenzengleichungen[END_REF]Satz 11] on a disturbed state space system seems to contain an error and therefore we give a simple different proof similar to that of [START_REF] Rugh | Linear System Theory[END_REF]Thm. 24.7].

Lemma 3.15. (cf. [START_REF] Hahn | Über die Anwendung der Methode von Ljapunov auf Differenzengleichungen[END_REF]Satz 11]), [START_REF] Rugh | Linear System Theory[END_REF]Thm. 24.7]) Consider the difference equation

w(t + 1) = A(t)w(t) + f (w(t), t), t ≥ n 0 , A ∈ (C n0+N ) × , f : C × N → C . ( 149 
) Assume that w(t + 1) = A(t)w(t) is uniformly exponentially stable (u.e.s.), i.e., that there are ρ 1 with 0 < ρ 1 < 1 and c 1 ≥ 1 such that

∀t ≥ n ≥ n 0 : Φ(t, n) ≤ c 1 ρ t-n 1 where Φ(t, n) := A(t -1) • • • A(n). (150) Also assume that f (v, t) ≤ v , > 0, for v ∈ C and t ≥ n 0 .
If is sufficiently small then also (149) is u.e.s., i.e. there are ρ, 0 < ρ < 1, and c ≥ 1 such that ∀t ≥ n ≥ n 0 ∀w ∈ C n+N with w(t + 1) = A(t)w(t) + f (w(t), t) :

w(t) ≤ cρ t-n w(n) . (151)
Proof. The number is suitably chosen below. With u(t) := f (w(t), t) we obtain

w(t + 1) = A(t)w(t) + u(t) =⇒ (2) ∀t ≥ n ≥ n 0 : w(t) = Φ(t, n)w(n) + t-1 i=n Φ(t, i + 1)u(i) =⇒ (2) ∀t ≥ n ≥ n 0 : w(t) ≤ Φ(t, n) w(n) + t-1 i=n Φ(t, i + 1) u(i) .
(152) We insert u(i) ≤ w(i) and (150) into (152) and obtain

∀t ≥ n ≥ n 0 : w(t) ≤ c 1 ρ t-n 1 w(n) + t-1 i=n c 1 ρ t-(i+1) 1 w(i) . (153) 
With y(t) := ρ -t 1 w(t) and λ := c 1 ρ -1 1 the preceding inequality implies

y(t) ≤ c 1 y(n) + t-1 i=n c 1 ρ -1 1 y(i) = c 1 y(n) + λ t-1 i=n y(i). (154) 
This suggests to define inductively

∀t ≥ n ≥ n 0 : z(t) := c 1 y(n) + λ t-1 i=n z(i). (155) 
Since c 1 ≥ 1 this gives y(n) ≤ z(n) = c 1 y(n) and inductively, by (154), y(t) ≤ z(t) for all t ≥ n. The sequence z(t), t ≥ n, satisfies the difference equation

z(n) = c 1 y(n), ∀t ≥ n : z(t + 1) = (1 + λ)z(t) =⇒ z(t) = (1 + λ) t-n z(n) = c 1 (1 + λ) t-n y(n) =⇒ y(t) ≤ z(t) = c 1 (1 + λ) t-n y(n) =⇒ ρ t 1 y(t)= w(t) w(t) ≤ c 1 (ρ 1 (1 + λ)) t-n w(n) . (156) 
But ρ 1 < 1 and ρ 1 (1 + λ) = ρ 1 + c 1 . Choose > 0 such that ρ := ρ 1 + c 1 < 1, Equation (156) implies w(t) ≤ c 1 ρ t-n w(n) for all t ≥ n ≥ n 0 , i.e., (151).

Example 3.16. This example shows that Lemma 3.15 does not hold if w(t + 1) = A(t)w(t) is only e.s. and not u.e.s. From Ex. 3.2 and Lemma 3.7 we know that for 0 < ρ 1 < ρ 2 < 1 the system

w(t + 1) = B(t)w(t), t ≥ 0, B(t) := ρ1 ρ2+(ρ2-ρ1)t 0 ρ2 ∈ C[t] 2×2 ⊂ C(t) 2×2 (157 
) is e.s., but not u.e.s. Define

C(t) := 0 0 2(ρ2+(ρ2-ρ1)t) -1 0 , A 1 (t) := B(t) + C(t) = ρ1 ρ2+(ρ2-ρ1)t 2(ρ2+(ρ2-ρ1)t) -1 ρ2 Φ 1 (t, n) := A 1 (t -1) * • • • * A 1 (n). (158) 
We conclude

det(A 1 (t)) = ρ 1 ρ 2 -2, | det(Φ 1 (t, n))| = (2 -ρ 1 ρ 2 ) t-n =⇒ lim t→∞ C(t) = 0, lim t→∞ | det(Φ 1 (t, n))| = ∞. (159) 
Hence the system w(t + 1) = B(t)w(t) is e.s. and the disturbed system w(t + 1) = (B(t) + C(t))w(t), t > 0, is not although lim t→∞ C(t) = 0.

In the following corollary we consider a state space equation

w(t + 1) = A(t)w(t), A ∈ C(t) × , n 0 + N ⊆ dom(A), t ≥ n 0 . (160) 
Moreover we assume that the rational matrix A(t) is proper, i.e., that A(∞) := lim (161) The matrices A(t) resp. A(∞) give rise to an LTV-resp. LTI-state space system. Corollary 3.17. If A(t) in (160) is proper then w(t + 1) = A(t)w(t) is u.e.s. if and only if w(t + 1) = A(∞)w(t) is (u.)e.s. or, in other terms, spec(A(∞)) ⊂ D = {z ∈ C; |z| < 1}.

Proof. Recall that u.e.s. and e.s. are equivalent for constant matrices. For any It is open whether the e.s. of w(t + 1) = A(t)w(t) instead of its u.e.s. and the existence of A(∞) also imply spec(A(∞)) ⊂ D.

> 0∃n 1 ≥ n 0 ∀t ≥ n 1 : A(t) -A(∞) ≤ =⇒ (A(t) -A(∞))w(t) ≤ w(t) .
Corollary 3.18. Let f = q d + a d-1 q d-1 + • • • + a 0 ∈ A = C(t)[q; α] and assume that all a j , j = 0, • • • , d -1, are proper. Define a j (∞) := lim t→∞ a j (t) and f ∞ := q d + a d-1 (∞)q d-1 + • • • + a 0 (∞) ∈ C[q]. (162)
Then the behavior B(Af ) is u.e.s. if and only if all roots of f ∞ belong to D. 

If in f = q -b, b ∈ C(t)
ij (t) ∈ C(t) of the p i = q d(i) + d(i)-1 j=0 a ij q j ∈ A with M i-1 /M i ∼ = A/Ap i are proper. If all roots of all polynomials p i,∞ = q d(i) + d(i)-1 j=0 a ij (∞)q j ∈ C[q] belong to D then the behavior B(U ) is e.s. . If all d(i) = 1 or p i = q -b i , b i := -a i0 , then B(U ) is e.s. if and only if |b i (∞)| < 1 for all i.

Special instability results

The following theorem is an unstable counter-part of Cor. 3.17. Its proof is an adaption of that of [START_REF] Cárcamo | The Chetaev Theorem for Ordinary Difference Equations[END_REF]Thm. 2] where the authors prove an analogue for nonlinear difference equations of an instability result of Chetaev for differential equations; cf. also [START_REF] Rugh | Linear System Theory[END_REF]Thm. 23.6]. In the following let y resp. y 2 denote the maximum norm resp. the 2-norm on C q . They obviously satisfy y ≤ y 2 ≤ q 1/2 y . Theorem 3.21. Consider the system (160) with proper A(t) and assume that A(∞) has at least one eigenvalue α with |α| > 1. Then

∃n 1 ≥ n 0 ∃ρ 1 > 1∀n ≥ n 1 ∃w(n) ∈ C , w(n) = 0, ∀t ≥ n : w(t) 2 ≥ ρ t-n 1 w(n) 2 , hence also w(t) ≥ q -1/2 ρ t-n 1 w(n) . (163) 
In particular, the system w(t + 1) = A(t)w(t) is not e.s.

Proof. 1. The proof needs several steps and uses ideas from Lyapunov's stability theory. For a matrix H = (H ij ) i,j ∈ C × let H * with (H * ) ij := H ji be its adjoint. For y ∈ C this implies y * y = y 2 2 . The matrix H is hermitian if H = H * . We choose ρ > 0 such that

|α| -1 < ρ < 1 and ∀λ, µ ∈ spec(A(∞)) : ρ 2 λµ = 1 and define A 1 (t) := ρA(t), B := A 1 (∞) = ρA(∞). (164) 
Then spec(B) = ρ spec(A(∞)) contains ρα with |ρα| > 1 and thus A 1 (t) satisfies the same hypotheses as A(t). Moreover λµ = 1 for all λ, µ ∈ spec(B). By [18, Thm. 5.2.3] we infer the existence of a hermitian matrix P with B * P B -P + I = 0, I := id , P = P * . Define 

V (y) = -y * P y ∈ R for y ∈ C =⇒ V (By) = V (y) + y 2 2 . (165 
For H = -P from above equation (167) implies that λ max > 0 and hence

∀y ∈ C : V (y) = y * (-P )y ≤ λ max y 2 2 , ∃y m ∈ C : V (y m ) = λ max y m 2 2 > 0. (169) We now compute V (A 1 (t)y) for t ≥ n 0 . Since A 1 (t) is proper and B = A 1 (∞) we write A 1 (t) = B + t -1 C(t)
with proper and thus bounded C(t) and conclude

V (A 1 (t)y) = y * (B + t -1 C(t)) * (-P )(B + t -1 C(t))y = y * B * (-P )By + t -1 y * H(t)y = V (By) + t -1 y * H(t)y = (165) V (y) + y 2 2 + t -1 y * H(t)y (170) 
where H(t) is rational, proper, hermitian and bounded. Since H(t) is bounded so is spec(H(t)). Define

σ := sup    |λ|; λ ∈ t≥n0 spec(H(t))    < ∞ =⇒ (168) ∀y∀t ≥ n 0 : |y * H(t)y| ≤ σ y 2 2 =⇒ (170) V (A 1 (t)y) ≥ V (y) + 1 -t -1 σ y 2 2 . (171) Choose n 1 ≥ n 0 such that n 1 ≥ max(n 0 , 2σ) =⇒ ∀t ≥ n 1 : 1 -t -1 σ ≥ 1/2 =⇒ ∀t ≥ n 1 ∀y : V (A 1 (t)y) ≥ (171) V (y) + 2 -1 y 2 2 ≥ (169) 
(1 + 2 -1 λ -1 max )V (y).

(172) 3. According to (169) choose a nonzero y ∈ C with V (y) = λ max y 2 2 > 0. Let n ≥ n 1 and consider the system y(t

+ 1) = A 1 (t)y(t), t ≥ n, y(n) = y. Equation (172) furnishes ∀t ≥ n : V (y(t + 1)) ≥ 1 + 2 -1 λ -1 max ) V (y(t)), V (y(n)) = λ max y(n 2 2 > 0 =⇒ induction V (y(t)) ≥ 1 + 2 -1 λ -1 max t-n V (y(n)) =⇒ (169) λ max y(t) 2 2 ≥ 1 + 2 -1 λ -1 max t-n λ max y(n) 2 2 =⇒ ∀t ≥ n : y(t) 2 ≥ (1 + 2 -1 λ -1 max ) 1/2 t-n y(n) 2 .
(173) Finally consider the system

w(t + 1) = A(t)w(t), t ≥ n, with V (w(n)) = λ max w(n) 2 2 > 0 (174) 
and define y(t) := ρ t w(t) with ρ from (164), especially y(n) = ρ n w(n). Then

y(t + 1) = ρ t+1 w(t + 1) = ρA(t)ρ t w(t) = A 1 (t)y(t), y(n) = ρ n w(n) and V (y(n)) = λ max y(n) 2 2 =⇒ (173) ∀t ≥ n : y(t) 2 ≥ (1 + 2 -1 λ -1 max ) 1/2 t-n y(n) 2 =⇒ ∀t ≥ n : w(t) 2 ≥ ρ t-n 1 w(n) 2 with ρ 1 := (1 + 2 -1 λ -1 max ) 1/2 ρ -1 > 1. ( 175 
) Definition 3.22. Let R ∈ A p× , U := A 1×p R, B := B(U ) and n 0 + N ⊆ dom(R).
The behavior B is called exponentially unstable (e.unst.) if

∃n 1 ≥ n 0 ∀n ≥ n 1 ∃w ∈ B(R, n)∃d ∈ N∃ρ > 1∃c > 0∀t ≥ n : cρ t ≤ x(t)
where x(t) := (w(t), Proof. We use the data from Lemma 3.7 and obtain for sufficiently large n 1 ≥ n 0 and n ≥ n

1 surjections P 1 • : B(R 2 , n) → B(R 1 , n). Assume that w 1 ∈ B(R 1 , n) is an e.unst. trajectory, i.e., ∀t ≥ n : c 1 ρ t 1 ≤ x 1 (t) , x 1 (t) := (w 1 (t), • • • , w 1 (t + d)), d ∈ N, c 1 > 0, ρ 1 > 1.
Let w 2 ∈ B(R 2 , n) be an inverse image with w 1 = P 1 • w 2 . As in the proof of Lemma 3.7 we derive the existence of c 2 > 0 and m ∈ N such that

∀t ≥ n : w 1 (t) ≤ c 2 t m max( w 2 (t) , • • • , w 2 (t + d 1 ) ) =⇒ ∀t ≥ n : x 1 (t) ≤ c 2 t m+d x 2 (t) , x 2 (t) := (w 2 (t), • • • , w 2 (t + d + d 1 )) =⇒ ∀t ≥ n : c 1 ρ t 1 c 2 t m+d ≤ x 2 (t) .
For any 1 < ρ 2 < ρ 1 there is a c 3 > 0 such that 

c 2 t m+d ≤ c 3 ρ t 2 , t ≥ 1 =⇒ ∀t ≥ n : c 1 ρ t 1 c 3 ρ t 2 ≤ x 2 (t) =⇒ c 4 ρ t 3 ≤ x 2 (t) , c 4 := c 1 c -1 3 , ρ 3 := ρ 1 ρ -1 2 > 1. Corollary 

Standard consequences of the duality theorem

We show that the duality theorem Thm. 1.6 and especially the exactness of the duality functor imply various important results well-known from LTI-systems theory. The proofs are slight variants of those of the corresponding LTI-results.

1. Connection with the LTI-theory: The relevant LTI-theory is that with the signal module C[q] C N where C[q](⊂ A) is the commutative polynomial algebra of difference operators with constant coefficients. The partial fraction decomposition furnishes

C(t) = ⊕ ∞ i=0 Ct i ⊕ ⊕ z∈C ⊕ ∞ i=1 C(t -z) -i , hence also A = ⊕ ∞ j=0 C(t)q j = ⊕ ∞ i=0 t i C[q] ⊕ ⊕ z∈C ⊕ ∞ i=1 (t -z) -i C[q]. (177) 
This implies that the right C[q]-module A C[q] is free and therefore faithfully flat [1, Prop. I.3.9], i.e. the functor

C[q] Mod → A Mod, M → A ⊗ C[q] M, (178) 
preserves and reflects exact sequences. In particular, [1, Prop. I.3.9]

∀V ⊆ C[q] C[q] 1× : V = C[q] 1× ∩ AV where AV = A ⊗ C[q] V ⊆ A ⊗ C[q] C[q] 1× = A 1× . ( 179 
) If V = C[q] 1×k R, R ∈ C[q]
k× , then AV = A 1×k R and the associated LTI-resp. LTV-behaviors are

V ⊥ := w ∈ (C N ) ; R • w = 0 = B(R, 0) resp. B(AV ) = cl ((B(R, n)) n≥0 ) . (180) If V 1 , V 2 ⊆ C[q] 1×
are two submodules the cogenerator property of C[q] C N , Thm. 1.6, (3), and (179) imply

V 1 ⊆ V 2 ⇐⇒ V ⊥ 2 ⊆ V ⊥ 1 ⇐⇒ AV 1 ⊆ AV 2 ⇐⇒ B(AV 2 ) ⊆ B(AV 1 ). ( 181 
)
These equivalences also follow from the isomorphisms

q n • : C n+N ∼ = C N , q n • : B(R, n) ∼ = B(R, 0). (182) 
Hence the map

{LTI-behaviors} → {LTV-behaviors} , V ⊥ → B(AV ), (183) 
is injective and preserves and reflects inclusions. Therefore we identify

∀R ∈ C[q] k× , V := C[q] 1×k R : B(R, 0) = V ⊥ = B(AV ) = cl ((B(R, n)) n≥0 ) .
(184) Due to (178) and (184) the LTI-theory of C[q] C N -behaviors is fully embedded into the LTV-theory of this paper. 2. Exponential stability in the LTI-resp. LTV-theory: As in item 1. consider R ∈ C[q] k× and V = C[q] 1×k R. Assume that V ⊥ = B(R, 0) ⊂ C N is autonomous, i.e., rank(R) = . The characteristic variety of the torsion module M = C[q] 1× /V or of the behavior V ⊥ is char(M ) := char(V ⊥ ) = {λ ∈ C; rank(R(λ)) < rank(R) = } = λ ∈ C; V ⊥ C[t] λ t = 0 where C[t]λ t := C (N) for λ = 0.

(185)

The characteristic variety gives rise to the modal decomposition

V ⊥ = λ∈char(V ⊥ ) V ⊥ C[t] λ t . (186) 
It implies that V ⊥ is asymptotically or exponentially stable if and only if char(V ⊥ ) ⊂ D := {z ∈ C; |z| < 1} . The Smith form implies an isomorphism

M ∼ = r i=1 C[q]/C[q]f i , f i ∈ C[q], deg q (f i ) > 0 =⇒ char(M ) = r i=1 V C (f i ), V C (f i ) := {λ ∈ C; f i (λ) = 0} .
(187) Hence V ⊥ is asymptotically stable if and only if all roots of all f i lie in D. The isomorphism in (187) also implies 

A 1× /AV ∼ = A ⊗ C[q] M ∼ =
Hence the image of a behavior under a difference operator P ∈ A 2× 1 is again a behavior. In Willems' language the behaviors of this paper admit elimination. Note that Willems considered projections of the form P = (id 2 , 0) ∈ A 2 ×( 2 +n) and P • : ( w x ) → w (191) only and thus eliminated the n so-called latent variables x i , for instance the state x. 4. Ehrenpreis' fundamental principle: Consider the behavior W = cl (C n+N ) n≥0 = B(0) and an exact sequence of modules and its dual exact sequence of behaviors

A 1× 3 •Q -→ A 1× 2 •P -→ A 1× 1 , hence A 1× 3 Q = η ∈ A 1× 2 ; ηP = 0 , W 1 P • -→ W 2 Q• -→ W 3 , hence P • W 1 = ker(Q•), =⇒ ∃n 1 ∀n ≥ n 1 : P • (C n+N ) 1 = u ∈ (C n+N ) 2 ; Q • u = 0 . (192) 
This implies that for n ≥ n (199) So Cor. 1.9 is indeed a simple consequence of Thm. 1.8. . Therefore the function f (t) := a(t -1/m ) of the real variable t is a smooth function in the interval (σ(a) m , ∞), in particular it has no poles for t > σ(a) m . Also there is a τ > σ(a) m such that f (t) has no zeros for t ≥ τ . Like in the case of rational functions we identify f = (f (t)) t∈N,t>σ(a) m . These sequences form a field F that has the properties (i)-(iv) of Remark 1.1,(a). The field F is isomorphic to the algebraic closure of the field C z of locally convergent Laurent series and contains C(t) = C(t -1 ). Examples for such sequences are t cos(t -1/2 ) t≥1 or (exp(t -1 )) t≥0 , but not (cos(t)) t≥0 . 8. Stabilization: In [START_REF] Oberst | Stabilizing compensators for linear time-varying differential systems[END_REF] the method of this paper and that of [START_REF] Bourlès | The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients[END_REF] are used for the construction and (Kučera-Youla)-parametrization of all stabilizing compensators for tracking, disturbance rejection and model matching of a stabilizible LTV-differential system. The differential analogue of Thm. 1.8 turns out to be a decisive tool.

( 21 )

 21 It makes C n+N a B(n)-left module that is denoted by B(n) C n+N . It is the most general natural signal module for discrete LTV-systems theory. The action • is extended to an action of a matrix R ∈ B(n) p× on a vector w

  behavior B(U ) is called trajectory-autonomous (t-autonomous) of memory size d if there are n 1 ≥ n 0 and d ∈ N such that ∀n ≥ n 1 : B(R, n) → C dq , w → (w(n), • • • , w(n + d -1)), is injective, (86) but not necessarily bijective. This means that for sufficiently large n all trajectories w ∈ B(R, n) with initial time n are uniquely determined by the initial data x(n) := (w(n), • • • , w(n + d -1)). The number d is obviously not unique. Corollary 2.16. The behaviors B(Ag) from (74) resp. B(Af 1 ) × • • • × B(Af r ) from (73) are obviously t-autonomous of memory sizes

  Definition 3.1. (cf. [25, Def. 22.5], (2)) A state space system

Corollary 3 . 4 .

 34 If in the preceding corollary the matrix A is constant, i.e., A ∈ C × ⊂ C(t) × , then w(t+1) = Aw(t) is e.s. if and only if the spectrum spec(A) is contained in the open unit disc D := {z ∈ C; |z| < 1}.

  .

3 .

 3 B 1 , B 3 e.s. =⇒ B 2 e.s.: For i = 1, 3 there are, as usual, p.g.s. ϕ i , i = 1, 3, and

  t) -A(∞)) = 0 and w(t + 1) = A(∞)w(t) + (A(t) -A(∞))w(t).

This and Lemma 3 .

 3 15 now imply the corollary.

  , the coefficient b is not proper then lim t→∞ |b(t)| = ∞ and B(Af ) is not e.s. If B(Af ) is e.s., w ∈ B(f, n) and hence w(t) = b(t -1) • • • b(n)w(n) the e.s. of w implies |b(∞)| < 1 and hence the u.e.s. of (q-b)•w = 0. Thus B(A(q -b)) is e.s. if and only |b(∞)| < 1. Corollary 3.19. (cf. [2, Thm. 1037]) Assume the data of (147) and in addition that all coefficients a

Definition 3 . 20 .

 320 If the b i in Cor. 3.19 exist they are called quasi-poles of B(U ).

)

  The function V is a quadratic form. Choose an > 0 such that I + (I -B * B) is positive definite. Then B * (P + I)B -(P + I) + I + (I -B * B) = 0. (166) Since B has the eigenvalue ρα with |ρα| > 1 the Lyapunov criterion implies that P + I is not positive definite and hence ∃y ∈ C , y = 0, with y * (P + I)y = -V (y) + y 2 2 ≤ 0 =⇒ V (y) > 0. (167) 2. Consider any hermitian matrix H = H * ∈ C × . A standard matrix result says that λ max := max(spec(H)) = max 0 =y∈C y -2 2 (y * Hy) and |y * Hy| ≤ ρ(H) y 2 2 with ρ(H) := max {|λ|; λ ∈ spec(H)} .

  i =⇒ B(AV ) ∼ = r i=1 B(Af i ).(188)According to Cor. and Def. 3.19 B(AV ) is e.s. in the sense of this paper if and only if all roots of all f i lie in D. Hence asymptotic stability of the LTI-behavior V ⊥ and the LTV-e.s. of B(AV ) coincide.3. Willems' elimination: LetP ∈ A 2× 1 , U 1 ⊆ A 1× 1 , B 1 := B(U 1 ), U 2 := (•P ) -1 (U 1 ) := η ∈ A 1× 2 ; ηP ∈ U 1 , B 2 := B(U 2 ).(189)The monomorphism(•P ) ind : A 1× 2 /U 2 → A 1× 1 /U 1 , η + U 2 → ηP + U 1 ,and Thm. 1.6,(1), imply the epimorphism P • : B(U 1 ) → B(U 2 ) or P • B(U 1 ) = B(U 2 ).

1

 1 the equation P • w = u, u ∈ (C n+N ) 2 , has a solution w ∈ (C n+N ) 1 if and only if Q • u = 0 or η • u = 0 if ηP = 0. 5. Input/output structures: Let R ∈ A k× ⊂ K k× of rank p := rank(R)where and is itself an IO-behavior with input u 1 . Its autonomous part isB 0 (n) := ( w3 w1 ) ∈ C n+N 3 + 1 ; R 3 • w 3 + R • w 1 = 0, R 1 • w 1 = 0 =(129)B 2 (n).

6 .

 6 Controllability: The behavior B(U ), U ⊆ A 1× , is called controllable if its module M = A 1× /U is torsionfree and thus free, cf. (79). This is equivalent to the existence of an image representation (Willems) or parametrization (Pommaret), i.e., an epimorphism P • :W m = B(0) m → B(U ), i.e., of surjections P • : W (n) m → B(R, n) for sufficiently large n ≥ n 1 .This also means that trajectories of B(U ) can be concatenated as usual, but only after the time instant n 1 . If tor(M ) = V /U then B cont (U ) := B(V ) is the largest controllable subbehavior of B(U ). The isomorphisms (72), (79) imply tor(M ) ∼ = r i=1 A/Af i and M ∼ = A 2 -r × tor(M ) and thus the controllable-autonomous decompositionB(U ) ∼ = W 2-r × r i=1 B(Af i ) .(200) 7.A larger coefficient field than C(t), cf. [22, Ex. 1.2]: Consider m ≥ 1 and the locally convergent Laurent series a(z) = ∞ i=k a i z i , k ∈ Z, with σ(a) := lim sup i≥0 i |a i | < ∞. Standard complex variable theory shows that a(z) is a holomorphic function in the annulus z ∈ C; 0 < |z| < σ(a) -1

the difference ring (C n+N , α) gives rise to the noncommutative skew-polynomial algebra [19, §1.2.3]

  

  2.2]. It was rediscovered and applied to systems theory by Quadrat and Robertz in [24, Thm. 7, §5] and [23, Thm. 7, §4]. The proof given here is more direct.

  Theorem 3.11. Exponentially stable behaviors form a Serre subcategory of the abelian category of all LTV-behaviors. For the data from (117), (118) or, w.l.o.g., from (127) -(132) this means that B 2 is e.s. if and only if B 1 and B 3 are. Proof. We assume (127)-(133). The time n 0 below is always chosen sufficiently large. 1. B 2 e.s. =⇒ B 3 e.s.: There are a p.g.s. ϕ and ρ as usual such that

  • • • , w(t + d)). (176) The trajectory w from (176) is also called e.unst.. It is obvious that in Thm. 3.21 the behavior B(A 1× (qI -A)) is e.unst.. Lemma 3.23. Exponential instability is preserved by isomorphisms.

  3.24. If under the assumptions of (117) and (118) the behaviors B 1 or B 3 are exponentially unstable then so is B 2 .Proof. Due to Lemma 3.23 the proof proceeds like 1. and 2. of that of Thm. 3.11. If under the assumptions of (147) all p i are proper and at least one p i,∞ (cf. Cor. 3.19) has a root of absolute value > 1 then the behavior B(U ) is exponentially unstable.

	Corollary 3.25.
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Corollary 3.12. Let f = f 1 f 2 be a nonzero product in A, hence 0 = Af ⊆ Af 2 . Then f is exponentially stable if and only if f 1 and f 2 are.

Proof. The application of Thm. 3.11 to the exact sequences

furnishes the result.

Consider any torsion module

The module M is of finite length, i.e., artinian and noetherian, and admits a composition series

(147) An element p ∈ A is irreducible if and only if Ap is a maximal left ideal or if and only if A/Ap is a simple module. By the Jordan-Hölder theorem the simple factors are unique up to their numbering and up to isomorphism. Hence the p i are unique up to their numbering and up to similarity where f and g in A are called similar if 

Modulo the Jacobson package of [START_REF] Chyzak | OreModules: A symbolic package for the study of multidimensional linear systems[END_REF] for the algebra

and (72) the computation of a composition series of a f.g. module over A Q reduces to the factorization of a nonzero f ∈ A Q into irreducible factors. For C instead of Q such a factorization can only be approximated as is already the case for polynomials in

Call a f.g. module M e.s. if for one and then all (cf. Lemma 3.7) representations M = A 1× /U the behavior B(U ) is e.s.. Due to Thms. 1.8, 3.11 the e.s. modules form a Serre subcategory of the category of f.g. A-modules that are all noetherian.

Corollary 3.14. Every f.g. A-module M has a largest e.s. submodule Ra es (M ), and moreover Ra es (M/ Ra es (M )) = 0.

Special stability results

In Sections 3.5 and 3.6 we describe cases where e.s. or lack of e.s. can be checked algebraically.

K := quot(A) (cf. ( 80)-( 82)). Then there are various choices of p columns of R that are a basis of the column space RK of R. After the standard column permutation one writes R = (P, -Q) ∈ K k×(p+m) , = p + m, and obtains rank(R) = rank(P ) = p and the unique transfer matrix H ∈ K p×m with P H = Q. Define U := A 1×k (P, -Q), U 0 := A 1×k P, M := A 1×(p+m) /U, M 0 := A 1×p /U 0 , B := B(U ), B 0 := B(U 0 ).

(193) Since P ∈ A k×p and rank(P ) = p the module M 0 is torsion and B 0 is autonomous. In analogy to the LTI-case the sequence of A-modules

Conversely, the exactness of this sequence and the torsion property of M 0 imply rank(P, -Q) = rank(P ) = p. The decomposition R = (P, -Q) is called an input/output (IO) decomposition or structure of R, M or B. The description by the exactness of (194) shows that the structure depends on M , but not on the special choice of R. The exactness of the module sequence (194) implies that of the behavior sequence

For sufficiently large n 1 and n ≥ n 1 this implies the exactness of

where B(P, n) = y ∈ C n+N p ; P • y = 0 and

Hence the component u of a trajectory ( y u ) of B((P, -Q), n), n ≥ n 1 , is free, i.e., can be freely chosen as input, but there is no larger component with this property. Up to the introduction of the initial time n 1 this is the standard LTI-result. The e.s. of an IO-behavior B is defined by that of its autonomous part B 0 . Using this we finally prove Cor. 1.9 with the help of [11, §2.4]. With the data from (129) and (130) consider, for sufficiently large n, IO-behaviors

where (R 1 , Q) ∈ A 1×( 1+k) . The conditions R i ∈ A i× i and rank(R i ) = i for i = 1, 3 imply that these B i are indeed IO-behaviors. The series interconnection of first B 1 and then B 3 is given by 198)