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Abstract
We develop a new approach to exponential stability of linear time-varying

(LTV) differential behaviors that is analogous to that in our paper on exponential
stability of discrete LTV behaviors (to appear in SIAM J. Control Optim. 2015).
Stability theory for differential state space systems with smooth coefficients is an
important subject in the literature. For differential LTV behaviors with arbitrary
smooth coefficients there is no reasonable stability theory. Therefore we restrict
the smooth varying coefficients to functions that are defined by means of locally
convergent Puiseux series. All rational functions are of this type. We introduce
a new kind of behaviors and prove a module-behavior duality for these. We de-
fine a new notion of weak exponential stability (w.e.s.) of a behavior B and its
associated finitely generated (f.g.) module M and show that the w.e.s. modules
and behaviors are closed under isomorphisms, subobjects, factor objects and ex-
tensions. The standard uniform exponential stability of state space equations is not
preserved under behavior isomorphisms and unsuitable for a behavioral theory. In
the main result we assume a nonzero f.g. torsion module M and its associated
autonomous behavior B. Such a module may be regular or irregular singular ac-
cording to the Galois theory of differential equations. If it is nonzero and regular
singular it is never w.e.s.. For irregular singular M we characterize w.e.s. of most
B algebraically and constructively.

AMS-classification: 93D20, 93C15, 93B25, 34D05, 34D20
Key-words: exponential stability, differential behavior, time-varying, duality, Serre
category

1 Introduction
In this paper we develop a new approach to exponential stability of behaviors that are
described by linear time-varying (LTV) differential equations. The method is the ana-
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1 INTRODUCTION 2

logue of that in our paper [5] on exponential stability for discrete behaviors and differs
from that in [4, Ch. 6]. Stability and stabilization for LTV differential state space sys-
tems is an important subject in the literature, see for instance the books [21, Chs. 6,7,8,
pp. 99-141] and [12, Ch. 3, pp. 193-368] and their comprehensive bibliographies and
the recent papers [19], [11], [1], [2]. The main theorems of the present paper are Thms.
2.3, 2.7 and 2.8 and are exposed in Section 2.
We use the differential field K of locally convergent Laurent series in z1/m, m ≥ 1.
The elements of K are of the form a(z1/m) =

∑∞
i=k aiz

i/m, k ∈ Z, and give rise to
smooth functions f(t) = a(t−1/m) that are defined on intervals (τ,∞) ⊂ R for suf-
ficiently large τ ≥ 0. These f(t) are the coefficient functions of the considered LTV
differential systems. The field K contains the fields of rational and even of meromor-
phic functions, but only their germs at 0 are used for defining f(t). With its standard
derivation d/dz the field K gives rise to the noncommutative algebra A = K[∂; d/dz]
of differential operators that is a principal ideal domain. We introduce a new kind of
behaviors and prove a categorical duality between these behaviors and finitely gener-
ated (f.g.) A-left modules, cf. Thm. 2.3. We define a new notion of weak exponential
stability (w.e.s.) of a behavior B and its associated f.g. module M by analytic condi-
tions on the behavior’s trajectories, cf. Def. 2.4. In contrast to the standard uniform
exponential stability (u.e.s.) [21, Def. 6.5] w.e.s. is preserved by isomorphisms and
characterized by exponential decay factors exp(−αtµ) with α, µ > 0 instead of the
standard factors exp(−αt). The w.e.s. modules and behaviors form Serre categories,
i.e., are closed under isomorphisms, subobjects, factor objects and extensions, cf. Thm.
2.7. In the main result Thm. 2.8 we assume a nonzero f.g. torsion module M and its
associated autonomous behavior B. Such a module may be regular or irregular sin-
gular [16], [20], cf. Section 5. If it is nonzero and regular singular it is never w.e.s..
If it is irregular singular we construct a complex matrix A0 from M and show that M
and B are w.e.s. if the eigenvalues of A0 have positive real parts and are not w.e.s. if
at least one eigenvalue of A0 has a negative real part. If the eigenvalues of A0 have
nonnegative real parts and at least one of them is purely imaginary then M and B need
not be w.e.s..
We refer to [5, Section 4] where it is shown (in the analogous discrete situation) that
the module-behavior duality of Thm. 2.3 implies the standard consequences for dif-
ferential LTV behaviors like Ehrenpreis’ fundamental principle, Willems’ elimination,
controllability and input/output decompositions.

Remark 1.1. (cf. [5, Remark 1.1]) (i) Difficulties with arbitrary analytic coefficients:
Consider the differential equation cos2(t)w′(t) − w(t) = 0, t ∈ R, with its nonzero
solutions w(t) = c exp (tan(t)) , c 6= 0, and singularities in (n+ 1

2 )π, n ∈ Z, where
the system explodes. For such systems stability of any kind cannot be defined. The
singularities lie in the infinite discrete set D of zeros of cos(t). In [14], [22] these sin-
gularities are omitted from the time domain, i.e., the signals are considered as smooth
functions on R \ D. The mathematical problems with the singularities are thus cir-
cumvented, but not the engineering ones because a time axis with infinitely many gaps
has no engineering significance. This suggests to use coefficient functions that have no
zeros for t→∞.
(ii) Difficulties with smooth coefficients: Differential rings of general smooth functions
are, in general, neither integral domains nor noetherian and this is inherited by the
associated rings of differential operators. Such rings have only weak and unconstruc-
tive algebraic properties. In particular, they do not admit a module-behavior duality
and algebraic algorithms for the solution of systems theoretic problems. This sug-
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gests to choose coefficient rings of analytic functions. The best algebraic properties are
obtained if the coefficients form a differential field and the associated ring of differ-
ential operators is a principal ideal domain. The field of meromorphic functions [13],
[22],[14] is unsuitable due to (i).
(iii) Puiseux series: It turns out that the field K of locally convergent Puiseux series
and the derived coefficient functions have all required properties. Moreover there is a
substantial Algebraic theory of differential equations [16], [20] that is used to derive
the algebraic characterization of exponential stability in this paper. Similar coefficient
domains were already considered in cf. [4, §§5.4, 6.2, 6.3].
(iv) Constructivity: Due to, for instance, [20, Ch. 4] and [6] the algebraic derivations of
this paper are constructive if one replaces the base field C by the field Q(i) as always
in numerical computations. We hope that experts in Computer Algebra will implement
our results and algorithms.
(v) Lyapunov theory: This is implicitly used in the proof of Thm. 5.7 by means of the
quoted Result 5.6 from [21, Thms. 7.4, 8.6] and explicitly in the proof of Thm. 5.8.
(vi) Difference to [4]: In this paper we do not and do not have to use the product de-
composition of a differential operator in A into linear factors. This does not always
exist. In analogy to [5] we also use new behaviors that enable the definition of weak
exponential stability in generalization of the standard uniform exponential stability [21,
Def. 6.5].

The Sections 3, 4 resp. 5 are devoted to the proofs of the main Thms. 2.3, 2.7 resp.
2.8. The proofs in Sections 3 and 4 are analogous to those in the discrete case [5] and
only their essentially different parts are carried out in detail. In Section 3.6 we also
define and characterize autonomy of a behavior as usual.
Continuous LTV systems and their stability from the engineering point of view have
been treated in the books [21] and [4] and, for instance, in the papers [13], [9], [22],
[14], [15], [19], [11], [1], [2].
Notations and abbreviations: C+(−) := {z ∈ C; <(z) > (<)0}, e.s.= exponen-
tially stable, f.d.=finite-dimensional, f.g.=finitely generated, p.g.f.= polynomial growth
function, resp.=respectively, spec(A0) :=set of eigenvalues of a square complex ma-
trix A0, u.e.s.= uniformly e.s., w.e.s.= weakly e.s., w.l.o.g.=without loss of generality,
Xp×q=set of p × q-matrices with entries in X , X1×q=rows, Xq := Xq×1=columns ,
X•×• :=

⋃
p,q≥0X

p×q

2 Exposition of the main results
In this Section we give sufficient details for the main results in order that these can be
understood without the proofs in the following sections.

Any linear time-varying continuous systems theory requires the choice of several
data: the time axis, the algebra K of coefficient functions, the associated algebra A of
differential operators and its finitely generated (f.g.) modules, the module of signals
and the associated solution spaces of linear differential systems, called behaviors. The
algebraic properties of these data are determined by those of K and the signal space.
In this paper we make the following choices:
As time axes of variable length we use the open intervals (τ,∞) := {t ∈ R; t > τ}
with τ ≥ 0. Since we are going to study the behavior of trajectories w(t) for t → ∞
the restriction to τ ≥ 0 is no loss of generality. The consideration of different initial
times τ is required by the time-variance of the systems. As signal spaces on (τ,∞) we
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take the C-spaces

W (τ) = C∞(τ,∞) or W (τ) := D′(τ,∞) (1)

of complex-valued smooth functions or distributions on the interval.
As coefficient field we choose the algebraic closure K :=

⋃
m≥1 C << z1/m >>

of the field C << z >> of locally convergent Laurent series in the variable z where
C << z1/m >> is the field of Laurent series in the variable z1/m, cf. Section 3.1 and
Result 3.2. The nonzero elements of C << z1/m > have the form

f = a(z1/m) =

∞∑
i=k

aiz
i/m, a =

∞∑
i=k

aiz
i ∈ C << z >>,

with k ∈ Z, ak 6= 0, σ(a) :=

(
lim sup
i≥0

i
√
|ai|
)
<∞.

(2)

By standard complex variable theory the number ρ(a) := σ(a)−1 is the convergence
radius of a and the function a(z) is holomorphic in the annulus

{z ∈ C; 0 < |z| < ρ(a)} (3)

and hence defines the smooth function

f(t) := a(t−1/m) :=

∞∑
i=k

ait
−i/m ∈ C∞(σ(f),∞), f = a(z1/m), σ(f) := σ(a)m.

(4)
Notice that for f = a(z1/m) ∈ K and t > σ(f) we write f(t) = a(t−1/m) and not
f(t−1) or f(t−1/m). The function a(z) is holomorphic in 0 too if and only if k ≥ 0
or a(z) is a locally convergent power series, and then f(t) = a(t−1/m) is bounded
on each closed interval [τ,∞), τ > σ(f) . These functions f(t) are the coefficient
functions in our differential systems and are defined only on the interval (σ(f),∞)
depending on f . Examples for such coefficient functions are rational functions

f(t) ∈ C(t) = C(t−1), t1/3 cos(t−1/2), t2 exp(t−1), but not cos(t). (5)

The field K is a differential field and equipped with the standard C-linear derivation

d/dz : K→ K, a(z1/m)→ da(z1/m)/dz = m−1z
1
m−1a′(z1/m) where

(−)′ : C << z >>→ C << z >>, a =

∞∑
i=k

aiz
i 7→ a′(z) :=

∞∑
i=k

iaiz
i−1.

(6)

(cf. (58)) and gives rise to the noncommutative skew-polynomial C-algebra of differ-
ential operators [17, §1.2], cf. Section 3.2,

A := K[∂; d/dz] = ⊕∞j=0K∂
j 3 f =

∞∑
j=0

fj∂
j

with the multiplication for a, b ∈ K, i, j ∈ N :

(a∂i)(b∂j) =

i∑
k=0

(
i

k

)
a
di−kb

dzi−k
∂k+j , ∂b = b∂ + db/dz,

(7)
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By definition almost all, i.e., up to finitely many, coefficients fj ∈ K of f are zero.
Notice that d/dz : K→ K is a map whereas ∂ denotes an indeterminate. The algebraic
properties of A and its f.g. modules are well-known: It is a left and right principal
ideal domain, hence noetherian, [17, Th. 1.2.9, §5.7] and simple (cf. Lemma 3.5),
i.e., 0 and the whole ring are its only two-sided ideals. The module structure will
be used to study that of the associated behaviors. For every nonzero a ∈ K also
a(z)d/dz : K→ K, b 7→ adb/dz, is a derivation and therefore

A = K[∂; d/dz] = K[a∂; a(z)d/dz] = ⊕j∈NK(a∂)j , especially

A = K[∂; d/dz] = K[z∂; zd/dz] = K[−z2∂;−z2d/dz] = ⊕j∈NK(−z2∂)j .
(8)

For

f =
∑
j

fj∂
j ∈ A and R = (Rµν)µν =

∑
j

Rj∂
j ∈ Ap×q define

σ(f) := max {σ(fj); j ∈ N} , σ(R) := max {σ(Rµν); µ ≤ p, ν ≤ q}
=⇒ ∀j ∈ N : fj(t) ∈ C∞(σ(f),∞), Rj(t) ∈ C∞(σ(R),∞)p×q.

(9)

For every τ ≥ 0 we obtain the subalgebras

K(τ) :=
{
f = a(z1/m) ∈ K; τ ≥ σ(f) = σ(a)m

}
⊂ A(τ) = K(τ)[∂; d/dz]⋂ ⋂

K =
⋃
τ ′≥0 K(τ ′) ⊂ A =

⋃
τ ′≥0 A(τ ′)

.

(10)
Likewise the derivative

d/dt : C(τ) := C∞(τ,∞)→ C(τ), g 7→ g′ = dg/dt, (11)

is a derivation and gives rise to the skew-polynomial algebra of differential operators
resp. the standard module action

B(τ) := C(τ)[∂t; d/dt] = ⊕∞j=0C(τ)∂jt resp. ◦ : B(τ)×W (τ)→W (τ) with

∂t ◦ w = w′, (g ◦ w)(t) = g(t)w(t), g ∈ C(τ), w ∈W (τ).
(12)

Again ∂t is an indeterminate. As indicated in the Introduction the algebraic proper-
ties of the algebra B(τ), its f.g. modules and the signal module B(τ)W (τ) are weak.
Therefore we replace B(τ) by A(τ) as follows: According to Lemma 3.4 and (69)
below the map

Φ : A(τ) = K(τ)[−z2∂;−z2d/dz] → B(τ) = C(τ)[∂t; d/dt]∑∞
j=0 aj(z

1/m)(−z2∂)j 7→
∑∞
j=0 aj(t

−1/m)∂jt ,

Φ(−z2∂) = ∂t, Φ(a(z1/m)) = a(t−1/m)

(13)
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is an algebra monomorphism and induces the action

A(τ)×W (τ)→W (τ), (f, w) 7→ f ◦ w := Φ(f) ◦ w, for t > τ,

f =

∞∑
j=0

aj(z
1/m)(−z2∂)j ∈ A(τ) = K(τ)[−z2∂;−z2d/dz], w ∈W (τ) with

(−z2∂) ◦ w = ∂t ◦ w = w′, (−z2∂)j ◦ w = w(j) = djw/dtj ,

(a(z1/m) ◦ w)(t) = a(t−1/m)w(t), (∂ ◦ w)(t) = −t2w′,

(f ◦ w)(t) =

∞∑
j=0

aj(t
−1/m)w(j),

(14)
that makes W (τ) a left A(τ)-module.

Remark 2.1. The simpler map

Φ1 : A(τ) = K(τ)[∂; d/dz]→ B(τ),

∞∑
j=0

aj(z
1/m)∂j 7→

∞∑
j=0

aj(t
−1/m)∂jt ,

with Φ1(∂) = ∂t, Φ1(a(z1/m)) = a(t−1/m),

(15)

is C-linear, but not an algebra homomorphism since, for instance,

Φ1(∂z) = Φ1(z∂ + 1) = t−1∂t + 1 6= t−1∂t − t−2 = ∂tt
−1 = Φ1(∂)Φ1(z).

The action f ◦1 w := Φ1(f) ◦ w with ∂ ◦1 w = w′ can be defined, but does not make
W (τ) an A(τ)-left module and is indeed useless.

More generally, a matrix R =
∑
j Rj(−z2∂)j ∈ A(τ)p×q ⊂ Ap×q acts on a

column vector w ∈W (τ)q via

R ◦ w :=
∑
j

Rj(t)w
(j), R =

∑
j

Rj(−z2∂)j ∈ A(τ)p×q (16)

and gives rise to the solution spaces or behaviors

B(R, τ) := {w ∈W (τ)q; R ◦ w = 0}

=

w ∈W (τ)q;
∑
j

Rj(t)w
(j) = 0

 , τ ≥ σ(R).
(17)

Since A is not commutative the behavior B(R, τ) is only a C-space and not an A(τ)-
module.
The dependence of the admissible τ on the defining matrix R suggests to consider
behavior families (B(R, τ))τ≥τ0 , τ0 ≥ σ(R), especially (B(R, τ))τ≥σ(R). For the
comparison of different such families we introduce the equivalence relation and equiv-
alence classes

∀Rk ∈ Apk×q, τk ≥ σ(Rk), k = 1, 2 :

(B(R1, τ))τ≥τ1 ≡ (equivalent) (B(R2, τ))τ≥τ2

:⇐⇒ ∃τ3 ≥ max(τ1, τ2)∀τ ≥ τ3 : B(R1, τ) = B(R2, τ),

cl
(
(B(R), τ)τ≥σ(R)

)
:= equivalence class of (B(R, τ))τ≥σ(R).

(18)
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To study the equivalence classes means to study the behaviors B(R1, τ) for large τ ≥
τ3, the transient behavior in the interval (σ(R1), τ3) is neglected. This is appropriate
for stability questions where the properties of the trajectories w(t) ∈ B(R1, τ) for
t → ∞ are investigated. If U ⊆ A1×q is any (always f.g.) submodule and generated
by the rows of a matrix R ∈ Ap×q , i.e., U = A1×pR, then

B(U) := cl
(
(B(R, τ))τ≥σ(R)

)
(19)

depends on U only and not on the special choice of R, cf. Lemma 3.7, and is called the
behavior associated to U . Note that W (τ) is an A(τ)-, but not an A-module and that
B(U) is not isomorphic to HomA

(
A1×q/U,W

)
for any natural A-signal module W .

But in Section 3.3 we construct an abelian category B that contains the objects B(U)
and also suitable morphisms between these behaviors. The category of the objects
B(U) and the behavior morphisms is the abelian category Beh of behaviors.

Example 2.2. We have to use the linear state space systems [21, p. 13]

x′ = F (t)x+ u, F = A(z1/m) ∈ Kn×n, x, u ∈W (τ)n where

A ∈ C << z >>n×n, F (t) = A(t−1/m), τ ≥ σ(F ) = σ(A)m.
(20)

The equation x′(t) = F (t)x(t) with given initial condition x(t0), t0 > τ, has the
unique smooth solution

x(t) = Φ(t, t0)x(t0) ∈ C∞(τ,∞)n, Φ(−, t0) ∈ Gln (C∞(τ,∞)) where

dΦ(t, t0)

dt
= F (t)Φ(t, t0), Φ(t0, t0) = idn, Φ(t, t0)−1 = Φ(t0, t),

(21)

and Φ(t, t0) is called the transition matrix [21, Thm. 3.3]. There results the C-
isomorphism

B(−z2∂ idn−F, τ) = {x ∈W (τ)n; x′(t) = F (t)x(t)} ∼= Cn, x 7→ x(t0), (22)

where x(t) = Φ(t, t0)x(t0). For τ1 ≥ τ0 the isomorphism (22) induces the restriction
isomorphism

res : B(−z2∂ idn−F, τ0)→ B(−z2∂ idn−F, τ1), x 7→ x|(τ1,∞). (23)

The distributional solutions of x′ = F (t)x+ u, x, u ∈ D′(τ,∞), are

x = Φ(t, t0)x1 with x′1 = Φ(t, t0)−1u = Φ(t0, t)u. (24)

If u is continuous the solution x is given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)u(s)ds. (25)

The duality between f.g. modules and behaviors gets the following form: Let
AModfg be the abelian category of f.g. A-modules M with a given finite system
of generators or, equivalently, a given representation M = A1×q/U as factor of a free
module A1×q by a submodule U . The morphisms of AModfg are just the A-linear
maps. Fliess [8] calls a moduleM with the additional structureM = A1×q/U a linear
dynamic or LTV system. In analogy to the discrete case [5, Cor. 2.7] we extend the
assignment M = A1×q/U 7→ B(U) to a contravariant functor
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AModfg → Beh,

{
M = A1×q/U 7→ B(U)(
ϕ : A1×q1/U1 → A1×q2/U2

)
7→ (B(ϕ) : B(U2)→ B(U1))

.

(26)
The first main theorem of this paper is

Theorem 2.3. (cf. [5, Thm. 1.3], Sections 3.4, 3.5) The functor (26) is a duality
(contravariant equivalence). More precisely the following properties hold:

1. It transforms exact sequences of modules into exact sequences of behaviors.

2. For all A1×q1/U1,A
1×q2/U2 ∈Modfg

A there is the C-linear isomorphism

HomA(A1×q1/U1,A
1×q2/U2) ∼= HomBeh(B(U2),B(U1)), ϕ 7→ B(ϕ).

(27)

3. For all U1, U2 ⊆ A1×q:

U1 ⊆ U2 ⇐⇒ B(U2) ⊆ B(U1), especially U1 = U2 ⇐⇒ B(U2) = B(U1).
(28)

We define weak exponential stability (w.e.s.) of B(U) from (19): For τ ≥ 0 a func-
tion ϕ ∈ C[τ,∞) on the closed interval [τ,∞) is called a function of at most polynomial
growth (p.g.f.) if

∃c ≥ 1∃p ∈ N∀t ≥ τ : |ϕ(t)| ≤ ctp. (29)

Every coefficient function (3)

f(t) = a(t−1/m) = t−k/mu(t−1/m) where

f = a(z1/m) ∈ K, a = zku ∈ C << z >>, u ∈ C < z >,
(30)

is a p.g.f. on every closed interval [τ,∞), τ > σ(f) = σ(a)m = σ(u)m since
τ−1/m < ρ(u) = ρ(a) = σ(a)−1 and u(z) is continuous and bounded in the compact
disc

{
z ∈ C; |z| ≤ τ−1/m

}
. The p.g.f. property of the coefficient functions is essential

for the derivations of this paper. We call the p.g.f. ϕ positive, ϕ > 0, if ϕ(t) > 0 for
all t ≥ τ .
On all finite-dimensional vector spaces Cq we use the maximum norm

∀v = (v1, · · · , vq)> ∈ Cq : ‖v‖ := max {|vi|; i = 1, · · · , q} ,
∀A ∈ Cq×q : ‖A‖ := max {‖Av‖; v ∈ Cq, ‖v‖ = 1}
=⇒ ∀v ∈ Cq : ‖Av‖ ≤ ‖A‖‖v‖.

(31)

In the following considerations W (τ) = C∞(τ,∞) is the space of smooth functions
so that for w ∈W (τ)q and t ∈ (τ,∞) the norm ‖w(t)‖ is defined. We define

∂(m) = (1,−z2∂, (−z2∂)2, · · · , (−z2∂)m−1)> ∈ Am, m ∈ N,

(∂(m) ◦ w)(t) = (w(t), w′(t), · · · , w(m−1)(t))> ∈ (W (τ)q)
m
, w ∈W (τ)q.

(32)

Definition 2.4. The behavior B(U) = cl ((B(R, τ))τ≥τ0) from (19) is called weakly
exponentially stable (w.e.s.) if

∃τ1 ≥ τ0∃d ∈ N∃α, µ > 0∀m ∈ N∃ p.g.f. ϕm ∈ C[τ1,∞) with ϕm > 0

∀t ≥ t0 > τ ≥ τ1∀w ∈ B(R, τ) :

‖w(m)(t)‖ ≤ ϕm(t0) exp (−α(tµ − tµ0 )) ‖(∂(d) ◦ w)(t0)‖.
(33)
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The condition in (33) can be equivalently replaced by a different p.g.f. ψm > 0 and

‖(∂(m) ◦ w)(t)‖ ≤ ψm(t0) exp (−α(tµ − tµ0 )) ‖(∂(d) ◦ w)(t0)‖. (34)

The behavior is called exponentially stable (e.s.) if (33) and (34) hold with µ = 1.
State space equations x′(t) = F (t)x(t) with continuous F (t) ∈ C0(τ,∞)n×n are
called uniformly exponentially stable (u.e.s.) [21, Def. 6.5] if there are c ≥ 1 and
α > 0 such that

∀t ≥ t0 > τ∀x ∈ C1(τ,∞)n with x′ = Fx : ‖x(t)‖ ≤ ce−α(t−t0)‖x(t0)‖. (35)

A w.e.s. behavior is, of course, asymptotically stable in the sense that for all trajec-
tories w ∈ B(R, τ) and all m the limit limt→∞ w(m)(t) exists and is zero. It is always
autonomous (see Section 3.6), but the trajectories w are not uniquely determined by
w(t0) alone, but only by the initial vector

(∂(d) ◦ w)(t0) = (w(t0), w′(t0), · · · , w(d−1)(t0))> (36)

with fixed d. The number d is not unique and called a memory-size of the autonomous
behavior. The initial time t0 > τ in addition to τ is needed because τ does not belong
to the open interval (τ,∞) on which w is defined.
Recall that a behavior is called stable if its trajectories are bounded for t→∞.

Remark 2.5. Note that w.e.s., e.s. and u.e.s. are defined by analytic properties of the
trajectories of the system and not algebraically. The w.e.s. differs from u.e.s. in the
following aspects:

1. The factor ϕm(t0) is not constant, but a p.g.f. of the initial time t0.

2. The trajectories decrease according to the exponential factor exp (−αtµ) where
µ > 0 is any positive real number. According to whether µ < 1 or µ > 1
the decay is slower or faster than the usual exponential decay with the factor
exp (−αt).

3. The exponential decay of all derivatives of the trajectories is required.

4. The initial condition is (∂(d) ◦ w)(t0) and not w(t0).

5. All conditions are required for sufficiently large τ ≥ τ1 and not for τ = τ1 = 0.

6. W.e.s. and e.s. are preserved by behavior isomorphisms (cf. Lemma 4.11). This
implies that for any f.g. module M = A1×q/U the w.e.s. or e.s. of B(U)
depends on M only and not on the special representation M = A1×q/U . In
contrast we show in Example 4.10 that stability and u.e.s. are not preserved by
general behavior isomorphisms, compare [21, p. 107].

Definition 2.6. A f.g. A-left module M is called w.e.s. resp. e.s. if for one (or all)
representation(s) M = A1×q/U the behavior B(U) is w.e.s. resp. e.s..

U.e.s. state space systems are also e.s.. In the simplest case of state space equations
w′ = Aw with a constant matrix A ∈ Cn×n w.e.s. of the corresponding behavior
signifies that A is asymptotically stable, i.e., spec(A) ⊂ C−.
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Theorem 2.7. The weakly exponentially stable f.g. A-modules and hence also the
w.e.s. behaviors form a Serre category. This signifies that for an exact sequence of f.g.
A-left modules 0 → M ′ → M → M ′′ → 0 the module M is w.e.s. if and only if M ′

and M ′′ are.
Equivalently [5, Cor. 1.9], the series connection of two input/output (IO) behaviors is
w.e.s. if and only if its two building blocks are .
Likewise the exponentially stable (e.s.) f.g. A-modules form a Serre category.

Here an IO behavior is called w.e.s. if its autonomous part is w.e.s.. The proof
of this result uses analytic tools essentially. Its proof for LTI behaviors is carried out
algebraically and is much simpler.
As in the LTI case the behavior B(U) with U = A1×pR andR ∈ Ap×q is autonomous
if and onlyM := A1×q/U is a torsion module or rank(R) = q or dimK(M) <∞, cf.
Lemma and Definition 3.15. This torsion module may be regular or irregular singular
[16, pp. 1-67], [20, Ch. 3], cf. Sections 5.2, 5.3. Let W (τ) := C∞(τ,∞) be the
A(τ)-module of smooth signals.

Theorem 2.8. Assume R ∈ Ap×q , rank(R) = q, U := A1×pR, M := A1×q/U ,
d := dimK(M) <∞ and the associated autonomous behavior B := B(U).
(i) If M is nonzero and regular singular then B is never weakly exponentially stable.
(ii) If M is irregular singular there are τ1 > σ(R) such that for τ ≥ τ1

B(R, τ) ∼= C(τ) :={
x ∈W (τ)d; x′(t) + t−1−λ

(
A0 + t−1/mA1(t−1/m)

)
x(t) = 0

}
where 0 > λ ∈ Q, 0 < m ∈ N, A0 ∈ Cd×d, A1 ∈ C < z >d×d

(37)

and where A1(t−1/m) is bounded on [τ1,∞).
(iii) (a) If in (ii) all eigenvalues ofA0 have positive real parts or, equivalently, spec(A0) ⊂
C+, then there are c, α > 0 such that for all t ≥ t0 > τ ≥ τ1 and x ∈ C(τ) the fol-
lowing inequality holds:

‖x(t)‖ ≤ c exp
(
−α(t−λ − t−λ0 )

)
‖x(t0)‖. (38)

In particular, B(U) and thus M are weakly exponentially stable.
(b) If in (ii) at least one eigenvalue ofA0 has negative real part then B(U) is not w.e.s..
(c) If in (ii) all eigenvalues of A0 have nonnegative real parts and at least one eigen-
value is purely imaginary then B(U) need not be w.e.s., cf. Ex. 5.9.

Remark 2.9. Define F (t) := t−1−λ (A0 + t−1/mA1(t−1/m)
)

in Thm. 2.8. The con-
dition spec(A0) ⊂ C+ from (iii)(a) implies spec(F (t)) ⊂ C+ for sufficiently large
τ and all t ≥ τ . But it is well-known that for arbitrary smooth coefficient matrices
F (t) this so-called pointwise-in-time or frozen-time condition is not sufficient for ex-
ponential stability of the state space system [21, Ex. 8.1], [4, Ex. 964]. This is no
contradiction to Thm. 2.8,(iii), since the matrices F (t) in the theorem have a special
form.

Remark 2.10. Open problems concerning Thm. 2.8: The characterization of w.e.s. of
B(U) in the case that all eigenvalues of A0 have nonnegative real parts and at least one
is purely imaginary is open.
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3 Linear time-varying (LTV) behaviors

3.1 The construction of K
For the readers’ convenience we describe the construction of K as colimit (see, for
instance, the Wikipedia article on Puiseux series) and derive several of its properties
from this construction. The algebraically closed field

⋃
m≥1 C((z1/m)) of formal Lau-

rent series in z1/m is discussed in [20, Ch. 3].
The ring C[[z]] = CN of formal power series a =

∑∞
i=0 aiz

i = (ai)i∈N is a discrete
valuation domain (DVD), i.e., a local principal ideal domain with the unique maximal
ideal C[[z]]z or, equivalently, the unique prime element z, up to units, and the residue
field C = C[[z]]/C[[z]]z. The group of units is

U(C[[z]]) =

{
u =

∞∑
i=0

uiz
i ∈ C[[z]]; u0 6= 0

}
. (39)

Its quotient field is the field C((z)) := quot(C[[z]]) = C[[z]][z−1] of formal Laurent
series. Its nonzero elements have the unique form

a =

∞∑
i=k

aiz
i = zku, k ∈ Z, u =

∞∑
i=0

uiz
i ∈ U(C[[z]]), ui = ak+i, u0 = ak 6= 0.

Define v : C((z))→ Z ] {∞} , a 7→ v(a) =

{
k if a 6= 0

∞ if a = 0

=⇒ C[[z]] = {a ∈ C((z)); v(a) ≥ 0} ⊃ C[[z]]z = {a ∈ C((z)); v(a) > 0} .
(40)

The function v is the associated discrete valuation [3, §VI.3]. The ring of locally
convergent power series is the subdomain

L1 := C < z >:=

{
a =

∞∑
i=0

aiz
i ∈ C[[z]]; σ(a) := lim sup

i≥0

i
√
|ai| <∞

}
⊂

K1 := C << z >>= quot (C < z >) = C < z > [z−1]

= {0}
⊎{

a = zku ∈ C((z)), k ∈ Z, u =

∞∑
i=0

uiz
i, u0 6= 0, σ(a) := σ(u) <∞

}
.

(41)
Then L1 is also a DVD and v|C<<z>> is a discrete valuation with the analogous prop-
erties.

Remark 3.1. (Colimit) Let (I,≤) be a directed ordered set, i.e., for i, j ∈ I there is a
k ∈ I with k ≥ i, j. A directed system of sets over I is a family S = (Si, ϕji : Si →
Sj)j≥i∈I of sets Si and maps ϕji such that ϕii = idSi for i ∈ I and ϕki = ϕkjϕji for
k ≥ j ≥ i. The colimit or direct limit of S is the set

colimI S = colimi∈I Si := C := {(i, si); i ∈ I, si ∈ Si} / ≡ 3 cl(i, si) where
(i, si) ≡ (j, sj) :⇐⇒ ∃k ≥ i, j : ϕki(si) = ϕkj(sj)

(42)
is an equivalence relation ≡ and cl(i, si) denotes the equivalence class. There are
canonical maps

∀i ∈ I : ϕi : Si → C, si 7→ cl(i, si), with ∀j ≥ i : ϕjϕji = ϕi. (43)
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with the following universal property: If maps ψi : Si → C ′, i ∈ I, satisfy ψjϕji =
ψi for j ≥ i then there is a unique map ψ : C → C ′ with ψi = ψϕi for all i, viz.
ψ(cl(i, si)) = ψi(si). If the maps ϕji are injective then so are the ϕi. In this case we
obtain bijections ϕi : Si ∼= ϕi(Si), ϕi(Si) ⊆ ϕj(Sj) for j ≥ i and C =

⋃
i∈I ϕi(Si).

If S = (Si, ϕji)j≥i∈I and S′ = (Si, ϕ
′
ji)j≥i∈I are two directed systems a morphism

from S to S′ is a family ψ = (ψi)i∈I of maps ψi : Si → S′i such that ψjϕji = ϕ′jiψi
for all j ≥ i. With the componentwise composition of these morphisms the directed
systems form the category SetI where Set is the category of sets. Via the universal
property of colimI the morphism ψ induces the map colimI ψ = colimi∈I ψi:

colimI ψ : colimI S → colimI S
′, cl(i, si) 7→ cl(i, ψi(si)). (44)

and then the covariant functor

colimI : SetI → Set, S 7→ colimI S, ψ 7→ colimI ψ. (45)

The preceding assertions hold likewise for categories of sets with an algebraic structure,
for instance for CModI . The category CModI is abelian where the kernel, cokernel,
image etc. are formed componentwise, for instance

ker (ψ : S → S′) =
(
ker(ψi), ϕji|ker(ψi)

)
j≥i

im (ψ : S → S′) =
(
im(ψi), ϕ

′
ji|im(ψi)

)
j≥i .

(46)

The functor colimI :C ModI →C Mod is exact.

We apply the colimit construction to the construction of K. Let N∗ = {1, 2, · · ·}
be the multiplicative monoid of positive integers. We consider it as an ordered set with
the order relation

m|n :⇐⇒ m divides n ⇐⇒ n

m
∈ Z, m, n ∈ N∗. (47)

We define the directed system of DVD (Lm;ϕnm)m|n∈N∗ and its colimit by

Lm := C < z >, ϕnm : C < z >→ C < z >,

∞∑
i=0

aiz
i 7→

∞∑
i=0

aiz
in/m,

ϕm : C < z >→ L := colimm∈N∗ Lm, zm := ϕm(z) = cl(m, z).

(48)

It is obvious that the ϕnm and therefore the ϕm are injective C-algebra homomor-
phisms, hence

C < z >
ϕm∼= ϕm(C < z >), z 7→ zm = ϕm(z)

a =
∑
i aiz

i 7→ a(zm) :=
∑
i aiz

i
m := ϕm(a),

C < z >∼= C < zm >= ϕm(C < z >), L =
⋃

m∈N∗
C < zm > .

(49)

The equations

∀m|n : ϕnm(z) = zn/m, ϕm = ϕnϕnm, ϕm(z) = zm imply

zm = zn/mn , z =
ident.

z1 = zmm .
(50)
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We therefore define and identify

z1/m := zm, C < z >∼= Lm =
ident.

C < z1/m >, a(z) 7→ a(z1/m),

C < z > =
ident.

C < z1 >= L1 ⊂ L =
⋃

m∈N∗
Lm =

⋃
m∈N∗

C < z1/m > .
(51)

Notice that z1/m is introduced algebraically and interpreted as an indeterminate and not
as the holomorphic function exp

(
m−1 ln(z)

)
in the sliced plane. As directed union of

the DVD Lm = C < z1/m > also L is a domain and has a quotient field K :=
quot(L). From quot(C < z >) = C << z >> we derive

∀m ∈ N∗ : Km := quot(C < z1/m >) = C < z1/m > [(z1/m)−1] =: C << z1/m >>

⊂ K :=
⋃

m∈N∗
Km,

∀m|n : Km ⊆ Kn, C << z >> =
ident.

K1 ⊂ Km ⊂ K.

(52)
The nonzero elements of K thus have the form (2):

a(z1/m) = zk/mu(z1/m), k ∈ Z, a = zku ∈ C << z >>, u ∈ U(C < z >). (53)

The discrete valuation v from (40) induces discrete valuations

vm := m−1v : C << z >>→ Q ] {∞} , v1 = v, with ∀m|n∀k :

vm(zk) = k/m = knm−1/n = vn(zkn/m) =⇒ vm = vnϕnm.
(54)

Hence the vm induce the surjective valuation (again denoted by v)

v : K→ Q ] {∞} , v(z1/m) = vm(z) = 1/m, v
(
zk/mu(z1/m)

)
= k/m =⇒

L = {a ∈ K; v(a) ≥ 0} ⊃ mL := {a ∈ K; v(a) > 0} =
⋃

m∈N∗
C < z1/m > z1/m.

(55)
The ring L is a valuation ring and mL is its unique nonzero prime ideal [3, ch. VI,
§4.5, Prop. 6]. Since L is the directed union of the DVD C < z1/m > all generators
of a f.g. ideal of L are contained in some DVD C < z1/m > and therefore the ideal
is principal. This signifies that L is a Bézout domain and integrally closed [3, Ex.
VII.1.20]. If M is a f.g. L-module with torsion submodule tor(M) then M/ tor(M)
is free and therefore tor(M) is a direct summand of M [3, Ex. VII.2.12], [4, Thm.
654]. The direct decomposition

C < z >= C⊕ C < z > z 3 a = a0 + za1(z), a0 ∈ C, a1 ∈ C < z >, implies

L = C⊕mL 3 f = a(z1/m) = f0 + z1/mf1, f0 := a0, f1 := a1(z1/m).
(56)

Result 3.2. ([18]) The field K =
⋃
m∈N∗ C << z1/m >> is the algebraic closure of

k = C << z >>. This result is very interesting, but not needed in the present paper.

The standard C-linear derivation

d/dz : K1 = C << z >>→ C << z >>, a =

∞∑
i=k

aiz
i 7→ a′ =

∞∑
i=k

aiiz
i−1,

(57)
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can be uniquely extended to a C-linear derivation d/dz : K → K [20, p.5]. Its
restriction to Km = C << z1/m >> coincides with the C-linear derivation (cf. (6))

δm : Km → Km, a(z1/m) 7→ δm

(
a(z1/m)

)
:= m−1z(1/m)−1a′(z1/m),

since ∀k ∈ Z : δm(zk) = δm((z1/m)km) = m−1z(1/m)−1km(z1/m)km−1 =

= kzk−1 = dzk/dz.

(58)

The differential field (K, d/dz) is the coefficient field in this paper.
We finally show that the number σ(f), f ∈ K, from (4) does not depend on the choice
of m with f ∈ C << z1/m >>. Let indeed m|n,

a =
∑
i

aiz
i, b =

∑
j

bjz
j ∈ C << z >> and f = a(z1/m) = b(z1/n) ∈ K

=⇒ a(z1/m) =
∑
i

aiz
inm−1/n =

∑
j

bjz
j/n =⇒ bj =

{
ai if j = inm−1

0 if j 6∈ Znm−1

=⇒ lim sup
j
|bj |j

−1

= lim sup
i
|ai|(inm

−1)−1

=

(
lim sup

i
|ai|i

−1

)m/n
=⇒ σ(b(z1/n)) =

(2)

(
lim sup

j
|bj |j

−1

)n
=

(
lim sup

i
|ai|i

−1

)m
=
(2)
σ(a(z1/m)).

Thus ∀f ∈ K =
⋃

m∈N∗
C << z1/m >>: σ(f) := σ(b(z1/n)) = σ(a(z1/m))

(59)
is defined independently of the choice of m with f ∈ C << z1/m >>. In particular,
for all τ > 0

K(τ) := {f ∈ K; τ ≥ σ(f)} ⊂ K (60)

is a well-defined subset of K. It is easily seen that K(τ) is a differential subalgebra of
(K, d/dz), i.e., d/dzK(τ) ⊆ K(τ), cf. (10). We thus obtain the algebra monomor-
phism (3):

K(τ)→ C(τ) = C∞(τ,∞), f = a(z1/m) 7→ f(t) := a(t−1/m). (61)

Corollary 3.3. For any nonzero f = a(z1/m) ∈ K there is a τ0 > σ(f) such f(t−1) =
a(t−1/m) has no zero in [τ0,∞).

Proof. w.l.o.g. assume a(z) =
∑∞
i=0 aiz

i, a0 = a(0) 6= 0. Since a(z) is holomorphic
and thus continuous in 0 there is ρ0 > 0 such that |a(z)| ≥ |a0|/2 for |z| ≤ ρ0. Then
τ0 := ρ−m0 furnishes the desired property.

3.2 Differential operators
To justify the homomorphism (13) we explain the universal property of rings of differ-
ential operators.
Let (R, δ) be any commutative differential C-algebra with a C-linear derivation δ :
R→ R, δ(rs) = δ(r)s+rδ(s). It gives rise to the skew-polynomial algebra [17, p.15]

R[∂; δ] = ⊕j∈NR∂j 3 f =
∑
j

fj∂
j with ∂r = r∂ + δ(r). (62)
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This construction was applied in (7), (8) (10), (12). Unless δ = 0 the algebra R[∂; δ]
is noncommutative. For C-algebras A,B let AlC(A,B) denote the set of C-algebra
homomorphisms from A to B.

Lemma 3.4. Consider R[∂; δ] and a further C-algebra B. Then there is the canonical
bijection

AlC (R[∂; δ],B) ∼= {(ϕ,∆) ∈ AlC (R,B)×B; ∀r ∈ R : ∆ϕ(r) = ϕ(r)∆ + ϕ(δ(r))} ,
Φ 7→ (Φ|R,Φ(∂)).

(63)
In other terms: If ϕ and ∆ are given and satisfy the equation ∆ϕ(r) = ϕ(r)∆ +
ϕ(δ(r)), r ∈ R, there is a unique algebra homomorphism
Φ : R[∂; δ]→ B with Φ|R = ϕ and Φ(∂) = ∆, viz.

Φ : R[∂; δ]→ B : f =
∑
j

fj∂
j 7→ Φ(f) =

∑
j

ϕ(fj)∆
j . (64)

We apply Lemma 3.4 to

R[∂; δ] := K(τ)[−z2∂;−z2d/dz], B := B(τ) = C(τ)[∂t; d/dt],

ϕ : B(τ)→ C(τ), a(z1/m) 7→ a(t−1/m), Φ(−z2∂) = ∂t =: ∆
(65)

and thus have to show that

∂ta(t−1/m) = a(t−1/m)∂t + ϕ
(
−z2da(z1/m)/dz

)
. (66)

But

∂ta(t−1/m) = a(t−1/m)∂t + da(t−1/m)/dt

= a(t−1/m)∂t −m−1t−( 1
m+1)a′(t−1/m) ∈ C(τ)[∂; d/dt]

(67)

and
da(z1/m)/dz = m−1z(1/m)−1a′(z1/m)

=⇒ −z2da(z1/m)/dz = −m−1z
1
m+1a′(z1/m)

=⇒ ϕ
(
−z2da(z1/m)/dz

)
= −m−1t−( 1

m+1)a′(t−1/m).

(68)

The equations (67) and (68) imply (66) and therefore Lemma 3.4 implies the algebra
homomorphism (13)

Φ : A(τ) = K(τ)[−z2∂;−z2d/dz] → B(τ) = C(τ)[∂t; d/dt]

f =
∑
j∈N aj(z

1/m)(−z2∂)j 7→ ft :=
∑
j∈N aj(t

−1/m)∂jt .
(69)

and the induced module action (14).

Lemma 3.5. (cf. [17, Thm. 1.8.4, Ex. 1.8.6], [4, Cor. 363]) The algebra A =
K[∂; d/dz] is simple, i.e., 0 and A are its unique two-sided ideals.

Corollary 3.6. ([17, Cor. 5.7.3]) Any f.g. A-torsion module is cyclic.
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3.3 A directed system category
We embed the behaviors cl

(
(B(R, τ))τ≥σ(R)

)
from (19) into an abelian category B

with good properties.
Consider the strictly ordered and therefore directed ordered set [0,∞) of nonnegative
real numbers and consider the category A :=C Mod[0,∞) of directed systems of C-
vector spaces according to Remark 3.1. Recall the signal spaces W (τ) = C∞(τ,∞)
or W (τ) = D′(τ,∞). These give rise to the directed system(

W (τ1), res : W (τ1)→W (τ2) : w 7→ w|(τ2,∞)

)
τ2≥τ1≥0 (70)

where res is the standard restriction map. If the directed system is defined on [τ0,∞)
only, i.e., if (Vτ , ϕτ2τ1 : Vτ1 → Vτ2)τ2≥τ1≥τ0 is given, we extend this to a directed
system on [0,∞) by

(Vτ1 , ϕτ2τ1)τ2≥τ1≥0 ∈C Mod[0,∞) with Vτ1 := 0, ϕτ2τ1 := 0 for τ1 < τ0. (71)

Likewise morphisms are extended and furnish an exact embedding functor

CMod[τ0,∞) →C Mod[0,∞). (72)

To interpret the equivalence class behaviors from (19) as objects of a category we
consider the quotient category of A modulo the following equivalence relation ≡:

V = (Vτ1 , ϕτ2τ1)τ2≥τ1≥0 ≡ V
′ =

(
V ′τ1 , ϕ

′
τ2τ1

)
τ2≥τ1≥0

:⇐⇒ ∃τ0∀τ2 ≥ τ1 ≥ τ0 : Vτ1 = V ′τ1 , ϕτ2τ1 = ϕ′τ2τ1 .
(73)

The equivalence class is denoted by cl(V ). These cl(V ) are the objects of the new
category B. With the embedding from (72) we obtain

cl
(

(Vτ1 , ϕτ2τ1)τ2≥τ1≥0

)
= cl

(
(Vτ1 , ϕτ2τ1)τ2≥τ1≥τ0

)
. (74)

The study of cl
(

(Vτ1 , ϕτ2τ1)τ2≥τ1≥0

)
signifies that of the Vτ for possibly large τ .

If V = (Vτ1 , ϕτ2τ1)τ2≥τ1≥τ0 and V ′ =
(
V ′τ1 , ϕ

′
τ2τ1

)
τ2≥τ1≥τ ′0

are directed systems
consider, for min(τΦ, τΨ) ≥ max(τ0, τ

′
0), directed system morphisms

Φ = (Φτ )τ≥τΦ : (Vτ1 , ϕτ2τ1)τ2≥τ1≥τΦ →
(
V ′τ1 , ϕ

′
τ2τ1

)
τ2≥τ1≥τΦ

Ψ = (Ψτ )τ≥τΨ : (Vτ1 , ϕτ2τ1)τ2≥τ1≥τψ →
(
V ′τ1 , ϕ

′
τ2τ1

)
τ2≥τ1≥τΨ

(75)

and define the equivalence relation

Φ ≡ Ψ :⇐⇒ ∃τ ′′0 ≥ max(τΦ, τΨ)∀τ ≥ τ ′′0 : Φτ = Ψτ . (76)

The equivalence class is denoted by cl(Φ). Then the set of morphisms in B from cl(V )
to cl(V ′) is defined as

B(cl(V ), cl(V ′)) := Hom(cl(V ), cl(V ′) :={
cl(Φ); Φ = (Φτ )τ≥τΦ : (Vτ1 , ϕτ2τ1)τ2≥τ1≥τΦ →

(
V ′τ1 , ϕ

′
τ2τ1

)
τ2≥τ1≥τΦ

}
.

(77)

Again with the componentwise C-linear structure and composition, for sufficiently
large τΦ, we obtain the category B. It is also abelian, kernels, cokernels and finite
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products etc. being formed componentwise for τ ∈ [τ ′′0 ,∞) and sufficiently large τ ′′0 .
The directed system from (70) gives rise to the objects

W := cl ((W (τ), res)τ≥0) ∈ B and ∀q ≥ 0 : Wq := cl ((W (τ)q, res)τ≥0) ∈ B.
(78)

The behaviors from (19) induce the subobjects

cl
(
(B(R, τ), res)τ≥σ(R)

)
⊆ Wq. (79)

3.4 The functor Modfg
A → B, A1×q/U 7→ B(U)

The following results are fully analogous to those in [5, §2.3] and therefore the proofs
are omitted. Assume the data

R =
∑
j

Rj(−z2∂)j ∈ Ap×q, U = A1×pR, M = A1×q/U,

∀τ ≥ σ(R) : B(R, τ) :=

w ∈W (τ)q; R ◦ w =
∑
j

Rj(t)w
(j) = 0

 .

(80)

Recall that for Rj = Aj(z
1/m) with Aj ∈ C << z >>p×q the function Rj(t) is

computed as Rj(t) = Aj(t
−1/m) ∈ C∞(σ(Rj),∞)p×q .

The standard basis δ = (δ1, · · · , δq)> ∈ (A1×q)q gives rise to the column

w = (w1, · · · ,wq)
> ∈Mq, wi := δi + U, (81)

of generators of M . Conversely,

ϕw : A1×q →M, ξ = ξδ 7→ ξw =

q∑
i=1

ξiwi, with ϕw(δ) = w, ker(ϕw) = U,

(82)
shows that the system of generators w of M determines both the dimension of A1×q

and its submodule U . The objects of the category AModfg are pairs (M,w) of f.g.
modules M with a given list w of generators or a given representation M = A1×q/U .
The morphisms in AModfg are just the A-linear maps.

Lemma 3.7. Assume the data from (80). Then the object

B(U) : =
(80)

cl
(
(B(R, τ), res)τ≥σ(R)

)
∈ B (83)

depends on U only and not on the special choice of R, and hence (19) is justified.
Moreover U1 ⊆ U2 implies B(U2) ⊆ B(U1) ⊆ Wq .

For two f.g. modules Mi = A1×qi/Ui, i = 1, 2, the following lemma establishes
the standard correspondence of A-linear maps and matrices.

Lemma 3.8. ( cf. [7, Cor. 2.1],[5, Cor. 2.5]) (i) There is the canonical isomorphism

{P ∈ Aq1×q2 ; U1P ⊆ U2} /
{
P̃ ∈ Aq1×q2 ; A1×q1 P̃ ⊆ U2

}
∼= HomA(M1,M2)

P +
{
P̃ ∈ Aq1×q2 ; A1×q1 P̃ ⊆ U2

}
7→ (◦P )ind

(84)
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where (◦P )ind(ξ + U1) := ξP + U2 for ξ ∈ A1×q1 .
(ii) The map (◦P )ind : A1×q1/U1 → A1×q2/U2 is an isomorphism if and only if it is
bijective or (◦P )−1

ind = (◦Q)ind : A1×q2/U2 → A1×q1/U1 exists. The necessary and
sufficient conditions for Q ∈ Aq2×q1 to satisfy (◦Q)ind = (◦P )−1

ind are

U2Q ⊆ U1, A
1×q1(PQ− idq1) ⊆ U1, A

1×q2(QP − idq2) ⊆ U2. (85)

The preceding Lemma 3.8 enables to extend the assignment A1×q/U 7→ B(U) to
a contravariant functor, again in complete analogy to the discrete case [5]. For the data
from (84) we additionally assume that Ui = A1×piRi. The condition A1×p1R1P =
U1P ⊆ U2 = A1×p2R2 implies the existence of X ∈ Ap1×p2 with R1P = XR2. We
choose

τ1 ≥ max(σ(R1), σ(R2), σ(P ), σ(X)) =⇒
(69)
∀τ ≥ τ1 : R1, R2, P,X ∈ A(τ1)•×•

=⇒ ∀τ ≥ τ1∀w ∈ B(R2, τ) :

R1 ◦ (P ◦ w) = XR2 ◦ w = X ◦ (R2 ◦ w) = X ◦ 0 = 0

=⇒ P◦ : B(R2, τ) := {w ∈W (τ)q2 ; R2 ◦ w = 0} → B(R1, τ), w 7→ P ◦ w.
(86)

Corollary and Definition 3.9. For an A-linear map

ϕ = (◦P )ind : A1×q1/U1 → A1×q2/U2 define

B(ϕ) := P◦ :=
(86)

cl ((P◦ : B(R2, τ)→ B(R1, τ))τ≥τ1) :

B(U2) = cl
(
(B(R2, τ), res)τ≥σ(R1)

)
→ B(U1).

(87)

The map B(ϕ) is well-defined, i.e., independent of the choice of P with ϕ = (◦P )ind,
and the assignment

Modfg
A → B, A1×q/U 7→ B(U), ϕ = (◦P )ind 7→ B(ϕ) = P◦, (88)

is a contravariant additive functor. By definition the image of this functor is the cate-
gory Beh of behaviors.

Remark 3.10. Define the space

W∞ = colimτ≥0W (τ) = {(τ, w); τ ≥ 0, w ∈W (τ)} / ≡ 3 cl(τ, w) (89)

of germs of signals at∞ (cf. [4, §5.4.2.3]). This is canonically an A-module via

f ◦ cl(τ, w) := cl (τ1, f ◦ w) , τ1 := max(τ, σ(f)) (90)

and indeed a large injective A-cogenerator [4, Thm. 838]. For M from (80) the asso-
ciated behavior is

BW∞(U) := {w∞ ∈W q
∞; R ◦ w∞ = 0} ∼= HomA(M,W∞). (91)

The injective cogenerator property implies that BW∞(U) determines

U =
{
ξ ∈ A1×q; ξ ◦ BW∞(U) = 0

}
, M = A1×q/U and B(U). (92)

But in general there is no τ such that for all t ∈ (τ,∞) and w∞ ∈ BW∞(U) the
initial condition w∞(t0) is defined. So the definition of u.e.s. and w.e.s. according to
Def. 2.4 for BW∞(U) is impossible. This suggested the new definition of behaviors of
B(U) from (83). This B(U) is not isomorphic to HomA(M,F) for any signal module
F with engineering significance.
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3.5 The exactness of A1×k/U 7→ B(U)

The exactness of the functor A1×k/U 7→ B(U) is also derived in full analogy to the
discrete case [5, §2.4 ] and therefore the detailed proofs are again omitted.
Consider f.g. modules Mi := A1×qi/Ui ∈ Modfg

A, i = 1, 2, 3, and a sequence of
A-linear maps

M1
ϕ=(◦P )ind−→ M2

ψ=(◦Q)ind−→ M3, U1P ⊆ U2, U2Q ⊆ U3. (93)

Application of the functor A1×q/U 7→ B(U) furnishes the sequence of behaviors

B(U1)
B(ϕ)=P◦←− B(U2)

B(ψ)=Q◦←− B(U3). (94)

Theorem 3.11. The functor

Modfg
A → B, M = A1×q/U 7→ B(U),

is exact, i.e., the exactness of (93) implies that of (94).

Proof. As in the proof [5, Thm. 2.9] the proof is reduced to the case q1 = 0, q2 =

q3 = 1, U2 = U3 = 0 and Q =
∑d
j=0Qj(−z2∂)jA = K[−z2∂;−z2d/dz], Qd 6= 0.

Since A is a domain the nonzero map ◦Q : A → A is a monomorphism. It has to be
shown that Q◦ : W = B(0) → B(0) is an epimorphism in the category B of classes
of directed systems. We apply Cor.3.3 and choose τ0 ≥ σ(Q) (≥ σ(Qd)) such that Qd
has no zero in (τ,∞). For τ ≥ τ0 and u ∈W (τ) the differential equation

Q ◦ y = u or

y(d) +Qd(t)
−1Qd−1(t)y(d−1) + · · ·+Qd(t)

−1Q0(t)y = Qd(t)
−1u

(95)

has a solution y ∈W (τ). This signifies that for τ ≥ τ0 the maps Q◦ : W (τ)→W (τ)
are surjective. These induce the epimorphism

Q◦ = cl ((Q◦)τ≥τ0) : B(0) =W = cl ((W (τ))τ≥τ0)→W. (96)

3.6 Autonomous behaviors
In this section we prove the analogue of the cogenerator property of the standard signal
modules for the behaviors of this paper and simultaneously characterize autonomous
behaviors. Again the proofs are analogous to those in the discrete case [5, §2.5].
In this section we choose the signal spaces of smooth functions

W (τ) = C∞(τ,∞) = B(0, τ) andW = cl ((W (τ), res)τ≥0) = B(0). (97)

unless explicitly stated otherwise. A finitely generated A-module M1 = A1×q1/U1 =
A1×q1/A1×p1R1 is isomorphic to a direct sum of cyclic modules [17, Cor. 5.7.19].
Hence there is an isomorphism

M1 = A1×q1/U1
∼= A/Af1 × · · ·A/Afr ×A1×(q2−r) = A1×q2/U2 =: M2

where q2 ≥ r ≥ 0, 0 6= fi ∈ A and deg∂(fi) > 0 or 0 ( Afi ( A,

U2 = A1×q2R2, R2 := diag(f1, · · · , fr, 0, · · · , 0) ∈ Aq2×q2 .

(98)
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Since A is simple the number r can be chosen as 0 or 1, cf. Lemma 3.5, Cor. 3.6. The
functor A1×q/U 7→ B(U) is applied to this and furnishes the isomorphism

B(U1) ∼= B(U2) = B(Af1)× · · · × B(Afr)× B(0)q2−r. (99)

The systems B(Afj) are particularly simple: Consider, more generally, any

g =

d∑
i=0

gi(−z2∂)i ∈ A = K[−z2∂;−z2d/dz], deg∂(g) = d, i.e., gd 6= 0

=⇒ K1×d ∼=
K

A/Ag, (h0, · · · , hd−1) 7→
d−1∑
i=0

hi(−z2∂)i + Ag, hi ∈ K,

=⇒ d = dimK(A/Ag) <∞.

(100)

The preceding isomorphism is the usual consequence of euclidean division with re-
mainder. According to Cor. 3.3 choose τ0 > σ(g) such that no t ≥ τ0 is a zero of gd.
For all t0 > τ ≥ τ0 we obtain the isomorphisms

B(g, τ) =

{
w ∈W (τ);

d∑
i=0

gi(t)w
(i)(t) = 0

}
∼= Cd, w 7→ (∂(d) ◦ w)(t0). (101)

We conclude

∀τ ≥ τ0 : dimC(B(g, τ)) = d = deg∂(g)

=⇒ (B(Ag) = cl ((B(g, τ), res)τ≥τ0) = 0 ⇐⇒ d = 0) .
(102)

Remark 3.12. The distributional solutions of x′ = F (t)x with F ∈ C∞(τ,∞)q×q are
smooth. The same follows for the solutions of g ◦ w = 0 on (τ,∞) in (101).

Corollary 3.13. If M = A1×q1/U1 in (98) is nonzero then so is B(U1).

Proof. In (99) the behavior W = B(0) is nonzero and so are the behaviors B(Afj)
by (102) since degq(fj) > 0. In (98) M1 is nonzero if and only if q2 > 0. The
isomorphism (99) then implies that B(U1) ∼= B(U2) is nonzero too.

Corollary 3.14. For Mi = A1×qi/Ui, i = 1, 2, the C-linear map

HomA(M1,M2)→ B(B(U2),B(U1)), ϕ = (◦P )ind 7→ B(ϕ) = P◦, (103)

is injective. By definition (cf. Cor. and Def. 3.9) the isomorphic image of (103), i.e.,

HomBeh(B(U2),B(U1)) := {B(ϕ); ϕ ∈ HomA(M1,M2)} (104)

is the C-space of behavior morphisms. The objects B(U) and morphisms B(ϕ) form
the subcategory Beh ⊂ B of behaviors. The functor

AModfg → Beh, A1×q/U 7→ B(U), ϕ 7→ B(ϕ), (105)

is exact and a duality (contravariant equivalence). The proof of Thm. 2.3 is thus
complete.

Proof. The proof is the same as that of [5, Cor. 2.11].
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Let tor(M) denote the torsion submodule of M . As in [5, (77)] the isomorphism
(98) implies the isomorphisms

tor(M1) ∼=
A

tor(M2) = ⊕rj=1A/Afj
∼=
K

K1×d, d :=

r∑
j=1

degq(fj), and

M1/ tor(M1) ∼=
A
M2/ tor(M2) ∼=

A
Aq2−r.

(106)

The ranks of R ∈ Ap×q resp. of M = A1×q/A1×pR (cf. [5, (78)-(81 )]) are the
Q-dimensions of the column space RQq resp. of Q ⊗A M where Q is the quotient
field of A, and then q = rank(R) + rank(M).

Lemma and Definition 3.15. (cf. [5, Lemma 2.13]) The following properties are
equivalent for the data from (98) and (99):
(i) rank(M1) = 0 or rank(R1) = q1.
(ii) M1 is a torsion module, i.e., M1

∼=
∏r
j=1 A/Afj in (98), (106).

(iii) d := dimK(M1) <∞.
(iv) There are τ0 ≥ 0 and d ∈ N such that ∀τ ≥ τ0 : dimC(B(R1, τ)) = d.
(v) There is a nonzero f ∈ A such that M1

∼= A/Af , cf. Cor. 3.6.
If these conditions are satisfied the behavior B(U1) is called autonomous.
For sufficiently large τ all distributional trajectories in B(R1, τ) are smooth.

According to Cor. 3.6 all f.g. torsion modules and especially tor(M1) are cyclic,
hence

tor(M1) ∼=
A

tor(M2) = ⊕rj=1A/Afj
∼= A/Af, f 6= 0,

d := dimK(tor(M1)) =

r∑
j=1

deg∂(fj) = deg∂(f).
(107)

Definition 3.16. Consider a f.g. module

R =

k∑
j=0

Rj(−z2∂)j ∈ Ap×q, U = A1×pR, M = A1×q/U,

∀τ ≥ σ(R) : B(R, τ) :=

w ∈ C∞(τ,∞)q;

k∑
j=0

Rj(t)w
(j) = 0

 ,

B(U) = cl
(
(B(R, τ), res)τ≥σ(R)

)
.

(108)

The behavior B(U) is called trajectory-autonomous (t-autonomous) of memory size d
if there are τ0 ≥ σ(R) and d ∈ N such that for all t0 > τ ≥ τ0 the initial value map

B(R, τ)→ Cdq, w 7→ (∂(d) ◦ w)(t0), (109)

is injective, but not necessarily bijective. This signifies that for sufficiently large τ all
trajectories w ∈ B(R, τ) are uniquely determined by the initial data w(j)(t0), 0 ≤
j ≤ d− 1. The number d is obviously not unique.

Corollary 3.17. The behaviors B(Ag) from (101) resp. B(Af1)×· · ·×B(Afr) from
(99) are obviously t-autonomous of memory sizes

degq(g) resp. max
{

degq(fj); j = 1, · · · , r
}
. (110)
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Lemma 3.18. Trajectory-autonomy is preserved by isomorphisms.

Proof. Consider two isomorphic f.g. modules and their associated isomorphic behav-
iors:

Mi := A1×qi/Ui, Ui = A1×piRi, Ri ∈ Api×qi ,

ϕ = (◦P )ind : M1
∼= M2, B(ϕ) : B(U2) ∼= B(U1), P =

d∑
j=0

Pj(−z2∂)j .
(111)

Assume that B(U1) is t-autonomous with memory size d1. Then there is a τ1 ≥
max(σ(R1), σ(R2), σ(P )) such that for all t0 > τ ≥ τ1 the maps

B(R1, τ)→ Cd1q1 , w1 7→ (∂(d1) ◦ w1)(t0) = (w1(t0), · · · , w(d1−1)
1 (t0))>, resp.

P◦ : B(R2, τ) ∼= B(R1, τ), w2 7→ w1 := P ◦ w2 =

d∑
j=0

Pj(t)w
(j)
2 ,

(112)
are injective resp. bijective. Define d2 := d1 + d and assume w(m)

2 (t0) = 0 for
m ≤ d2 − 1. Then

∀` with 0 ≤ ` ≤ d1 − 1 : w
(`)
1 (t) =

d∑
j=0

∑̀
i=0

(
`

i

)
P

(`−i)
j (t)w

(i+j)
2 (t)

=⇒ w
(`)
1 (t0) =

d∑
j=0

∑̀
i=0

(
`

i

)
P

(`−i)
j (t0)w

(i+j)
2 (t0) = 0 =⇒ (∂(d1) ◦ w1) (t0) = 0

=⇒
memory size d1

w1 = 0 =⇒
P◦ bijective

w2 = 0.

(113)
This signifies that B(U2) is t-autonomous with memory size d2.

Theorem 3.19. A behavior B(U1) is trajectory-autonomous if and only if it is au-
tonomous.

Proof. The proof is analogous to that of ([5, Thm. 2.16]) and follows from the iso-
morphism (99), Cor. 3.17, Lemma 3.18 and the obvious fact that W = B(0) is not
t-autonomous.

4 Weakly exponentially stable (w.e.s.) behaviors

4.1 State space behaviors
Unless stated otherwise we use the signal spaces W (τ) = C∞(τ,∞), τ ≥ 0, in
this section. Functions of at most polynomial growth (p.g.f.) appear at several places.
It is obvious that the sum, product and maximum of p.g.f. are again p.g.f. and that
polynomials are p.g.f.. From (30) we know that every f = a(z1/m) ∈ K defines the
p.g.f. f(t) = a(t−1/m) on every closed interval [τ,∞), τ > σ(f). This implies that
for every A ∈ Kq×q the norm ‖A(t)‖ is a p.g.f. on [τ,∞), τ > σ(A).

Lemma 4.1. If 0 < β ≤ α and 0 < ν ≤ µ then there is a constant c ≥ 1, independent
of t0, such that

∀t ≥ t0 ≥ 0 : e−α(tµ−tµ0 ) ≤ ce−β(tν−tν0 ). (114)
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Hence in the definition of w.e.s. in Def. 2.4 the factor e−α(tµ−tµ0 ) can be replaced by
e−β(tν−tν0 ) if 0 < β ≤ α and 0 < ν ≤ µ.

Proof. Of course e−αs ≤ e−βs for s ≥ 0. Consider the function

f(t, t0) = (tµ − tµ0 )− (tν − tν0) = tµ − tν − (tµ0 − tν0),

f(t0, t0) = 0, f ′(t) := df(t, t0)/dt = µtµ−1 − νtν−1.

If
t0 ≥ 1 then ∀t ≥ t0 : f ′(t) ≥ 0 =⇒ f(t, t0) ≥ 0 =⇒

e−αf(t,t0) ≤ 1 =⇒ e−α(tµ−tµ0 ) ≤ e−α(tν−tν0 ) ≤ e−β(tν−tν0 ).
(115)

If

t0 < 1 then f(1, t0) = −(tµ0 − tν0) ≥ 0, ∀t ≥ 1 : f ′(t) ≥ 0 =⇒

∀t ≥ 1 : f(t, t0) ≥ 0 =⇒ ∀t ≥ 1 : e−α(tµ−tµ0 ) ≤ e−α(tν−tν0 ) ≤ e−β(tν−tν0 ).
(116)

Let

c1 = max
{
e−βf(t,t0); t0 ≤ t ≤ 1

}
=⇒ ∀t0 ≤ t ≤ 1 : e−β(tµ−tµ0 ) ≤ c1e−β(tν−tν0 )

=⇒
(116)
∀t ≥ t0 : e−α(tµ−tµ0 ) ≤ e−β(tµ−tµ0 ) ≤ ce−β(tν−tν0 ), c := max(1, c1).

(117)
The inequalities (115) and (117) prove the assertion of the lemma.

Lemma 4.2. If 0 < β < α, µ > 0 and ϕ > 0 is a p.g.f. on [τ,∞), τ ≥ 0, there is a
p.g.f. ψ > 0 on [τ,∞) such that

∀t ≥ t0 ≥ τ : ϕ(t)e−α(tµ−tµ0 ) ≤ ψ(t0)e−β(tµ−tµ0 ). (118)

Proof. (i) At first we consider the case µ = 1: By definition there are c1 ≥ 1 and
p ∈ N with ϕ(t) ≤ c1tp for t ≥ τ . There is a constant c2 ≥ 1 such that

∀i = 0, · · · , p∀t ≥ 0 : tie−αt ≤ c2e−βt =⇒ ∀t ≥ t0 ≥ τ :

ϕ(t)e−α(t−t0) ≤ c1tpe−α(t−t0) =

p∑
i=0

c1

(
p

i

)
tp−i0 (t− t0)ie−α(t−t0)

≤
p∑
i=0

c1

(
p

i

)
tp−i0 c2e

−β(t−t0) = ψ(t0)e−β(t−t0), ψ(t) :=

p∑
i=0

c1c2

(
p

i

)
tp−i.

(119)
The function ψ is a polynomial and hence a p.g.f..
(ii) For arbitrary µ > 0 define s0 := tµ0 and ϕ1(s) := ϕ(s1/µ). Then ϕ1 is a p.g.f. of
the variable s on [τµ,∞). According to (i) there is a p.g.f. ψ1 on [τµ,∞) such that

∀s ≥ s0 = tµ0 ≥ τµ : ϕ1(s)e−α(s−s0) ≤ ψ1(s0)e−β(s−s0) =⇒
s:=tµ

∀t ≥ t0 ≥ τ : ϕ(t)e−α(tµ−tµ0 ) = ϕ1(tµ)e−α(tµ−tµ0 )

≤ ψ1(tµ0 )e−β(tµ−tµ0 ) = ψ(t0)e−β(tµ−tµ0 ), ψ(t0) := ψ1(tµ0 ),

(120)

where ψ(t) is obviously also a p.g.f. on [τ,∞).
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Lemma 4.3. Consider the state space equation

w′(t) = F (t)w(t) + u(t) with F = A(z1/m) ∈ K(τ0)q×q, A ∈ C << z >>q×q,

F (t) = A(t−1/m) ∈ C∞(τ0,∞)q×q, w, u ∈W (τ0)q.
(121)

If ` ∈ N and τ1 > τ0 there is a p.g.f. ϕ` > 0 on [τ1,∞) such that

∀t ≥ τ1 : ‖w(`)(t)‖ ≤ ϕ`(t) max (‖w(t)‖, ‖(∂(`) ◦ u)(t)‖) . (122)

Proof. All derivatives djF (t)/dtj =: F (j)(t) have the form F (j)(t) = Gj(t), Gj ∈
K(τ0)q×q. Hence the norms ‖F (j)(t)‖ are p.g.f. on each closed interval [τ,∞), τ >
τ0. Differentiation of w′(t) = F (t)w(t) + u(t) and induction furnish equations

w(`)(t) = F`(t)w(t) +

`−1∑
i=0

G`,i(t)u
(i)(t), F0 = G1,0 = idq, F1 = F, ` ∈ N,

where F`, G`,i ∈ Kq×q, ‖F`(t)‖, ‖G`,i‖ p.g.f. on [τ1,∞).
(123)

The equation (123) implies the assertion since

‖w(`)(t)‖ ≤ ‖F`(t)‖‖w(t)‖+

`−1∑
i=0

‖G`,i(t)‖‖u(i)(t)‖

≤ ϕ`(t) max (‖w(t)‖, ‖(∂(`) ◦ u)(t)‖)

(124)

where

ϕ`(t) := ‖F`(t)‖+

`−1∑
i=0

‖G`,i(t)‖ and

‖(∂(`) ◦ u)(t)‖ = max(‖u(i)(t)‖; 0 ≤ i ≤ `− 1).

(125)

We recall here and use several times that for τ1 > τ0 and u ∈ W (τ0)q a solution
w of w′(t) = F (t)w(t) or of w′(t) = F (t)w(t) + u(t) on (τ1,∞) can be uniquely
extended to (τ0,∞). Notice that this does not hold for implicit equations R ◦w = 0 in
general.

Lemma 4.4. As in Lemma 4.3 consider the operator R := −z2∂ − F ∈ A(τ0)q×q

and the behavior

B(R, τ0) = {w ∈ C∞(τ0,∞)q; w′(t) = F (t)w(t)} . (126)

If B
(
A1×q(−z2∂ − F )

)
is w.e.s. the following inequality is satisfied with the initial

vector w(t0) instead of (∂(d) ◦ w)(t0) from (33):

∃τ1 > τ0∃α, µ > 0∀` ∈ N∃ p.g.f. ϕ` ∈ C[τ1,∞) with ϕ` > 0

∀t ≥ t0 ≥ τ1∀w ∈ B(R, τ0) :

‖w(`)(t)‖ ≤ ϕ`(t0)e−α(tµ−tµ0 )‖w(t0)‖.
(127)

The same result holds with a different ϕ` if w(`)(t) is replaced by (∂(`) ◦ w)(t).
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Proof. By definition of w.e.s. the following inequality holds for some d, suitable con-
stants and p.g.f. ψ` > 0:

‖w(`)(t)‖ ≤ ψ`(t0)e−α(tµ−tµ0 )‖(∂(d) ◦ w)(t0)‖. (128)

From (122) for u = 0 we infer an inequality ‖(∂(d) ◦ w)(t0)‖ ≤ ψ(t0)‖w(t0)‖ for
some p.g.f. ψ > 0 on [τ1,∞) and conclude

‖w(`)(t)‖ ≤ ϕ`(t0)e−α(tµ−tµ0 )‖w(t0)‖ (129)

with the p.g.f. ϕ` := ψ`ψ.

Lemma 4.5. (i) In the situation of Lemma 4.3 let ` ∈ N and τ1 > τ0. Assume α, µ > 0,
a p.g.f. ϕ > 0 and a function a ≥ 0 on [τ1,∞) such that for all solutions w ∈W (τ0)q

of w′(t) = F (t)w(t) and all t ≥ t0 ≥ τ1 the following inequalities hold:

‖w(t)‖ ≤ ϕ(t0)e−α(tµ−tµ0 )‖w(t0)‖, ‖(∂(`) ◦ u)(t)‖ ≤ ϕ(t0)e−α(tµ−tµ0 )a(t0).
(130)

Then for each β with 0 < β < α there is a p.g.f. ψ > 0 on [τ1,∞) such that for all
solutions w ∈W (τ0)q of w′(t) = F (t)w(t) + u(t) and all t ≥ t0 ≥ τ1

‖w(`)(t)‖ ≤ ψ(t0)e−β(tµ−tµ0 ) max(‖w(t0)‖, a(t0)). (131)

(ii) In particular, if u := 0 and a := 0, the first inequality in (130) implies the inequality
(131) for all ` ∈ N and therefore the w.e.s. of B(A1×q(−z2∂ idq −F )).

Proof. Wlog we assume ϕ(t) = c1t
p, c1 ≥ 1, p ∈ N. Let Φ(t, t0) ∈ Glq(C

∞(τ0,∞))
be the transition matrix of w′(t) = F (t)w(t), i.e., Φ′(t, t0) = F (t)Φ(t, t0) and
Φ(t0, t0) = idq . Then the solution of w′ = F (t)w + u is

w(t) = Φ(t, t0)w(t0) +

∫ t

t0

Φ(t, s)u(s)ds =⇒

‖w(t)‖ ≤ ‖Φ(t, t0)‖‖w(t0)‖+

∫ t

t0

‖Φ(t, s)‖‖u(s)‖ds.
(132)

Equation (130) implies for all t ≥ t0 ≥ τ1:

‖Φ(t, t0)‖ ≤ c1tp0e−α(tµ−tµ0 ), hence ‖Φ(t, s)‖ ≤ c1spe−α(tµ−sµ) and

‖u(s)‖ ≤ c1tp0e−α(sµ−tµ0 )a(t0)

=⇒
(132)
‖w(t)‖ ≤ c1tp0e−α(tµ−tµ0 )‖w(t0)‖+ c21t

p
0a(t0)e−α(tµ−tµ0 )

∫ t

t0

spds

≤ 2c1(1 + c1t
2p+1)e−α(tµ−tµ0 ) max(‖w(t0)‖, a(t0)).

(133)

From (122) we get a p.g.f. ϕ1 > 0 on [τ1,∞) such that for all t ≥ t0 ≥ τ1 and all
solutions w ∈W (τ0)q of w′(t) = F (t)w(t) + u(t)

‖w(`)(t)‖ ≤ ϕ1(t) max (‖w(t)‖, ‖(∂(`) ◦ u)(t)‖) ≤
(133),(130)

ϕ1(t) max
(

2c1(1 + c1t
2p+1)e−α(tµ−tµ0 ) max(‖w(t0)‖, a(t0)), c1t

p
0e
−α(tµ−tµ0 )a(t0)

)
= ϕ1(t)2c1(1 + c1t

2p+1)e−α(tµ−tµ0 ) max(‖w(t0)‖, a(t0)).
(134)
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Finally Lemma 4.2 furnishes a p.g.f. ψ > 0 on [τ1,∞) such that (131) holds, i.e.,

∀t ≥ t0 ≥ τ1 : ‖w(`)(t)‖ ≤ ψ(t0)e−β(tµ−tµ0 ) max(‖w(t0)‖, a(t0)).

Corollary 4.6. Consider

w′(t) = F (t)w(t), F ∈ K(τ0)q×q, w ∈W (τ0)q. (135)

If this state space equation is uniformly exponentially stable (u.e.s.) (cf. (35)) then the
behavior B(A1×q(−z2∂ idq −F )) is w.e.s..

Proof. The assumption signifies that there are c ≥ 1, α > 0 and τ1 > τ0 such that for
all solutions w ∈W (τ0)q of w′(t) = F (t)w(t) and all t ≥ t0 ≥ τ1 the inequality

‖w(t)‖ ≤ ce−α(t−t0)‖w(t0)‖ (136)

holds. Part (ii) of Lemma 4.5 implies the w.e.s. of B
(
A1×q(−z2∂ idq −F )

)
.

Corollary 4.7. If F ∈ Cq×q is a constant matrix then B
(
A1×q(−z2∂ idq −F )

)
is

w.e.s. if and only if F is asymptotically stable, i.e., if spec(F ) ⊂ C−.

Proof. It is a standard result that spec(A) ⊂ C− implies u.e.s. and thus w.e.s. by Cor.
4.6. Conversely,

Φ(t, t0) = eF (t−t0), ‖Φ(t, t0)‖ ≤ ϕ(t0)e−α(tµ−tµ0 ) =⇒
lim
t→∞

Φ(t, t0) = 0 =⇒ lim
t→∞

etF = 0 =⇒ spec(F ) ⊂ C−.

We apply Lemma 4.5 to any f :=
∑d
i=0 fi(−z2∂)iA, deg∂(f) = d, and choose

τ0 > σ(f) such that fd has no zeros on [τ0,∞) (cf. Cor. 3.3). Define

F :=

( 0 1 0 0 ··· 0 0
0 0 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ···
0 0 0 0 ··· 0 1

−f−1
d f0 −f−1

d f1 ··· ··· ··· ··· −f−1
d fd−1

)
∈ Kd×d, R := −z2∂ idd−F ∈ Ad×d.

(137)

With δ0,d := (
0
1, 0, · · · ,

d−1
0 ) these data imply the standard A-linear isomorphism

(◦δ0,d)ind : A/Af
∼=←→ A1×d/A1×dR : (◦∂(d))ind,

η + Af → ηδ0,d + A1×dR = (
0
η, 0, · · · ,

d−1
0 ) + A1×dR

ξ∂(d) + Af =

d−1∑
i=0

ξi(−z2∂)i + Af ← ξ + A1×d(−z2∂ idd−F ).

(138)

For t0 > τ0 this module isomorphism gives rise to the behavior isomorphism

B(f, τ0) =
{
w ∈W (τ0); fd(t)w

(d) + · · ·+ f0(t)w = 0
}

∼= B(−z2∂ idd−F, τ0) =
{
x ∈W (τ0)d; x′ = F (t)x

} ∼= Cd,
w(t) = x0(t)←→ x(t) = (x0(t), · · · , xd−1(t))> = (∂(d) ◦ w)(t)

←→ x(t0) = (∂(d) ◦ w)(t0).

(139)

Since every f.g. torsion module M = A1×q/A1×pR, rank(R) = q, is cyclic and thus
isomorphic to some A/Af the isomorphisms in (138) and (139) also imply
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Corollary 4.8. If M = A1×q/U with U := A1×pR, R ∈ Ap×q , rank(R) = q and
dimK(M) = d < ∞ is a f.g. torsion module then there are inverse module resp.
behavior isomorphisms

(◦P )ind : A1×q/A1×pR
∼=←→ A1×d/A1×d(−z2∂ idd−F ) : (◦Q)ind

Q◦ : B(U)
∼=←→ B(A1×d(∂ idd−F )) : P◦

where d = dimK(M), F ∈ Kd×d, P ∈ Aq×d, Q ∈ Ad×q.
(140)

The isomorphisms (138) and (139) and Lemma 4.5 imply

Corollary 4.9. If f :=
∑d
i=0 fi(−zi∂)i ∈ A(τ0), and if fd has no zero in (τ0,∞) the

behavior B(Af) is w.e.s. if and only if there are τ1 > τ0, α, µ > 0 and a p.g.f. ϕ > 0
on [τ1,∞) such that

∀t ≥ t0 ≥ τ1∀w ∈ B(f, τ0) :

‖(∂(d) ◦ w)(t)‖ ≤ ϕ(t0)e−α(tµ−tµ0 )‖(∂(d) ◦ w)(t0)‖.
(141)

4.2 Preservation of w.e.s. under isomorphisms
Example 4.10. The following examples (i) resp. (ii) show that in contrast to w.e.s.
(cf. the next Lemma 4.11) stability resp. u.e.s. are not invariant under behavior
isomorphisms and therefore not discussed in this paper.
(i) Consider the isomorphic state space behaviors

B1 := {w1 ∈W (0); w′1 = 0} = C · 1
∼= B2 := z−1 ◦ B1 = tB1 =

{
w2 ∈W (0);w′2 = t−1w2

}
= C · t.

(142)

Obviously B1 is stable, but B2 is not.
(ii) Consider the uniformly exponentially stable LTI-behavior

B1 :=
{
w = (w1

w2
) ∈W (0)2; w′(t) = F1w(t)

}
, F1 :=

(
λ1 0
0 λ2

)
, λ1 < λ2 < 0,

P (t) := ( 1 t
0 1 ) ∈ Gl2 (C∞(0,∞)) , B1

∼= B2 := P (z−1) ◦ B1 = P (t)B1, w 7→ v := Pw,

B2 :=
{
v = ( v1

v2
) ∈W (0)2; v′(t) = F2(t)v(t)

}
whereF2 = (P ′ + PF1)P−1 =

(
λ1 (λ2−λ1)t+1
0 λ2

)
=⇒ v(t) =

(
eλ1(t−t0) teλ2(t−t0)−t0eλ1(t−t0)

0 eλ2(t−t0)

)
v(t0)

(143)
With v(t0) := (0, 1)>, hence ‖v(t0)‖ = 1, and s := t− t0 ≥ 0 we get

v1(t) = teλ2(t−t0) − t0eλ1(t−t0) ≥ t0
(
eλ2s − eλ1s

)
≥ 0. (144)

If B2 was u.e.s. there would exist c, α > 0 such that

v1(t) ≤ ce−α(t−t0) ≤ c =⇒ ∀t0 > 0∀s ≥ 0 : t0
(
eλ2s − eλ1s

)
≤ c. (145)

For s := 1 and t0 > c
(
eλ2 − eλ1

)−1
this yields a contradiction. This is no contradic-

tion to [21, Thm. 6.15] since P (t) is not a Lyapunov transformation.

Recall A = K[∂; d/dz] = K[−z2∂;−z2d/dz] 3 f =
∑
j∈N fj(−z2∂)j , fj ∈ K.
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Lemma 4.11. Weak exponential stability is preserved by isomorphisms, i.e., if
A1×q1/U1

∼= A1×q2/U2 and if B(U1) is w.e.s. then so is B(U2) (∼= B(U1)). In other
words: The w.e.s. of a behavior B(U) of a submodule U ⊆ A1×q depends on the
factor module M = A1×q/U only, but not on the special presentation of M .

Proof. Consider operators P1 ∈ Aq1×q2 and P2 ∈ Aq2×q1 that induce isomorphisms

(◦P1)ind : A1×q1/U1

∼=−→ A1×q2/U2, Ui = A1×piRi,

and its inverse (◦P1)−1
ind = (◦P2)ind where Pi =

di∑
j=0

Pij(−z2∂)j .
(146)

Choose τ0 ≥ max(σ(P1), σ(P2)) sufficiently large such that for all τ ≥ τ0 the opera-
tors P1 and P2 induce inverse isomorphisms

P2◦ : B(R1, τ)
∼=←→ B(R2, τ) : P1◦, w1 = P1 ◦ w2 ←→ w2 = P2 ◦ w1. (147)

Assume that B(U1) = cl ((B(R1, τ), res)τ≥τ0) is w.e.s. and therefore

∃τ1 > τ0∃d ≥ 0∃α, µ > 0∀m ∈ N∃ p.g.f. ϕm > 0∀t ≥ t0 > τ ≥ τ1
∀w1 ∈ B(R1, τ) : ‖(∂(m) ◦ w1)(t)‖ ≤ ϕm(t0)e−α(tµ−tµ0 )‖(∂(d) ◦ w1)(t0)‖.

(148)
Let τ ≥ τ1 and consider an arbitrary w2 ∈ B(R2, τ) and m ∈ N and define

w1 := P1 ◦ w2 =⇒ w1(t) =

d1∑
j=0

P1j(t)w
(j)
2 (t) and w2 := P2 ◦ w1 =⇒

∀k ∈ N : w
(k)
1 =

k∑
i=0

d1∑
j=0

(
k

i

)
P

(k−i)
1j w

(i+j)
2 , P

(k−i)
1j (t) := dk−iP1j(t)/dt

k−i.

(149)
The norms ‖P (k−i)

1j (t)‖ are p.g.f. on [τ1,∞). Taking norms in (149) thus furnishes
a p.g.f. ψ1 > 0 on [τ1,∞) such that

∀t > τ : ‖(∂(d) ◦ w1)(t)‖ ≤ ψ1(t)‖(∂(d+ d1) ◦ w2)(t)‖. (150)

Likewise w2 = P2 ◦ w1 and there is a p.g.f. ψ2 > 0 on [τ1,∞) such that

∀t > τ : ‖w(m)
2 (t)‖ ≤ ψ2(t)‖(∂(m+ d2) ◦ w1)(t)‖. (151)

Together the preceding inequalities furnish, for t ≥ t0 > τ,

‖w(m)
2 (t)‖ ≤

(148),(151)
ψ2(t)ϕm+d2

(t0)e−α(tµ−tµ0 )‖(∂(d) ◦ w1)(t0)‖

≤
(150)

ψ2(t)e−α(tµ−tµ0 )ϕm+d2(t0)ψ1(t0)‖(∂(d+ d1) ◦ w2)(t0)‖.
(152)

We choose β with 0 < β < α. Lemma 4.2 furnishes a p.g.f. ψ3 > 0 on [τ1,∞) such
that for all t ≥ t0 > τ

ψ2(t)e−α(tµ−tµ0 ) ≤ ψ3(t0)e−β(tµ−tµ0 ) =⇒
(152)

‖w(m)
2 (t)‖ ≤ (ϕm+d2

(t0)ψ1(t0)ψ3(t0)) e−β(tµ−tµ0 )‖(∂(d+ d1) ◦ w2)(t0)‖.
(153)

Since ϕm+d2
(t0)ψ1(t0)ψ3(t0) is also a p.g.f. the preceding inequality implies the

w.e.s. of B(U2) with memory size d+ d1.
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The validity of the preceding lemma suggested the definition of w.e.s. in Def. 2.4.
Recall that u.e.s. of state space behaviors is not preserved by behavior isomorphisms
and necessitates the introduction of so-called Lyapunov transformations [21, Def. 6.14]
that are not defined for arbitrary behaviors, but only for state space equations.

Corollary 4.12. In the situation of Cor. 4.8 the behavior B(U) is w.e.s. if and only
if B(A1×d(−z2∂ idd−F )) is w.e.s., ie., if the first inequality of (130) is satisfied for
−z2∂ idd−F .

Definition 4.13. A f.g. A-module is called w.e.s. if and only if for one and thus for all
representations M = A1×q/U the behavior B(U) is w.e.s..

Notice that in contrast to most situations in systems theory the analytic property
w.e.s. of B(U) is the primary property whereas the algebraic property w.e.s. of M is
the derived one.

4.3 The proof of Theorem 2.7
In this section we prove Thm. 2.7. For the needed algebraic preparations we refer to
[5, §3.3]
We assume an exact sequence of f.g. A-modules

0→M1
ϕ−→M2

ψ−→M3 → 0 (154)

of f.g. A-modules. After the choice of presentations Mi = A1×`i/Ui the exact se-
quence (154) induces an exact behavior sequence

0← B1
B(ϕ)←− B2

B(ψ)←− B3 ← 0 (155)

For Thm. 2.7 we are going to show that B(U2) is e.s. if and only if B(U1) and B(U3)
are. Due to Lemma 4.11 we may choose the representations arbitrarily. According to
Cor. 4.8 and [5, Lemma 3.9] we may and do assume that the sequence (154) has the
special form

0→ A1×q1/U1

(◦(0,idq1 ))ind−−−−−−−−→ A1×q2/U2

(
◦
(

idq3
0

))
ind−−−−−−−−−→ A1×q3/U3 → 0

where q2 = q3 + q1, Ui = A1×qiRi, Ri ∈ Aqi×qi , i = 1, 2, 3,

R1 = −z2∂ idq1 −F1, R3 = −z2∂ idq3 −F3, Fi ∈ Kqi×qi ,

R2 =
(
R3 R
0 R1

)
, R ∈ Aq3×q1 .

(156)

For sufficiently large τ0 > max {σ(Ri); i = 1, 2, 3}, t0 > τ ≥ τ0 and W (τ) =
C∞(τ,∞) there result the exact behavior sequences

W (τ)q10 oo W (τ)q3+q1W (τ)q1
(0,id`1 )◦
oo W (τ)q3W (τ)q3+q1

(
id`3

0

)
◦

oo 0W (τ)q3 oo

B(R1, τ)0 oo B(R2, τ)B(R1, τ) oo B(R3, τ)B(R2, τ) oo 0B(R3, τ) oo

(w3
w1

) , (w3
0 )w1

�oo w3(w3
w1

) , (w3
0 ) �oo

B(R1, τ)

W (τ)q1

⊆
OO

B(R2, τ)

W (τ)q3+q1

⊆
OO

B(R3, τ)

W (τ)q3

⊆
OO

(157)
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and

B(R1, τ) = {w1 ∈W (τ)q1 ; w′1(t) = F1(t)w1(t)} ∼= Cq1 , w1 7→ w1(t0),

B(R3, τ) = {w3 ∈W (τ)q3 ; w′3(t) = F3(t)w3(t)} ∼= Cq3 , w3 7→ w3(t0),

B(R2, τ) =
{

(w3
w1

) ∈W (τ)q3+q1 ; (∗)
}

where (∗) : w′1(t) = F1(t)w1(t), w′3(t) = F3(t)w3(t)− (R ◦ w1)(t)

(158)

The next theorem coincides with Thm. 2.7.

Theorem 4.14. Weakly exponentially stable behaviors form a Serre subcategory of the
abelian category of all LTV behaviors. For the data from (154) and (155) or, without
loss of generality, from from (156) and (157), this signifies that B2 is w.e.s. if and only
if B1 and B3 are.

Proof. We assume (156) and (157). The time instant τ0 in (157) is chosen sufficiently
large.
1. If B2 is w.e.s then so are B1 and B3: The proof is fully analogous to the parts 1. and
2. of the proof of [5, Thm. 3.11] and therefore omitted.
2. Assume that B1 and B3 are w.e.s.: Choose m1 ∈ N . By assumption and Lemma
4.4 there are τ1 > τ0, µ, α > 0 and a p.g.f. ϕ on [τ1,∞) such that

∀t ≥ t0 > τ ≥ τ1∀wi ∈ B(−z2∂ idqi −Fi, τ), i = 1, 3 :

‖(∂(m1) ◦ wi)(t)‖ ≤ ϕ(t0)e−α(tµ−tµ0 )‖wi(t0)‖, i = 1, 3
(159)

W.l.o.g. due to Lemma 4.1 we here assume the same µ, α, ϕ for both w3 and w1.
Notice that all three wi can be uniquely extended from (τ,∞) to (τ0,∞). Let w2 =
(w3
w1

) ∈ B(R2, τ) be arbitrary . Then wi ∈ W (τ)qi , i = 1, 3, are the unique solutions
of

w′1(t) = F1(t)w1(t) with initial value w1(t0)

w′3(t) = F3(t)w3(t) + u(t) with initial value w3(t0) and u(t) := −(R ◦ w1)(t).
(160)

Let m ∈ N and d := deg∂(R) and define m1 := d+m. Choose α2 with 0 < α2 < α.
According to Lemma (4.3) and (150) there are p.g.f. ϕ2, ϕ4 > 0 on [τ1,∞) such that

∀t ≥ t0 : ‖(∂(m) ◦ u)(t)‖ ≤ ϕ2(t)‖(∂(m+ d) ◦ w1)(t)‖

=⇒
(159)
‖(∂(m) ◦ u)(t)‖ ≤ ϕ2(t)ϕ(t0)e−α(tµ−tµ0 )‖w1(t0)‖

=⇒
(114)
‖(∂(m) ◦ u)(t)‖ ≤ ϕ4(t0))e−α2(tµ−tµ0 )‖w1(t0)‖.

(161)

This shows that u = −R◦w1 satisfies the condition (130). The inequality (159) for
w3 implies that also w′ = F3w satisfies the condition of (130). We now apply Lemma
4.5 to w′3 = F3w3 + u and obtain 0 < α4 < α2 and a p.g.f. ϕ5 on [τ1,∞) such that

∀t ≥ t0 : ‖w(m)
3 (t)‖ ≤ ϕ5(t0)e−α4(tµ−tµ0 )‖w2(t0)‖,

with ‖w2(t0)‖ = max (‖w3(t0)‖, ‖w1(t0)‖) .
(162)

The inequalities (159) for w1 and (162) for w3 finally imply for all t ≥ t0

‖w(m)
2 (t)‖ = max

(
‖w(m)

3 (t)‖, ‖w(m)
1 (t)‖

)
≤ ψ(t0)e−α4(tµ−tµ0 )‖w2(t0)‖

where ψ(t) = max(ϕ(t), ϕ5(t)).
(163)
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Recall from Def. 4.13 that a f.g. A-module is w.e.s. if for one or for all represen-
tations M = A1×q/U the behavior B(U) is w.e.s..

Corollary and Definition 4.15. The f.g. weakly exponentially stable A-modules form
a Serre subcategory of AMod. Every f.g. A-moduleM has a largest w.e.s. submodule
Rawes(M) that is called the w.e.s. radical ofM . Moreover Rawes (M/Rawes(M)) =
0.

Corollary 4.16. (i) Let f = f1f2 be a nonzero product in A, hence 0 6= Af ⊆ Af2.
Then f is weakly exponentially stable if and only if f1 and f2 are.
(ii) If M ∼= A/Af is any f.g. torsion module and hence cyclic and if f = f1 · · · fr is a
decomposition of f into irreducible factors fi thenM is w.e.s. if and only if all A/Afi
are.

Proof. The application of Thm. 4.14 to the exact sequences

0 A/Af1
// A/Af1 A/Af

(◦f2)ind // A/Af A/Af2
can // A/Af2 0//

a+ Af1 af2 + Af, b+ Af
� // af2 + Af, b+ Af b+ Af2

� //

B(Af1)0 oo B(Af)B(Af1)
B(f2)oo B(Af2)B(Af)

⊇oo 0B(Af2) oo

(164)

furnishes the result.
(ii) follows from (i) by induction.

Recall that 0 6= g ∈ A is irreducible if Ag is a maximal left ideal or A/Ag is
simple.

5 Algebraic characterization of exponential stability

5.1 Lattices
Weak exponential stability (w.e.s.) of an autonomous system B = B(U) with U =
A1×pR, R ∈ Ap×q and rank(R) = q or, equivalently, of its system module M =
A1×q/U with n := dimK(M) <∞ is defined by analytic properties of the trajectories
ofB. In Section 5 we characterize the w.e.s. ofB by that of associated complex matrices
for most autonomous systems.
SuchU ,M and B are given in the sequel. A f.g. C << z >> [∂; d/dz]-torsion module
is a f.d. C << z >>-vector space and is also called a meromorphic connection [16,
Def. 4.3.1].
From the Sections 3.1 and 3.2 recall the valuation ring L, its quotient field K with its
valuation v and derivation d/dz and the algebra A of differential operators:

L =
⋃
m≥1

Lm ⊂ K =
⋃
m≥1

Km, Lm = C < z1/m >⊂ Km = C << z1/m >>

with v

( ∞∑
i=k

aiz
i/m

)
= k/m if k ∈ Z, ak 6= 0, v(0) =∞

and d/dz

( ∞∑
i=k

aiz
i/m

)
=

∞∑
i=k

ai(i/m)z(i/m)−1

A = K[∂; d/dz] = K[b∂; bd/dz] = ⊕∞j=0K(b∂)j , 0 6= b ∈ K.
(165)
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Since

v
(
d/dz(z1/m)

)
= v

(
(1/m)z(1/m)−1

)
= −(m− 1)m−1 < 0 for m > 1 (166)

the algebra L is not invariant under d/dz and hence L[∂; d/dz] does not exist. How-
ever, for δ := z∂ ∈ A, a ∈ C < z > and hence v(a(z1/m)) ≥ 0 we get

∀m ∈ N : δa(z1/m) = a(z1/m)δ +m−1z1/ma′(z1/m) ∈ L[δ] := ⊕jLδj (167)

and hence L[δ; zd/dz] = L[δ] is a subalgebra of A. A f.g. generated L-submodule
N of M is free since L is a Bézout domain and called a lattice of KM if KN = M
[3, §VII.4.1], [20, Def. 3.7]. An L-basis of N is also a K-basis of M . In general the
lattice N is not invariant under δ.

5.2 Regular singular equations
The following derivations are a simple adaption of [16, Thm. 1.1.1, p. 45] to the
situation here. The notations of Section 5.1 are in force.

Definition 5.1. The f.g. torsion module M = A1×q/U is called regular singular [20,
Def. 3.9], if M contains a lattice N with δN ⊆ N where δ := z∂.
A f.g. regular singular C << z >> [∂; d/dz]-torsion module is also called a regular
meromorphic connection or meromorphic connection with regular singularity [16, Def.
I.5.1.1, Cor. II.1.1.6].

Obviously regular singularity is preserved by isomorphisms and assumed in this
section. Let v = (v1, · · · ,vn)> ∈ Nn be an L-basis of N and e := (e1, · · · , en)>

the standard basis of C1×n ⊂ A1×n. Since δN ⊆ N and L =
⋃
m≥1 C < z1/m >

there are m ≥ 1 and A ∈ C < z >n×n such that

δv = A(z1/m)v. (168)

The epimorphism A1×n →M, ej 7→ vj , induces the isomorphism

A1×n/A1×n(δ idn−A(z1/m)) ∼= M

ξ := ξ + A1×n(δ idn−A(z1/m)) 7→ ξv =
∑n
j=1 ξjvj

,

hence B
(
A1×n(δ idn−A(z1/m))

)
∼= B(U).

(169)

Recall
Km = C << z1/m >>⊂ Am := Km[δ; zd/dz], especially
K1 = C << z >>⊂ A1 := C << z >> [δ; zd/dz].

(170)

Define Vm := ⊕nj=1Kmvj ⊂M . The equation δv = A(z1/m)v implies that Vm is an
Am-submodule of M of dimension dimKm(Vm) = n and that

A1×n
m /A1×n

m (δ idn−A(z1/m)) ∼=
Am

Vm, ej 7→ vj ,=⇒

M ∼=
A

A1×n/A1×n(δ idn−A(z1/m)) ∼=
A

A⊗Am
Vm = K⊗Km

Vm.
(171)

Define V := A1×n
1 /A1×n

1 (δ idn−mA(z)). This is an A1-torsion module with the
K1-basis e and δe = mA(z)e. According to [20, Thm. 5.1], [16, Cor. 1.1.6,(3),(4), p.
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47] there is a constant matrix B1 ∈ Cn×n and P ∈ Gln(C < z >) with P (0) = idn
such that

zP ′ = (mA)P − PB1 =⇒ (δ idn−mA)P = P (δ idn−B1) =⇒
(◦P )ind : V = A1×n

1 /A1×n
1 (δ idn−mA(z)) ∼=

A1

A1×n
1 /A1×n

1 (δ idn−B1) .
(172)

The equations

δa(z) = a(z)δ + za′(z) ∈ A1 and

δa(z1/m) = a(z1/m)δ +m−1z1/ma′(z1/m) ∈ Am imply

(mδ)a(z1/m) = a(z1/m)(mδ) + z1/ma′(z1/m) ∈ Am

(173)

and, via Lemma 3.4, the algebra isomorphism

A1 = K1[δ; zd/dz] ∼= Am = Km[δ; zd/dz],
∑
j

aj(z)δ
j 7→

∑
j

aj(z
1/m)(mδ)j .

(174)
The isomorphisms (172) and (174) imply the isomorphism

Vm ∼=
Am

A1×n
m /A1×n

m

(
δ idn−A(z1/m)

)
= A1×n

m /A1×n
m

(
(mδ) idn−mA(z1/m)

)
∼=
Am

A1×n
m /A1×n

m ((mδ) idn−B1) = A1×n
m /A1×n

m (δ idn−B) , B := m−1B1.

(175)
Together with the isomorphism (169), (171) we get the isomorphisms

M ∼=
A

A1×n/A1×n
(
δ idn−A(z1/m)

)
∼=
A

A1×n/A1×n (δ idn−B)

B(U) ∼= B
(
A1×n(δ idn−A(z1/m))

)
∼= B

(
A1×n (δ idn−B)

)
.

(176)

The equations δ = z∂ = −z−1(−z2∂) and (−z2∂) ◦ v = v′ for v ∈W (0,∞) imply

δ ◦ v = −tv′, hence ∀x ∈W (0,∞)n : (δ idn−B) ◦ x = −tx′ −Bx =⇒
B(δ idn−B, 0) =

{
x ∈W (0)n; x′ + t−1Bx = 0

}
.

(177)

The transition matrix of the state space system

x′ + t−1Bx = 0 is Φ(t, t0) = exp (−(ln(t)− ln(t0))B) for t, t0 > 0. (178)

Corollary 5.2. If the module is regular singular then it is weakly exponentially stable
if and only if M = 0, hence Thm. 2.8,(i), holds.

Proof. Since w.e.s. is preserved by isomorphism the isomorphism (176) and equation
(177) show that this has to be shown for the state system x′+t−1Bx = 0 only. Assume
that M 6= 0 and thus n > 0 and that this equation is w.e.s. Then for sufficiently large
τ there are constants α, µ > 0 and a p.g.f. ϕ(t) > 0 such that (cf. (127))

∀t ≥ t0 > τ : ‖x(t)‖ ≤ ϕ(t0) exp (−α(tµ − tµ0 )) ‖x(t0)‖, α, µ > 0. (179)

Let x(t0) be a nonzero eigenvector of B for the eigenvalue λ. Then

x(t) = Φ(t, t0)x(t0) = exp (−(ln(t)− ln(t0))B)x(t0)

= exp (−(ln(t)− ln(t0))λ)x(t0) =⇒

‖x(t)‖ = exp (−(ln(t)− ln(t0))<(λ)) ‖x(t0)‖ = t−<(λ)t
<(λ)
0 ‖x(t0)‖.

(180)
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Even for <(λ) > 0 the power t−<(λ) decreases more slowly than exp (−αtµ) and
hence the inequality (179) cannot hold. This implies M = 0 and the theorem.

5.3 Irregular singular equations
This Section is devoted to the proof of Thm. 2.8,(ii) and (iii),(a),(b), (c).

Definition 5.3. The torsion module M = A1×q/U is called irregular singular if it is
not regular singular.

In this Section 5.3 we assume such an M . Again this property is preserved by
isomorphisms. Thm. 5.4 below is an important standard result. We carry out its simple
proof since those of [4, (6.37)] and [20, p. 68] are only indications and contain slight
errors. Since every f.g. torsion module is cyclic we assume an isomorphism

M ∼= A/AL,L =

d∑
i=0

aiδ
d−i ∈ A = K[δ; zd/dz], δ := z∂, a0 = 1, ai ∈ K.

(181)
This L is also called irregular singular.We write it in the form

L = (1, a1, · · · , ad)D, D := (δd, δd−1, · · · .δ, 1)> ∈ Ad+1. (182)

If L ∈ L[δ; zd/dz] then

N := L[δ; zd/dz]/L[δ; zd/dz]L = ⊕d−1
i=0 Lδ

i ⊂ A/AL = ⊕d−1
i=0 Kδ

i (183)

andN is a L[δ; zd/dz]-submodule of A/AL and a lattice with δN ⊆ N . By definition
this implies that A/AL is regular singular. Since this is excluded in Section 5.3 we
conclude that not all coefficients ai of L belong to L and that hence v(ai) < 0 for at
least one i = 1, · · · , d.

Theorem 5.4. ([20, p. 68], [4, modified (6.37)]) Assume that

L = (z∂)d + a1(z∂)d−1 + · · ·+ ad ∈ A = K[z∂; zd/dz] (184)

is irregular singular, i.e., there is a coefficient ai 6∈ L or with v(ai) < 0. Define

λ := min {v(ai)/i; i = 1, · · · , d} < 0, E := z−λ(z∂) = z1−λ∂. (185)

Then

z−λdL = Ed + b1E
d−1 + · · ·+ bd

where bi ∈ L = {a ∈ K; v(a) ≥ 0} , ∃k with v(bk) = 0.
(186)

Proof. (i) We show inductively that

Ek = z−kλpk(δ), pk ∈ C[δ], degδ(pk) = k, pk monic. (187)

For k = 0, 1 this is obviously true with p0 = 1, p1 = δ. Inductively we then get

Ek+1 = EEk = z−λ(δz−kλ)pk(δ) = z−λ
(
z−kλδ − kλz−kλ

)
pk(δ) =

z−(k+1)λ(δ − kλ)pk(δ) = z−(k+1)λpk+1(δ), pk+1(δ) := (δ − kλ)pk(δ).
(188)
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(ii) Define
E := (Ed, Ed−1, · · · , E, 1)> ∈ Ad+1. (189)

Equation (186) furnishes an upper triangular matrix U ∈ Gld+1(C) with 1 in the main
diagonal, Uii = 1, and the diagonal matrix D = diag(z−dλ, z−(d−1)λ, · · · , 1) such
that

E = DUD =⇒ D = U−1D−1E =⇒ z−dλL = z−dλ(1, a1, · · · , ad)D
= (1, a1, · · · , ad)U−1(z−dλD−1)E =: (b0, b1, · · · , bd)E
=⇒ (b0, b1, · · · , bd) = (1, a1, · · · , ad)U−1D1

with D1 := z−dλD−1 = diag(1, z−λ, · · · , z−dλ).

(190)

The matrix U−1 is also upper triangular with 1 in the main diagonal. The preceding
equation thus implies

b0 = 1, ∀j ≥ 1 : bj =

j∑
i=0

ai(U
−1)ijz

−jλ =

j∑
i=0

(aiz
−jλ)(U−1)ij

= ajz
−jλ +

j−1∑
i=0

(aiz
−jλ)(U−1)ij .

(191)

The definition of λ < 0 furnishes

∀j ≥ i ≥ 0 : v(aiz
−jλ) =

{
j ((v(aj)/j)− λ) ≥ 0 if i = j

i ((v(ai)/i)− λ) + (j − i)(−λ) > 0 if i < j
=⇒

v(bj) =

{
0 if v(aj)/j = λ

> 0 if v(aj)/j > λ
=⇒ bj ∈ L, ∃k with v(bk) = 0 =⇒

z−dλL = Ed + b1E
d−1 + · · · ∈ L[E; z1−λd/dz], E := z−λδ = z1−λ∂.

(192)

Since bi ∈ L =
⋃
m≥1 C < z1/m > there is an m such that

∀i = 1, · · · , d : bi ∈ C < z1/m >, m ≥ 1. (193)

For the action on y ∈W (τ) the operator E is written as

E = z−λz∂ = −z−1−λ(−z2∂) and acts as (E ◦ y)(t) = −t1+λy′(t). (194)

As usual we define

x = (x0, · · · , xd−1)> := (y,E ◦ y, · · · , Ed−1 ◦ y)> and

A = A(z1/m) :=

(
0 1 0 ··· 0
0 0 1 ··· 0
··· ··· ··· ··· ···
0 0 0 ··· 1
−bd −bd−1 −bd−2 ··· −b1

)
∈ C < z1/m >d×d

(195)

and conclude

L ◦ y = 0 ⇐⇒ z−dλL ◦ y = 0 ⇐⇒ Ed ◦ y +

d−1∑
j=0

bd−jE
j ◦ y = 0

⇐⇒ (E idd−A) ◦ x = 0 ⇐⇒ −t1+λx′(t)−A(t−1/m)x(t) = 0

⇐⇒ x′(t) + t−1−λA(t−1/m)x(t) = 0.

(196)
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On the module level we obtain the inverse isomorphisms (cf. (138))

M = A1×q/U
(◦P )ind∼= A/AL ∼= A1×d/A1×d(E idd−A), η ↔ f ↔ ξ

where η = η + U, f := f + AL, ξ := ξ + A1×d(E idd−A)

η = fQ, f = ηP =

d−1∑
i=0

ξiE
i, ξ = (f, 0, · · · , 0).

(197)

where P ∈ Aq×1 and Q ∈ A1×q define the inverse isomorphisms between M and
A/AL. For the behaviors this implies

B(U) ∼= B(AL) ∼= B(A1×d(E idd−A)), w ↔ y ↔ x,

w = P ◦ y, y = Q ◦ w = x0, x = (y,E ◦ y, · · · , Ed−1 ◦ y)>.
(198)

The matrix A is contained in C < z1/m >d×d and we decompose it according to (56):

A(z1/m) = A0 + z1/mA1(z1/m), A(t−1/m) = A0 + t−1/mA1(t−1/m), A0 ∈ Cd×d.
(199)

Notice that A1(z1/m) is a power series in z1/m and not only a Laurent series and
hence A1(t−1/m) is bounded on [τ,∞) for all τ > σ(A1). Summing up the preceding
derivations we obtain

Theorem 5.5. Assume thatM = A1×q/A1×pR ∼= A/AL ∼= A1×d/A1×d(E idd−A)
is irregular singular and the derived data from above. There is a time

τ0 > max(1, σ(A1), σ(R), σ(P ), σ(Q)) (200)

such that the equation (196) gets the form

x′(t) + t−1−λ
(
A0 + t−1/mA1(t−1/m)

)
x(t) = 0, t > τ0, (201)

where A resp. A0, A1 are defined in (195) resp. (199) and where A1(t−1/m) is
bounded on [τ0,∞). Moreover the behavior isomorphisms (198) imply the behavior
isomorphisms

∀τ ≥ τ0 : B(R, τ) = {w ∈W (τ)q;R ◦ w = 0} ∼= C(τ) :={
x ∈W (τ)d; x′(t) + t−1−λ

(
A0 + t−1/mA1(t−1/m)

)
x(t) = 0

}
, w ↔ x, where

w = (w1, · · · , wq)> = P ◦ x0, x = (x0, · · · , xd−1)> = (1, E, · · · , Ed−1)>Q ◦ w.
(202)

By the variable transformation t 7→ t−λ
−1

, −λ−1 > 0, the preceding equations
can be simplified as follows: Define

v(t) := x
(
t−λ

−1
)
, hence v

(
t−λ
)

= x
(

(t−λ)−λ
−1
)

= x(t). (203)

The differential equation (201) and (203) imply

v′(t) = −λ−1t−λ
−1−1x′(t−λ

−1

)

= −λ−1t−λ
−1−1(−1)

(
t−λ

−1
)−1−λ

(
A0 +

(
t−λ

−1
)−1/m

A1

((
t−λ

−1
)−1/m

))
v(t)

= λ−1
(
A0 + t1/(λm)A1(t1/(λm))

)
v(t), 1/(λm) < 0, A1(t1/(λm)) bounded.

(204)
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Result 5.6. ([21, Thm. 8.6]) Consider a state space system

v′(t) = (B(t) + C(t))v(t), v(t) ∈ C(τ0,∞)d, B,C ∈ C0(τ0,∞)d×d, (205)

where C is considered as a perturbation of B. Assume that ‖B(t)‖ ≤ β for all t > τ0
and that the system v′ = Bv is u.e.s. Then there is a constant γ > 0 such that also
v′ = (B + C)v is u.e.s. if ‖C(t)‖ ≤ γ for all t > τ0.

Theorem 5.7. Assume R,U,M,B as in the beginning of Section 5.1 with irregular
singular M and the derived data from Thm. 5.5 and (201). If the eigenvalues of A0

have positive real parts then B is weakly exponentially stable. For sufficiently large
τ1 > τ0 the trajectories x ∈W (τ)d satisfy an inequality

‖x(t)‖ ≤ c exp
(
−α(t−λ − t−λ0 )

)
‖x(t0)‖, (206)

Proof. 1. We first consider the equation (204)

v′(t) = λ−1
(
A0 + t1/(λm)A(t1/(λm))

)
v(t) and define

B(t) := λ−1A0, β := ‖λ−1A0‖, C(t) = λ−1t1/(λm)A1(t1/(λm)).
(207)

Since λ−1 < 0 and the eigenvalues of A0 have positive real parts those of λ−1A0

have negative real parts. Therefore v′ = Bv is u.e.s. Let γ > 0 be the number from
Result 5.6. The function A1(t1/(λm)), 1/(λm) < 0, is bounded for t → ∞ and
limt→∞ t1/λm = 0. We choose

τ1 > τ0 such that ∀t ≥ τ1 : ‖C(t)‖ = ‖λ−1t1/(λm)A1(t1/(λm))‖ ≤ γ. (208)

According to Result 5.6 the equation v′ = (B +C)v is u.e.s. on (τ,∞) for all τ ≥ τ1.
Therefore there are c, λ > 0 such that

∀t ≥ t0 > τ ≥ τ1 : ‖v(t)‖ ≤ c exp(−α(t− t0))‖v(t0)‖. (209)

2. We use x(t) = v(t−λ) from (203). The preceding inequality (209) implies:

∀t ≥ t0 > τ ≥ τ−λ
−1

1 , hence t−λ ≥ t−λ0 > τ−λ ≥ τ1 =
(
τ−λ

−1

1

)−λ
:

‖x(t)‖ = ‖v(t−λ)‖ ≤ c exp
(
−α(t−λ − t−λ0 )

)
‖x(t0)‖.

(210)

3. According to part 2. of the proof and Cor. 4.6 the state space behavior

B(τ) :=
{
x ∈W (τ)d; x′(t) + t−λ−1

(
A0 + t−1/mA1(t−1/m

)
= 0
}
, τ ≥ τ−λ

−1

1 ,

is w.e.s.. Since w.e.s. is preserved by behavior isomorphisms also B = B(U) is w.e.s..

The next theorem is an instability result. For ξ ∈ Cd we have to use the 2-norm
‖ξ‖2 =

(∑
i |ξi|2|

)1/2
with ‖ξ‖ = maxi |ξ| ≤ ‖ξ‖2 ≤ d1/2‖ξ‖.

Theorem 5.8. Assume the data from (204) with the abbreviations from (207) and as-
sume thatB has an eigenvalue with positive real part. Then there are t0 > τ0, c, α > 0
and one solution v ∈W (τ0)d of v′(t) = (B + C(t))v(t) such that

∀t ≥ t0 : ‖v(t)‖ ≥ c exp (α(t− t0)) ‖v(t0)‖, hence

‖x(t)‖ ≥ c exp
(
α(t−λ − t−λ0 )

)
‖x(t0)‖.

(211)

In particular, v(t) and x(t) are not u.e.s. and B is not w.e.s..
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Proof. 1. Let I := idd. By assumption the matrix B has an eigenvalue ν with pos-
itive real part. Let B∗ = B

>
denote the adjoint matrix and H ⊂ Cd×d the space

of Hermitean matrices H (H = H∗). The map H → H, P 7→ B∗P + PB, is
well-defined and an isomorphism if for two different eigenvalues λ1 6= λ2 of B the
inequality λ1 + λ2 6= 0 holds. We choose ε1 with 0 < ε1 < <(ν) and such that the
matrix B− ε1I satisfies this condition. So there is a unique Hermitean matrix P = P ∗

such that

(B∗ − ε1I)P + P (B − ε1I) = −I, hence B∗P + PB − 2ε1P = −I. (212)

2. The quadratic form V (ξ) := ξ∗Pξ is not positive semi-definite: Let η be a nonzero
eigenvector of B with Bη = νη. Then

Bη = νη, η∗B∗ = νη∗, η∗(B∗P + PB)η − 2ε1η
∗Pη = −‖η‖22

=⇒ 2 (<(ν)− ε1)V (η) = −‖η‖22 < 0 =⇒
<(ν)>ε1

V (η) < 0.
(213)

We infer that P has an eigenvalue µ < 0 and eigenvector ξ such that

µ < 0, ξ 6= 0, P ξ = µξ, V (ξ) = ξ∗Pξ = µ‖ξ‖22 < 0. (214)

3. Let v(t) ∈ W (τ)d be a solution of v′(t) = (B + C(t))v(t) and define f(t) :=
V (v(t)). Then

f = v∗Pv =⇒ f ′ = v′∗Pv + v∗Pv′ = v∗(B∗ + C∗)Pv + v∗P (B + C)v

= v∗(B∗P + PB)v + v∗(C∗P + PC)v

= v∗(−I + 2ε1P )v + v∗Hv = −‖v‖22 + 2ε1V (v) + v∗Hv

= 2ε1f − ‖v‖22 + v∗Hv
(215)

where H(t) = H(t)∗ := C(t)∗P + PC(t) is a Hermitean matrix.
4. The condition limt→∞ C(t) = 0 implies limt→∞H(t) = 0. We choose ε2 with
0 < ε2 < 1 and τ1 > τ0 such that |η∗H(t)η| ≤ ε2‖η‖22 for η ∈ Cd and t ≥ τ1. This
choice implies

f ′ =
(215)

2ε1f − ‖v‖22 + v∗Hv ≤ 2ε1f − (1− ε2) ‖v‖22 =⇒ f ′ = 2ε1f − h(t)

with h(t) ≥ 0 =⇒ ∀t ≥ t0 ≥ τ1 :

f(t) = f(t0)e2ε1(t−t0) −
∫ t

t0

e2ε1(t−s)h(s)ds ≤ f(t0)e2ε1(t−t0).

(216)

We apply the data from (214) and consider the solution

v ∈W (τ1)d of v′(t) = (B + C(t))v(t) with v(t0) := ξ

=⇒ f(t0) = V (ξ) = µ‖ξ2‖ < 0

=⇒ |f(t)| = |V (v(t))| ≥
(216)

(−µ)‖v(t0)‖22e2ε1(t−t0).

(217)

5. Let finally ρ := max {|β|; β ∈ spec(B)} ≥ −µ be the spectral radius of P . Then
|V (η)| ≤ ρ‖η‖22 for all η ∈ Cd and therefore especially

∀t ≥ t0 ≥ τ1 : ‖v(t)‖22 ≥ ρ−1|V (v(t))| ≥
(217)

ρ−1(−µ)e2ε1(t−t0)‖v(t0)‖22. (218)
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Taking roots, replacing ‖v(t)‖2 by ‖v(t)‖ and substituting v(t) = x(t−λ) furnishes
(211) and thus the theorem. The inequalities (216)-(218) also follow from Chetaev’s
instability theorem [10, Thm. 25.3].

Example 5.9. If L ∈ A is monic of degree 2 and not regular singular with λ < 0 then
we can write

E := z−λ(z∂) = z1−λ∂ and z−2λL = E2 + b1E + b2 with

b1, b2 ∈ C < z1/m >, hence v(bi) ≥ 0, and min(v(b1), v(b2)) = 0.
(219)

Conversely, any choice of λ < 0, m ≥ 1, and bi with the indicated properties gives
rise to E := z1−λ∂ and L := z2λ(E2 + b1E + b2) with the assumed properties of L.
The corresponding differential equation is

x′(t) + t−1−λA(t−1/m)x(t) = 0 with b1(0) 6= 0 or b2(0) 6= 0,

A(z1/m) :=
(

0 1
−b2 −b1

)
= A0 + z1/mA1(z1/m),

A0 :=
(

0 1
−b2(0) −b1(0)

)
, A1(z1/m) =

(
0 0

−z−1/m(b2−b2(0)) −z−1/m(b1−b1(0))

) (220)

We make the simplest choice λ := −1, m := 1 and obtain the differential equation

x′(t) +A(t−1)x(t) = 0 with b1(0) 6= 0 or b2(0) 6= 0,

A(z) :=
(

0 1
−b2 −b1

)
= A0 + zA1(z),

A0 :=
(

0 1
−b2(0) −b1(0)

)
, A1(z) =

(
0 0

−z−1(b2−b2(0)) −z−1(b1−b1(0))

)
.

(221)

We choose b1(0) := −1, b2(0) := 0, hence A0 = ( 0 1
0 1 ) with the eigenvalues 0, 1.

Thm. 2.8 is not applicable. We choose A1(z) = ( 0 0
0 z ) and obtain the differential

equation

x′(t) +
(
( 0 1

0 1 ) + t−1
(

0 0
0 t−1

))
x(t) = 0 or x′1 + x2 = 0, x′2 + (1 + t−2)x2 = 0.

(222)
For t ≥ t0 ≥ 1 we obtain the special solutions with x1(t0) := 0, x2(t0) := 1:

x2(t) = exp
(
−(t− t−1) + (t0 − t−1

0 )
)
,

=⇒ x1(t) = −
∫ t

t0

x2(s)ds = −
∫ t

t0

exp
(
−(s− s−1) + (t0 − t−1

0 )
)
ds

=⇒ |x1(t)| =
∫ t

t0

exp
(
−s+

(
s−1 + t0 − t−1

0

))
ds ≥

∫ t

t0

e−sds = e−t0 − e−t.

(223)
Since limt→∞ |x1(t)| ≥ e−t0 > 0 the trajectory x(t) with x(t0) = ( 0

1 ) is not expo-
nentially stable and hence the corresponding behavior B(U) is not w.e.s..
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