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Abstract

In analogy to the K@iera-Youla parametrization we construct and parametrize
all stabilizing controllers of a stabilizable linear periodic discrete-time inputldutp
system, the plant. We establish a necessary and sufficient algebrdidaoifor
the existence of controllers among these for which the output of the pankista
given reference signal in spite of disturbance signals on the input araltput of
the plant. With a minor additional assumption the tracking stabilizing controllers
are robust. As in the linear time-invariant (LTI) case the referencal@tdrbance
signals are assumed to be generated by an autonomous system.uQgmaresthe
analogues for periodic behaviors of the corresponding LTI resultédyfasagar.

A completely different approach to stabilization and control of discreteogie

systems was developed by Bittanti and Colaneri. We derive a categdualkity

between periodic behaviors over the time-axis of natural numbersratelyfigen-
erated modules over a suitable noncommutative ring of differencempsrand
use this for the proof of the main stabilization and control results. Morita'srth
of equivalences between module categories is employed as an esalgsimbic
tool. All results of the paper are constructive.

AMS-classification 93D15, 93D09, 93C55, 93C35, 93B25
Key-words: periodic behavior, stabilizing controller, trackingstlirbance rejection,
robustness, Morita equivalence

1 Introduction

In analogy to the K@iera-Youla parametrization we construct and parametHtiztadi-
lizing controllers of a stabilizable line&¥-periodic(N > 0) discrete-time input/output
(I0) system, the plant (Thm. 5.3). We establish a necessatsafficient algebraic
condition for the existence of controllers among thesewuich the output of the plant
tracks a given reference signal in spite of disturbanceadégon the input and the out-
put of the plant (Thms. 6.1, 6.2). With a minor additionaluasption the tracking
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1 INTRODUCTION 2

stabilizing controllers areobust(Thm. 6.4). As in the linear time-invariant (LTI) case
the reference and disturbance signals are assumed to betgehby an autonomous
system. Our results are the analogues for periodic betsagfdhe corresponding LTI
results of Vidyasagar [16, 885.1, 5.2, 5.7, 7.5]. They sapen problems that were
raised in [1, §7].

In contrast to [11], [1] and [5] and in accordance with [9]] Ehd [16] (in the LTI
case) we consideV-periodic systems on the time-axis> ¢ of natural numbers and
not onZ. A periodic system is a linear time-varying (LTV) system whcaoefficient
functionsa are N-periodic, i.e., satisfyi(t + N) = a(¢t) for ¢t € N. If F denotes any
field or, in Sections 5 and 6, the figRlor C of real or complex numbers, the coefficient
functions form the commutative algedf&/“" of functions fromZ/ZN to F where
we poseu(t) := a(t + ZN) for t € N. The monoidN acts ona € FZ/%N via algebra
isomorphisms by(j o a)(t + ZN) := a(j + t + ZN). This action gives rise to the
noncommutative skew-polynomial algelofadifference operators, cf. [5, (25)],

A :=TF%%N[g 0] = @;?QZOFZ/Zqu with ¢/a = (joa)¢’, j €N, a e FZ/ZN . (1)

The most general and standard signal space for one-dinmasiiscrete systems the-
ory is the space

W =T = {w = (w(t))ien : N = F, t > w(t)} )

of sequences or functions fraMto IF. The components of the error signals in the stabi-
lization theory F = R, C) are, however, much more special and indeed exponentially
stable and, in particular, belong to the Banach spaces

> = {w € FY; sup |w(t)| < oo} and/? .= {w c Y, Z lw(t)]P < oo} (3)
teN

teN

forp € N, p > 0. The proper and stable transfer matrix of the constructesbeddoop
behavior acts via convolution on vectors with entriesfih This transfer operator
is (¢P, ¢P)-stable forp = 0,1, - , 00, i.e., maps vectors with componentséhonto
vectors with the same properties. This is well known fromlihiecase.

The standard action

o: Ax W — Wwith (gow)(t) :=w(t+ 1), (aow)(t) :=a(t)w(t), (4)

fora € FZ/ZN_ w € W, t € N makesW an injective A-left module, butnot a
cogeneratoycf. Thm. 3.4 and Remark 3.5. As usual this action is externdexshe of
a matrix

d . rXk
R=Y R cA™* R, (FZ/ZN> onw = (wr,--- ,wy,) | € Wk = Wwhx1.
j=0
d
(Row)(t) =Y Rj(t)w(t+j), B:={we W" Row=0}.
§=0
®)
The equationk o w = 0 is alinear system of difference equations withperiodic
coefficients Its solution spacés is the associatederiodic or o FN-behaviorand the
principal object of study in this paper.
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The center ofA is the commutative polynomial algebZa:= F[A], A := ¢V, that
acts on the signal spa¢€ := F''V via left shift, i.e.,

(Ao@)(r):=w(r+N), we W=F", 7eNN={0,N,2N,---}, (6)

and makes it an injective cogenerator with its ensuing cateal duality between LTI

Z/I/I7—behaviors and finitely generated (f.&)modules, cf. [5, (20)-(22)]. By means of
the isomorphism

W=F" = WY = (F)" s @ = (wp, -~ wy_1) " with @
w(j+7):=wi(r), 0<j<N-1, 7€ NN,
we derive a categorical equivalence between periodic hefsav.e., o W-behaviors,
and W -behaviors (Thm. 3.4) that is our formulation of the corsgence of pe-
riodic behaviors and their lifted LTI form, cf. [5, Thm. 4.6]t enables the transfer
of Vidyasagar’s LTI stabilization and control theory [16]periodic behaviors and the
application of [3]. The algebra is canonically a subalgebra of the matrix algebra
B := ZV*N, Sincea W is not a cogenerator, periodic behaviors are not dual to f.g.
A-left modules, but to f.gB-left modules (Thm. 3.14). This is shown by means of
the isomorphism (7) and by Morita’s theory of equivalent mledcategories that also
implies the precise structure of these modules. Agmodules have a more compli-
cated structure and were studied in [9], but are not empléyethe study of periodic
behaviors in the present paper.
The main results of this paper described above are contairfgelctions 5 and 6. Sec-
tion 3 describes the module-behavior duality for perioditdviors on the time-axis
N. For the time-axi&Z the theory is simpler and was treated with similar methods in
[5] where we also explained the relation with previous wdrk][ [1], [2]. In Section
4 we apply Morita theory to derive essential notions for armpprties of periodic be-
haviors and their dual f.gB-left modules, for instance autonomy, controllabilityeth
existence and characterization of input/output (10) $tmes and left and right coprime
factorizations. We show that in the Morita framework a péigdoehavior and its lifted
LTI behavior coincide via the isomorphism (7). This simgiffithe considerations of
Sections 5 and 6 considerably. In Section 5 we also discesshéaracteristic variety
or set of poles of an autonomous behavior and define and ¢beracthe stability of
autonomous and of input/output systems.
By means of the algorithms from [3] all results of this paper eonstructive, but have
not yet been implemented in the periodic case.
History: A completely different approach to stabilization and cohof discrete peri-
odic systems given by state space equations is exposedtaptBand Colaneri [2, pp.
353-404], see also [8] and [17] (continuous time). Comningadnd noncommutative
rings of (partial) differential operators and their modulave been an important tool
in Algebraic Analysisince the seminal work of Ehrenpreis, Malgrange and Palamnod
for constant coefficients in the 1960s and later, for vargagfficients, in the work of
Kashiwara and many other researchers. In systems theegdgliKalman employed
polynomial modules, but from a different point of view, antinén [18] already used
skew-polynomial rings of differential operators. In contien with Rosenbrock’s poly-
nomial and Willems’ behavioral approach modules were thiced by Fliess and the
second author in 1990, also for multidimensional behayams were also used in [9].
Themodule theoretic reformulation of the fractional repretgion approach(cf. the
bibliographies of [16] and [14] for important contributaie the latter field) and its
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application to stabilization problems is due to Quadrat[t4], and was also applied
in [3]. In this approach @ommutative domaif of stable operators, often a Banach
algebra, with its quotient fiel& is given. A system is described by a transfer matrix
H ¢ K"** hence hidden modes are removed and autonomous systenBexsion 6
cannot be used. A similar framework is used in [6]. Our A@f difference operators
is neither commutative nor a domain, but the Morita theorgtdes the reduction of
the problems to the commutative operator domé&ijz$andsS, as used in [16] and [3].

2 Terminology and notations

We have to use various notions from algebra. We refer to tlek$@l5], [13] and
[12] for the basic algebraic language concerning rings, utesland categories. For
the convenience of the reader we give here a list of notatidtisshort explanations,
essentially in the order in which they appear in the paper:

1. Abbreviationsf.d.=finite-dimensional, f.g.=finitely generated, I0O-pun/output,
LTI=linear time-invariant, LTV=linear time-varying, rps=respectively, w.l.o.g.=
without loss of generality, w.r.t.=with respect to

2. X7*k .= the abelian group of x k-matrices with entries in the abelian group
X, Xk .=rows, X* := X¥*1 :=columns

3. F =afield,F = R,C in Sections 5 and 6

4, FZ/ZN( < FY): the commutative coefficient ring of periodic functions
identification

a : N — F of period N with a(¢) := a(t), t :=t+ZN € Z/ZN, t € N

5. ¢ = €, &(j) = 5, i,] € Z/ZN: the standard-basis ofF“/“~ consisting

i oo

of idempotents

6. A := FZ/ZN[q; o]: the noncommutativé&-algebra of skew-polynomials in the
indeterminatey with coefficients infZ/ZN

7. Z := center(A) :={z € A; YVa € A : az = za} = F[A]: the center ofA and
polynomial algebra in the indeterminate:= ¢V with coefficients inF

8. W = FN := the space of signal functions (sequences) N — F and A-left
module with the shift actiofg o w)(¢) := w(t + 1) and(a o w)(¢) := a(t)w(t)
for a € FZ/ZN

9. W := F™V .= the space of signals (sequencés) NN — F andZ-module
with the action(A o @)(jN) = @w(jN + N) = w((j + 1)N), W = WV

10. oMod := the class or category -left modules

11. Homa (M, N): theZ-module ofA-linear maps betweeA-left modulesM, N
12. Z :p Mod —z Mod, M — ezM: the exact left adjoint tod

13. A:z Mod —a Mod, P — P¥: the exact right adjoint t&

14. B = ZVXN O  A:Z-algebra ofN x N-matrices

identification

15. Sz := Z \ {0}: multiplicative monoid of nonzero polynomials # = F[A]
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16. K := Zs, = F(A): quotient ring ofZ w.r.t. Sz, quotient field ofZ

17. Q := Bs, = K¥*¥: quotient ring ofB with denominators irz and matrix
ring over the fieldK

18. F(A)pr C F(A): ring of proper rational functions itk

19. Inthe following:F = R, C

20. D C {X € C; |A| < 1}: nonempty (open) subset of the open unit disc
21. Sp C Sz: saturated monoid oflY)-stable polynomials, i.e., with roots I

22. Zp := Zg,: quotient ring of D)-stable rational functions with denominators in
Sp

23. By := Bg,, Mp := Ms,: quotient ring and module

24, Wp, resp.ﬁ/\D: injective cogenerator quotient signal modules dsegr, resp.Zp
25. S :=Zp NF(A),,: ring of proper andD)-stable rational functions

26. C := SN¥*N: matrix ring overS

27. B € WP*t™: input/outputg W-behavior 5°: its autonomous parfip C WE’;J””:
its quotient

-~

28. B - we: autonomou%W—behaviorphar( ): its characteristic variety or set of
characteristic values or poles

3 Module-behavior duality for periodic behaviors onN

We treat discrete periodic behaviors on the time-aXis analogy to the case of the
lattice Z" [5, 84]. The main goal is the proof of Thm. 3.14 that descrittesequiva-
lence between periodic behaviors and their lifted LTI foand the duality of these to
their associated modules constructively. Morita equinateplays a decisive part.

Consider the cyclic grou/ZN, N > 0, with the elements := i + ZN, i € Z,
afieldF, the time axisN and the signal spadé” := F". The algebr&%/%N with the
componentwise multiplication is identified with the sulediga of V-periodic functions
onN,i.e.,

FZ/2N — {0 e FY; vt € N: a(t) = a(t+ N)}, a(f) = a(t). ®)

It has theF-basise;, i € Z/ZN, of complete orthogonal idempotents defined by
&(t) = 0; 7. As in [5] the monoidN acts onZ/ZN, resp. onf“/“N by io j =i+ j,

resp. by(i o a)(¥) = a(i + t) and then

FHEN — Bicz/anFe = 10 Feg, joeg =3 9)

9 i—j
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As in [5, (23)-(25), (69)-(74)] we get the (hnoncommutatig&ew-polynomial algebra
(cf. (1))
A =FY2N g 0] = Brg oy jernFed’ s O = 6 507
Z := center(A) = F[A], A := v,
A=) 0Zad GA =0\ Zad’, A = 075 Ze; ¢, (10)
GGA = @;—V:BIZEU(]J, EUAGG = Zéa
V= ( 7(}';3_1) € (65A)N7 A = ZIXNy

€0
The algebraA acts on the signal spad® = FY by means of (4) and makes it
an A-left module. A matrixR € A™F gives rise to theequation moduld/ :=

AR C AYF thesystem factor modulg/ := A'** /U and the behavioB :=
{w eWF, Row= 0}. The following simple, but importari-linear isomorphism

Homa (M, W) = B, &—w=(wy, - ,wg)',
Malgrange 1962

b (11)
W=F" $E+U)=Ew=> &ow,, &= (&, ,&) € A,
j=1
holds and shows that the ubiquitodsm-spaces (see Thm. 3.4 below)
Homa (M, W) = Homg(egM, W), W = F'V, (12)

and the results about them have a direct systems theoretifisance. For f.g.A-
left modulesM with a given representation = A'**/U as in (11) the Malgrange
isomorphism is canonical (functorial) and hence we idgrifit= Homa (M, W).
Sincee; is idempotentAe; is a projective direct summand &, but, in contrast to
the case of the time-axi& [5], the Ae; are not isomorphic tiAe; and the latter is
not a progenerator, i.e., a f.g. projective generaton®fod. The modulecsA is
a (Z,A)- bimodule and free of dimensioN asZ-module with theZ-basisv. We
identify Z >N = egA by z = (20, , 2n-1) = AV If P is anyZ-module then

Homg (egA, P) is a left A-module with the action
(ap)(egb) = ¢(egba), a,b € A, ¢ € Homg (A, P). (13)
The map

Homg (A, P) = PV := PNV*!, o s o(v) =1y = (Yo, ,un—1) T, v = pleod),
(14)
is a Z-isomorphism. We identifffomyz (egA, P) = PN, » = ¢(v). We turnPY
into an A-left module by transport of structure along the isomorphid (14), hence
ay = ap(v) = p(va)
ej‘y:(oa"'ao7yjj>07"'7O>T7j:05"'aN_1 (15)
qy =y, yn—1, Aoyo) ', A=¢" € Z.
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Corollary 3.1. Consider the signal modulegF™ andzFNY. There is thé&-isomorphism

wy

FN o Homz(eaA,FNN) = (]FNN)N, W W= (wN(i1> , With

(16)
wi(t) :==w(i+7), 0<i<N-—1, 7€ NN.

This isomorphism is eveA-linear Where(FNN)N =~ Homgz(egA, FNV) has theA-
structure from(15).
We define the two functors
Z : AMod — zMod, M — Z(M) := ez M, and

17
A:zMod — aMod, P+ A(P) := Homgz(egA, P) = PV, an
The functors arexactsinceAcg, resp.e;A are A-projective, respZ-free.

Corollary 3.2. ([9, Thm. 5]) The module\¢; is f.g., projective as direct summand of
A, but not free.

Proof. Assume

A66 % A1><m — Zéa = 66A€6 % (€6A)1X7n — 1= dlmz ((eﬁA)lxm> =mN.

(18)
This is a contradiction. O

Lemma 3.3. For M € oAMod and P € zMod there is the functorial isomorphism
Homg (e5M, P) = Homa (M, PY), ¢ +— &, where
_ T
B(x) = (plegr), - plege™ '2)) , plegz) = B(@)o.

The isomorphism means th&t(.A) is left (right) adjoint to.A (2) [15, 8IV.9]

(19)

Proof. The isomorphism follows fronp(egq’x) = #(¢/x)o = (¢/P(x)), = (z);.

We recall that amA-module WV is calledinjectiveif the contravariant functor
Homa (—, W) : aMod — zMod, M +— Homa (M, W), (20)

preserves the exactness of sequences or, equivalentlg,mm@apmorphisms to epimor-
phisms. If AW is injective it is also a&ogeneratoiif and only if Homa (M, W) = 0
implies M = 0.

Theorem 3.4. The isomorphismglL6) and (19) imply the functorial isomorphism

B := Homg (egM,F"V) = B := Homa (M, FY), ¢ ¢+ &, where

. 1)
¢(I)(]+T) :@(66(]]117)(7'), T e Mv ]:Oa aN717 7 € NN.

SinceZ : M ~ ;M is exact and sincg F™'V is the standard LTI injective cogenera-
tor, the signal modulg FY is injective too and
egM =0 <= Homp (M,FY) = 0. (22)

Hence any (periodic) FN-behavior3 is canonically an LTEFYN -pehaviorB.
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SinceM +— egM andM — Homa (M, FY) are exact the full subcategory
¢ :={C € aAMod; C = 0or Homu (C,F") = 0} (23)

is aSerre subcategory.e., closed under isomorphisms, submodules, factor tesdu
extensions and direct sums.

Remark 3.5. The category contains nonzero modules, and hendé' is not a co-
generator.

The largest submodule @f/ in € is called its ¢)-radical and denoted by
Ra(M) = {z € M; egAz =0}. (24)
The representatiogyA = eej.\’:‘(fZegqj and a simple computation imply

Ra(A) ={a € A; egAa =0}

‘ ; (25)
:{aeA; Vj=0,---,N—1: 65(]](1:0}:0.
As usual the adjointness implies the functorial morphisbis Prop. 9.3]
C  ZA — idZMod; n: idAMod — AZ
(piegPY = P, e5(yo, + ,yn-1)" = (¥0,0,--,0) " = yo (26)

s M — egMY |z (e5q°z, - e5q™ ) T
The morphism is obviously an isomorphism. Like all adjointness morphssimese
satisfy the relations
A AZA 2 A, A(Cp)nacpy = idacp) 27
224 ZAZ 55 2, CzonZ(nm) = idz ) -
Corollary 3.6. For everyP the mapy 4(p) : A(P) — AZA(P) is an isomorphism.
Proof. This follows from.A(Cp)n.4(py = id 4(py and the isomorphy ofp. O

An A-module) is calledclosedif 7, is anisomorphism. Leta »HMod denote
the full subcategory of Mod of all closedA-modules. The adjomtness of (19) and
Cor. 3.6 imply

Corollary 3.7. (cf. [15, Prop. X1.8.7]) The adjoint functor& and.A imply the inverse
categorical equivalences

Z: (a)Mod = zMod, M — ZM = ezM,

o~ (28)
A:zMod —+ (o yMod, P+ AP =PV,

SinceZ and A : zMod — aAMod are exact the subcategom756)Mod of closed

modules is closed under isomorphisms, kernels, cokernelegtensions and, in par-

ticular, abelian.

In slightly superficial terms aategorical equivalencbetween categories isome-
one correspondendeetween the classes of objects with natural (functoriadpprties.
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Corollary 3.8. Forall M € AMod andC € (4 )Mod the isomorphism
Homa (AZM,C) = Homa (M, C), & — P, (29)

holds. This means that the exact funcidr— AZM = egM™ is left adjoint to the
inclusion(A,Eﬁ)Mod C aMod.

Proof. This follows from the commutative diagram

M BN AZM =MV
b L AZp — o= (" AZ0) nu. (30)

o~

c = AZC
O

Theorem 3.9. According to Cor. 3.1y is an isomorphism. HencgF" is closed and
indeed an injective cogenerator in the categgky.,) Mod of closedA-modules. For
all M € AMod the map

Homa (AZM,FY) = Homa (M, FY), & s &y, (31)

is an isomorphism according t®29). Thus every, FN-behavior is described by a
unique closed module. The functor

(A,e)Mod™® — { sF"-behaviorg , M — Homa (M,F"), (32)

thus establishes a categorical duality between the categbf.g. closedA -left mod-
ules and that of (periodic) FN-behaviors.

Lemma 3.10. For all M the kernel and cokernel agfy; belong to€, more precisely
ker(nar) = Ra(M), egker(na) = 0 andegcok(nar) = 0. (33)

Proof. (i) We apply the exact functof : M — ez M to the exact sequence

0 — ker(nar) -5 M % AZM < cok(nay) — 0,

hence the sequence (34)

0 — Zker(ny) =3 ZM 22 ZAZM 2 Z cok(Znar) — 0
is also exact. Bu{z(y)Z(na) = idzan by (27) and¢ is an isomorphism, hence
alsoZny = Cg(lM) is an isomorphism. This implie8 ker(nas) = egker(nas) = 0
and likewiseZ cok(nar) = e cok(nar) = 0.
(ii) The equationeg ker(nar) = 0impliesker(nar) C Ra(M). Converselyeg Ra(M) =
0 implies the commutative exact diagram

0— Ra(M)) 2 M con, M/Ra(M) =0
4 MRa(a) Y 4 NaryRa(ar)
AZ inj AZ can (35)
0= 0 2 azm) AZSM AZ(M/Ra(M)) -0

= ny(Ra(M)) = 0 = Ra(M) C ker(nu).
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The closed modules can also be described/oyita equivalencecf. [15, 8IV.10,
§XI1.8]. The (Z,A)-bimoduleczA has theZ-basisv := (g, - ,eggV 1) 7. If R
is any ring R°P? denotes the opposite ring &, i.e., R = R°P as abelian group and
T1 op T2 = T2771. Then

Homz(egA, egA)°P = B := ZVN s b, av) = by, (36)
is an algebra isomorphism and induces the category equoale
Moduomy (e;A,c5a) = BMod, M — M, bx =z, a(v) =bv, z € M, (37)

betweerHomz (A, egA)-right andB-left modules. SincejA is a free generator of
zMod the Morita theorem [12, §18] yields the category equivadenc

A
Mod = Mod _Aes = Mod
z V10 OdHomz (egA,egA) @7) Bivlod, (38)

r — Homz(egA, P) (»H) PN = pNxL,
The structure oY asB-left module is given by the matrix multiplication
(b,y) = by, be B=Z""N y=(yo,--- ,yn—1)" € P". (39)

The structure o5 A asA-right module induces the algebra homomorphisms

A — Homgz(egA,egA)? = ZNXN where
a —  (gb—eba)  —  pla)
| 0 1.0 .--0 (40)
- i 0010
va = p(a)V, p(Glf) = dlag(O,"' 70;1707"' 70)7 p(q) = (O 0 0 1) ’
N 000

Corollary 3.11. ([9, Prop. 1])

1 ifi=k j=k+Lk+I<N-1
plezd)ij = ¢ ifi=k j=k+l-n, k+I>N (41)
0 otherwise

With the standard basi&) ;, 0 < k,I < N — 1, of ZV*¥ this signifies

l k,k+1
PELH = . 42
(Ekq ) {qNEhk_i_l_N if k I>N ( )

Example 3.12.Let N = 2. Then

p(e0:0°) = Eoo = (4 93), pleod) = Eoqp = (33), (43)
p(erd®) = Ero = (99), plerd") = ¢ Eoo = * (§9)
Corollary 3.13. Consider the maps
A AZA = (AN ~ B =7zNxN
ea'z?f)a (44)

« oom@=( ) mva=pay o o

€59
Sinceker(na) = Ra(A) = 0 the maps)a and thus als are injective, and hence
A is a subalgebra oB via the explicitly giverp from Cor. 3.11. This corollary also
implies thatyo andp are not surjective and that heneis not a closedA -left module.
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Via p every B-module is also amA-left module. If P is anyZ-module then the
A-structure ofP" induced fromp is that of (15). Sinced : P — PV is a category
equivalence frony Mod both ontoa ;) Mod and ontog Mod we conclude

Theorem 3.14. (i) The exact functor€ and.A induce the category equivalence
Z: (A,e)Mod = gMod = zMod : A, M + M, PN« P. (45)

In particular, every closedA-module M is a B-module where theA- and theB-
structures ofM are related byp.

(ii)
(BModfg)Op (ZModfg>0p =~ {aFV-behaviorg = {zF"N-pehaviorg
M — P > B > B
P=eM, M =PV,
B = Homa (M, F") = Homp (M, F") = B = Homg (P, F'N).

1

(46)
So the algebraic counter-part of the category of perioditidgors, i.e., ofsF™-
behaviors, is the category of f.g. I@tmodules and not that of f.gA-modules.

According to Thm. 3.14 the study gfFN-behaviors requires that of f.gB-
modules whereas f.gA-modules are not needed. Properties of the latter are more
complicated and were discussed in [9].

4 System theory via Morita equivalence

In this section we apply Thm. 3.14 and indeed discuss a §ligidre general situation.
Let Z be a commutative principal ideal domain aBd* " its standard progenerator

with the standard basis € (ZlXN)N. We use the antiisomorphism (36)
B := ZV*N =~ Homg (Z*N, ZVN)P b a, a(v) = bv (47)
and theMorita equivalence
A:zMod = gMod : Z, P — PV, egM + M, €5 := diag(1,0,---,0). (48)

In particular, aB-left module isB-f.g. if and only if it is Z-f.g..
We also assume an injective cogenerator signal mogidfeandg W := W that by
equivalence is an injective cogenerator signalRftnodule.

Remark 4.1. The main, but not the only (see below) example for the prexedata is
that from Thm. 3.14, i.eZ = F[A] andB = ZV >V, We identify

ZVN = egA = EB;-V:BlZeaqj, v = (egq0,~-~ ,eﬁqN_l)T,
coTarsP @A) C B, a=p(a), )
, 010 0
. i 0 0 1.0
¢¥ 0 0 -0
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In this case the basis vectors and the rows and columns ofcemtn ZV >V are
numbered from) to N — 1 and we keep this numbering also in the more general
situation of this section. The signal modules are

W =F"W andw =FY = (F")" 5w,
ident. (50)
w = (wo, - ,wn_1) ", wi+7) =wir), i=0,--- ,N -1, 7 € NN.

The Morita functorA : P — PN maps

Z1><N to (Z1><N>N = ZNXN — B, (51)
ident.
where the lefB-structure of the left side is that from (39) andBfthe canonical one.
The Morita equivalencel preserves projectivity. In particular, for a f.g-module P
andM = P" one gets the equivalences

P is Z-torsionfree, i.eZ-free < M is Z-free <= M is B-projective. (52)

If (52) is satisfied the corresponding behavidomg (M, W) = Homgz(P, W) is
called controllable Further the modul&” = AZ is the unique indecomposable
projective leftB-module, but not free. Every f.g. submoduleZf<V¥ is free of di-
mension< Nk and therefore every submodule Bft ** is projective and the direct
sum of at mostVk summand&®, but not free in general.

Lemma 4.2. (i) A f.g. projectiveB-module M is free if and only if N2 divides
(i) If B** = U; @ U, thenU, is free if and only ifU, is free and therk =
dimB(Ul) + dlmB(Ug)

Proof. SinceegB = Z*Y anddimz(Z'*") = N af.g. projectiveB-moduleM is
free if and only if N dividesdimz (e5M ) or N2 dividesdimz (M) = N dimgz(egM).
(ii) Due todimz(B) = N2 (ii) follows directly from (i). O

The functor.4A maps a free&Z-module of dimension divisible byv onto a freeB-
module, especially

A ZPNE = (2PN = g (20N T < (28T (69)

Notice that the identificatio@!*V* = (Z!*N)1x* requires to divide the numbers
1,---, Nk into k blocks of lengthNV. Such a division is either adapted to the context
or chosen arbitrarily. For two such modules there is the mpmsm

HOHIZ ((ZIXN)IXT’ (leN)IXk}) ~ BT><k:7 0= oR & R, S0(,’7) _ nR = fa

whereR = (R(i,j))i; € B"™**, R(i,j) € B,

n= (77(1)5 e an(r))v T](’L) € ZlXNz é-: (f(l), e 7§(k))7 5(]) € ZlXN (54)

€=p(n) =nR, £(j) = Zn(i)R(z‘,j).
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This isomorphism preserves products, i.e., transformprbeuct of composable maps
into the matrix product. The isomorphism

Homg(B™", B**) =~ B™* & =oR < R, &(Y)=YR =: X,

Y = (Y(l)v ,Y(?”)), X = (X(l)’ 7X(k))7 X =YR, X(]) = ZY(Z)R(’L,]),

(55)
is the natural one. The equivalence funcbmaps theZ-linear mapoR onto the
B-linear mapo R, more precisely

.A(OR . (ZIXN)IXT N (leN)lxk) _ (OR . (leN)lxr N (Zl><N)1><k)
=oR:B"™" — B~
In the sequel we therefore identify
Br><k' — HOIHB(BlXT,B1Xk) — HOIHZ ((leN)lxr, (leN)lxk)
in particularB*** = ZN¥*Nk 5 Gl (B) = Glyk(Z)
= {R e Z""™NF; det(R) € U(Z)} (57)

A(ZYNTR) = (ZVNTR)N = B*"R ¢ B*F
dimz(B*"R) = N dimz(Z'*""R) = Nrankz(R).

HereU(Z) is the group of units or invertible elements2f

N
(56)

)

Remark 4.3. The preceding identification (57) implies in particular tthiae Smith
form of matrices iNZN"*N* can be applied td? € B"** and thatR is equivalent to
a block matrix( 5 ) whereD is a diagonal matrix oZ-rank! = rankz(R). If | =
mN+n, m,n € N, n < N, one can assume moreover that= diag(dy, - ,dpm, dm+1)
where thed,, are diagonal iB = Z¥*¥ and of full Z-rank N or regular (nonzero-
divisors) inB for ;. < m. The row moduleB'*"R c B'** is always projective,
but B-free only if theZ-rankl = mN + n is divisible by N or n = 0 and hence
dm+1 = 0. ThenR is row-equivalent to a matrik’ € B™** whose rows are a
B-basis of the row-modulB'*"R = B *™ R/,

Forb € B = ZV*N andw = (wp, -+ ,wny_1)" € W = W the action ofh on
w from (39) is defined by

N-1
bow = (Z buuowy> . (58)
0<p<N—1

v=0
More generally we get
Wk — (WY — TNk 5 0 = (w o wg)
W) (wr ANk) (59)
wj; = (U}j’o,"' ,U}j,Nfl) eWwW=w=".
The matrixR € B"** from (54) induces th&-linear system map

k

oR: WF=WNt 5 W =WN" wis Row, (Row)i:ZR(i,j)owj,
j=1

k N—

(Row);, = Z Z R(,7) v © wj .

j=1 v=0

—

(60)
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The associated behavior is

BZ{MEWk:WNk;RowZO} =
Malgrange

R (61)
Homg (B*/B"R,W) = Homg (2"*/2N"R,W).

Morita

The behavio3 is thus agWW- and az/W—behavior. Interpreted as the latter it is an
LTI behavior and the standard LTI systems theory for thecitije cogenerator signal
modulez W, for instance forF[A]]FNN, can be applied to it. The system factor modules
of the behavio3 appear in the exact sequences

oR

B> == BWk = M =0
(ZlXN)lXT i (leN)lxk can, M 0 (62)

where) i= BUE/BUR = (M), qM = 2N /2R

and wherecan denotes the canonical map onto the factor module.

It is obvious that the preceding considerations can be egpdi all matrices? ¢ B"**
and therefore to algW-behaviors and especially to all periodi@"-behaviors, but
not to all ZW—behaviors because the number of rows and column® a$ a matrix
with entries inZ were assumed to be multiples &f.

The quotient field

K:=Zs, ={s'a;s€Sz,a€Z},Sz:=2Z\{0} CZ (63)

plays an important part in the LTI theory and thus here too.Ze- F[A] it is the field
F(A) of rational functions. It gives rise to the quotient ring

Q:: BSZ :K@ZB:{Silb; SESZ7 bEB}:KNXN (64)

that is asimple artinianK-algebra By the standard LTI theory tth—behavior
B from (61) isautonomousf and only if e5M is atorsion moduleor, equivalently,
egMs, = 0. ThegW-behaviorB is called autonomous if and only it is such as LTI
behavior, cf. [5, §4.3]. According to (62) this means théatis a Z-torsion module or
Ms, = 0. ForZ = F[A] autonomy is also equivalent to tfiefinite dimensionality
of M andezM. For the signal modulgFY it also means that the trajectoriesrare
determined by initial conditionim the following sense: There is a numbkge N such
that theinitial projection

B — (FY)%* w s (w(0),--- ,w(d—1))7, (65)

is injective
Input/output (10) structuresf theg 1 -behavior3 are defined in the following fashion:
Letd;, j=1,---,k, be the standard basis B <% and

w:= (0, +B™R,--. 6, +B>"'R)T ¢ M* (66)

the canonical set dB-generators ofi/. An |O-structure ofM is given by a subfamily
u= (uy, --,u,) € M™ of wsuch that they; are B-linearly independent and
M/B'*™u is aZ-torsion module. After the usual permutation of the we assume
that

w= (%) eM™ y=(yi, -+ ,yp), p+m=k (67)
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Correspondingly the matrik and3 are decomposed as
R=(D;,—N;) € B*@WF™ andB = {(¥) € WP™™; Djoy = Nyou}. (68)
The 10-property of ¥, ) can be alternatively characterized as follows:

Lemma 4.4. For () € MPT™ as above and/" := B'*?/B!*" D, the following
properties are equivalent:

(i) The decompositiow = () is an |O-decomposition.

(ii) The sequence

o (idp
° aidWL i i
0 — B1><m (o(0 Dind M ( ( 0 >)1ud Mo =0
n = nu, (§,1) (%) = £+ BD,
(69)

is exact and\/? is a Z-torsion module.

(iii) The projectionB — W™, w = (¥) — u, is surjective and thesW-behavior
B° := {y € WP; D, oy =0} is autonomous.

(iv) The induced ma@*™ = Blsim — Ms,, 6; — 4+, is aQ-isomorphism.

(v) The submodulB*"(D;, —N,) is free of dimensiop and D; has a left inverse in
Qp)(’l”.

(vi) rankz(D;) = rankz(R) = pN, i.e., (D;, —N;) € Brxwtm) — ZNrxN(pt+m)
defines an 10-decomposition of th&l -behavior.

SinceB'*"R = B*"(D;, — ;) is free of dimensiop we may always assume= p
w.l.o.g.. Inthis cas®); € G1,(Q) = Gln,(K) and the matrix

G = Dl—lNl c prm _ KprNm (70)

is thetransfer matrixof the |0-behavioi5. Itis characterized by the equati®'*"R =
lep(idpv 7G)

Proof. (i) <= (ii): The exactness of (69) without tifleon the left is standard and
the remaining properties in (ii) are precisely the condsiof (i).
(i1) <= (i4i): by duality sinceg W is an injective cogenerator.
(iii) <= (iv): This follows from the exactness aff — Ms, and the fact thaf/®
is Z-torsion if and only ifMg = 0.
(iv) = (v): (a) The isomorphism from (iv) implies
Qle ~ MSZ ~ Q ®B M = Qle/QlXTR
— dimz(B'*"R) = dimk (Q""R) = dimk (Q"**) — dimg (Q"*™)
= (k—m)N? = pN? = B"*"Rfree, dimg(B'*"R) = p.
(b) The torsion property af/° implies
0= MSOZ ~ Q QB MO ~ lep/lerDL
This is equivalent to the existence of a left inversdipfin QP*".
(v) = (iv): Asin (iv) = (v) we conclude thad/? is Z-torsion. This implies that
lem N MSZ ~ lek/lerR (71)
is surjective. Dimension count furnishes
dlmK (Qle/QlXTR) — dlmK (lek) o dlmK (QlXTR)
= N?k — N?p = N’m = dimk (Q"*™).
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The dimension equality over the fieldl implies that the surjection (71) is bijective.
(iv) < (vi): By standard LTI theory the 10-property of thgl -behavior5 is
equivalent to the isomorphy

(O(OVide))ind . K1><Nm ~ leNk/leNr(Dl’ _Nl)'

By Morita equivalence this isomorphism is equivalent to ig@morphism from (iv).
O

Corollary and Definition 4.5. Assume w.l.o.g. that = p in Lemma 4.4. Then the
standard sequence

O(Dl,fNL)
R

0— B Blx(+m) an e g (72)

is exact and the following properties are equivalent:
(i) (D;,—N,;) has aright inverse.
(i) M is Z-free and then indeeB-free of dimensiomn.

The representatioty = Dlel is then called deft coprime factorizatiorf G.

Proof. By Morita equivalencé&-freeness antB-projectivity of M coincide. Equation
(72) implies that (i) is equivalent to the existence of acliciecompositioB ! * (»+m) =~
B'*P x M or the projectivity of M. Lemma 4.2 implies thaf/ is B-free with
dimp (M) = m. O

Recall that the behavid® =~ Homz (ezM, I//V\) =~ Homg (M, W) is controllableas
LTI, resp. as periodic behavior if and onlyif is Z-free, respB-projective.

Remark 4. 6 Lemma 4.4 shows that an |O-decomposition of & -behavior is also
one of theZW behavior3, but there are many more 10- decomposmodﬂoaszw-
behavior than agWW-behavior. Whereas an arbitrary LTI behavior admits at least
one 10-decomposition this is not true for periodic behavisince already the neces-
sary condition that the projective moduR' %" R be free need not be satisfied. But
even if B1*"R is free of dimensiorp andr = p w.l.o.g. there need not be a de-
compositionR = (D;, —N;) € BP*(®+™) (after a suitable column permutation) with
D, € G1,(Q), for instance in

N =2andR = ((33)(09)) = (4399) € BI® =24

So the 10-decomposition of a periodic behavior is an esakesudiditional structure.
In [1, Def. 53] the authors define an IO-decompositioSafs one of the LTI behavior,
but for the time-axi<Z instead ofN here. For the further considerations in the present
paper this notion is too weak.

Lemma 4.7. Assume thal = (DY, —N?) € BP*®+m) with DY € G1,(Q) and
free M := B*(+m) /B1xp(DY —NP). In other words,R = (DY, —N?) is an 10-
decomposition ands := (D{)~' N} is a left coprime factorization. Then there are
matricesD?, N2, R?, SP, R%, SY € B*** of suitable sizes with the following proper-
ties:
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(i) The following two sequences are exact,

Ny
O—)lel) O(D?’_NIU) le(p+m,) <D9> Bl><’m =0

()
—R?,

o(RY},S7)
0« B1><p B1><(p+m) B1><m 0

(73)

in particular DG = N andGD? = N}.

(i) B>?(DY, —NP) = ker (o (;§ ) : BI*P+m) — Q1xm)  This shows that the
left coprime factorizatiorG = (D?)~'N}? is unique up to row equivalence of
(D, =Np).

(iii) The following matrix equations hold:
S0 . N? .
(DF. =N) (550 ) = iy, (RD.SD) (57) =i, DY € Gl (Q)
DY —N? SO N°\ _ [id, 0 \ _ . DY —NO\TL /50 NO
() (G me) = (%) =idoem (2 78°) = (0 28)

ThenG = N?(D?)~! is called aright coprime factorizatiomf G that is also
0
unique up to column equivalence @gg )

(iv) All other quadrupelss;, R;, R, S, € B*** with the properties from (i) and (iii)
(without the index) are obtained with arbitraryX € B™*? by

(S0 = () = (30) X, (RiSp) = (BY, S7) + X (DY, —NP). (75)

This is a variant of the famousucera-Youla parametrization.

(v) Generically (in the Zariski topology @™*P = ZN™*NP) or for almost all X
the additional inclusions; € G1,,,(Q) and S, € G1,(Q) hold. This means that
(Ry,S;) is also an |0-decomposition.

Proof. SinceM is free of dimensiom: equation (72) and replacementif by B1*™
furnish the first exact sequence in (73). The remaining tdessrare elementary al-
gebra [16, Ch. 4], [3, Lemmas 2.3, 3.10]. The proofiof < Gl,,(Q) follows
fromid,, = R;N? + S;D° = (R,G + S;) D°. The first exact sequence in (73) and
(go) = (&) D imply (ii).

O

Lemma 4.8. An arbitrary matrixG € QP*™ admits a left coprime factorizatiof =
(D?)~! N asin Cor. 4.5 that, in turn, gives rise to all data of Lemma, nparticular
to the right coprime factorizatioty = N?(D2)~1L.

Proof. Item (ii) of Lemma 4.7 suggests to define

U := ker (O (idGm) : BlX(P“’m) - Qle)
= M = B1><(p+m)/U = BIX(Per)( G ) C lem'

ident. i,
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All f.g. B-submodules of thd-spaceQ'*™ are Z-torsionfree andB-projective.
HenceM is B-projective and
MSZ _ le(p-‘rm) (idG ) _ QIXm

= dimz(M) = dimk (Ms,) = dimk (Q"*™) = N?m.

We infer that) is B-free of dimensiomn and induces a direct decompositiBh* (?+m) =~
U x M. This and Lemma 4.2, in turn, imply thatis B-free of dimensiorp and thus
of the form

U =B"?(D}, —N) with dimg(U) = p, D)G = N and(D}, —N}) = D}(id,,, —G)
= Np = rankz (D}, —N_) = rankz(D}).

With Lemma 4.4,(vi), we conclude thaD?, —N}?) is an 10-decomposition and with
Cor. 4.5,(ii), thatG = (D?)~1 N} is the left coprime factorization, unique up to row
equivalence.

O

5 Stabilizing controllers

In this section we construct and parametrize all stabiligbontrollers of an IOF[A]NWIFN-
behavior by reduction to the LTI case.

The assumptions and notations of Section 4 remain in fortie the specialization to
the data from Section 3. In addition we assume the baselfield R, C of real or
complex numbers, the polynomial algetfa= F[A] and the subalgebrB(A),, C

K = F(A) of proper rationalfunctions [16, Ch. 2]. The relevant signal spaces are
o)W = FYN andgW = W = FY, cf. Thm. 3.14, with the actiofA o @) (1) =
w(r+ N)forw e W andr € NN.

For stabilization we choose a nonempty sufisef the open unitdis¢ € C; |A| < 1}
and, forF = R in addition, thafD is stable under conjugation and contains at least one
real number, cf. [3, p. 970, (5)]. The saturated submofgidf all D-stableor just
stable polynomials consists of the polynomial&ir= F[A] whose roots lie i). The
quotient ringsZp := F[Al]s, C F(A), resp.S := Sp := Zp[\F(A),, [16, p. 14]
are the rings oftable, resp. of stable and propeational functions. All these rings
are principal ideal domains. ik — o € Sp thenZy, is the quotient ring oSy with
powers of{ A — a)~! as denominators, i.eZp = S(a—a)-1 [3, (5)]. Algorithms forS

use the fact that this ring is euclidean [16, §2.1] or are ceduo standard polynomial
algorithms oveF[(A — o)1) [3, §7].

A Z-moduleP gives rise to itp-quotient module

Pp:=Ps, := {sflx; re P se S]D)}- (76)

In particular, the modulé/VD is an injective cogenerator ov&m, [3, 82]. This was
an essential tool in [3] for the construction of compensatord will below be used
for periodic systems. All commutative rings above give tisgheir N x N-matrix
extensions

Z=TF[A] C Zp = Zs, c K=F(A)

N
B=2Z"*N C Bp:=Bg =Z)*N c Q=KVV (77)
andF[(A —a)™'] €S =Sp C Zp, C:=SV*N c Bp =2V
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to which the theory of Section 4 is applicable. Notice thdymonstant polynomials
in Z = F[A] are proper and contained 3. By Morita equivalence the signal module
Wp = Ws, = ]Fﬁ is an injective cogenerator ovByp.

We assume an 10-behavior with the following data:

(Dy, —Ni) € BPX W) = ZNexXNwsm) by € GL,(Q) = Glyy(K),
U = BIXP(DZ, _Nl) g BlX(p+m) — Z1><1\/(p—‘,-7n)7 M = BlX(p-‘rm)/U
MO = lep/lele’ G = D;lNl c prm _ KNpXNm’

B = {(g) e Wrtm NG, Doy = N ou} =~ Homg (M, W) 78

BO = {y eWP =WNP, Doy = O} >~ Homg(M°, W)
By := {(ﬂ) e WEH™ =Wyt Dioy = N, OU} = Homg, (Mp, Wp)

BY = {y eWE =W, Djoy= 0} >~ Homp, (M3, Wp)

where by (61)B can be interpreted as a (periodig)y -behavior or as an LTk/W—
behavior. In its latter form it admits the standard LTI skabtion theory [7], [16],[4],
[3]. It turns out that all LTI results fol3 can be translated to results concerning the
periodic behavior. We are going to do this below. By defimitibe 10-behavior i¢D)-
stableif its autonomous pats® := {y € W? = WNP; Doy = 0} has this property.
Stability is characterized in the following lemma and regsithecharacteristic variety

andpolynomial-exponential signathat we recall for the base field and the signal
moduleca) CNV | Its torsion module admits the primary modal decomposition

Clr/NIA/N)reny  iEA#0
NNy NN NN _ €
torcia)(C™) = ®@aecC™V (A), T (N) = {(C(NN) ifA=0
T/N))\(T/N)—k if \ 75 0
(CNN 2\ =X .C , = ( k
() = BpZoCen ks ean(r) {57/]“ if A=0
_ if k>1
Ay _ ) Exk— LI
(A=A oexk {o if k< 1.

(79)
HereC"Y) ¢ CNV consists of the sequenc@s= (w(7))enn With finite support
{r € NN; w(7) # 0}. The quotientsr/N come, of course, from the fact th&tvV
contains multiples ofV only andC[r/N] consists of polynomial functions af/N. If

~

B= {@ e (@M Row = o} , R e C[A]**, rank(R) = ¢,  (80)

is any autonomous behavior itharacteristic varietyor set ofpolesis the finite set

~

char(B) := {)\ € C; rankc(R(\)) < rank(R) = f}
= {nec BNC™W' #£0} = {xeC; B Clero # 0} andthen

B=8,cqad) (gﬂ (CNN()\)Z> (modal decomposition)
(81)
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Hence all trajectories of B are exponentially and asymptotically stable or satisfy
lim,_,o w(7) = 0 if and only if char(B) is contained in the open unit disc. Slightly
different statements hold fdf = R. The preceding considerations are applicable to

B° from (78).

Lemma 5.1. ([3, Thm. 3.2]) For the 10-behavior froni78) the following properties
are equivalent:

(i) Bis (D)-stable, i.e., by definitior3) = 0 or M = 0.
(i) The characteristic variety oB® is contained irD, i.e.,

char(B°) = {\ € C; rankc(D;()\)) < rankz(D;) = Np} C D. (82)

(III) D, e GIP(BD) = GIN;()(ZD)-

(iv) (@) G = D;'N; € BRX™ = z/P*N™,
(b) My is Zp-free.
According to Cor. 4.5 condition (b) implies that, is Bp-free of dimension
m, (Dy, —N,) has a right inverse iB{P ™) P = ZN@Tm*NP ang thatG =
D; ' N; is theleft coprime factorizatiorf G overBy.

SinceD is assumed to be a subset of the open unit disc all trajectafithe P)-stable
behavior3® are asymptotically stable and this is the decisive consecgief stability.

Notice that Lemma 5.1 uses the fact thall is an injective cogenerator.
A ID-stabilizingoutput feedback controllgl of B is a behavior that is interconnected to
B in the usual way such that the interconnected beh&vias aD-stable 10-behavior,
i.e., satisfiesD}) = 0; cf. Algorithm 5.2 for the details. This latter condition-in
volves the localized signal spat¥, only and therefore it suffices to considgfVp-
behaviors only. We do this in the sequel. Conversely, evaech ehavior is the lo-
calization of agW-behavior. Following Vidyasagar [16] we construct ol with
proper transfer matrix and call the controllé¥sproperly D-stabilizing This requires
to use the ring® andC = SV*¥ and their modules instead &f, andBy,.
The LTI behaviorB is D-stabilizable, i.e., admits B-stabilizing compensator, if and
only if it satisfies condition (iv),(b), of Lemma 5.1. This ares thatG = Dl_lNl is the
left coprime factorization oveBy,.

Algorithm 5.2. We assume that the givgsil’-IO-behavior3 is D-stabilizable or, in
other words, thaty = Dlel is the left coprime factorization ovdp. According to
[16, Ch. 5, Thm. 5.2.1], [4], [3, Thm. 3.12] all propetlstabilizing controllerg’ of
Bp and their interconnected behavidps, are obtained with the following steps: We
apply Lemma 4.8 and Lemma 4.7 to the rif§)s- K = quot(S) andC = S¥*V

Q = K> and the transfer matrig' = Dl_lNl and construct the matrices

D), NP, DY, N, S, RS2, R € C**® = gNexNe (83)

such that (i), (ii), (iii) of Lemma 4.7 hold. In particula® = (DY) ' NP = N?(D?)~!
are the left, resp. right coprime factorizations o8eand overC. All other quadrupels
Si, Ry, Sy, R, with the same properties are obtained by the choice of atramnpmatrix
X € CmXP = §NmxNp gnd

(S50 =(55) = () X, (RS = (RO, )+ X(DP, ~ND). (84)
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They satisfy
0 _ A0 0 _ A0 -1 S, NB
(51 -57) € Clyrm(C) = Glygpm(S), (B A7) = (5 ). (@)

For almost allX the matricesS; and.S, satisfydets(S;) # 0 anddetg(S;.) # 0 or,
equivalently,S; € GL,,(Q) = Glyn(K) andS, € G1,(Q) = Gly,(K). The left
coprime factorizatiorG = (D))~ N overS andC is also such oveZp > S and
Bp D C. According to Lemma 4.7 it is unique up to row equivalence tadefore

G=D;'Ny = (D))"'N), By*"(D;,—Ni) = By*?(D}, —N/) =
By ={(#) eWg™; Dioyr = Nyow} = {(#1) e W§™; D oyr = N oun } .

(86)
The controllerCy of By asg, Wp-behavior is given by the equations

Cp={(y2) e WE™; Rious+ S0y =0}. (87)

If S; € GL,,,(Q) the controller is also an |0-behavior with inpuf and outputy,. The
output feedbaclks  Wp-behaviorDy, is defined by (see Figure 1)

)
Dp = {(Ej) c Wﬂgp+m)+(z)+m); (uﬂyz) € By, (wyﬁyl) c C]D)}

= {(¥) e wrtmtem), Dp oy = N o (u1 +ys)
“ v "\ Rio(ug+y1) + S0y =0
={(m) ewFrr™ Doy = Nouf

P -NY Y m m
whereD := (gzl gz ) € Glp4m(C), N := (_(I)%l ]\éz ) e Qlp+m)x(p+m)

(88)

The numbering: = (32) of the components of is chosen such that bothandy
belong tolW2*™. Equation 85 implies tha®y is ag, Wi 10-behavior with input: and

Y2 Y1 + ug Ug

Figure 1: The interconnected behavioy (D).

outputy and isD-stable, cf. Lemmas 4.4 and 5.1. Its transfer matrigif+m)x (p+m)
is

H— (Hnwe Huw ) . p-1py = (5 N? o N°\ _ (—-NJRi S.N}
- H. H L - _ 0 _ —_— _ o _ 0 .
yo,ug Hdyg,uy R, D; R; O (85) DR, —R,N,

(89)
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The unique controllablgW-compensato€’ of B with localizationCp = Cj, is ob-
tained as follows: Define the f.g. projective modules

V= BE (R, 5) C By P, v = BUXGEm (Y € B4

— B1><(p+m)/V/ C ]3]]1])>< (P+m)/V'7 V]D/) =7V, (90)
— dimgz(V’) = dimg, (V}) = dimg, (V) = N?dimp, (V) = N?m.

Moreover, sincdB}* "™ /V is Z-free so is itsZ-submoduléB!* (P+m™) /1’ and thus
the latter isB-projective. Again by Lemma 4.2 we infer thet, resp.B*(P+m) /y//
areB-free of dimensions, resp.p. In particularV = B**™ (R}, S]) where(R}, S;) €
B™*(P+m) hasB-linearly independent rows. Define

= V™= {(32) € WP Rjouz + Sjoys =0}
Vi =BY*"(R},S)) = V = BY" (R, S1) (91)
= Cp=(V"),=V"=0p.

ThereforeCy, is the localization of’. SinceB!*(+™) /v is B-free the compensator
C’ is controllable. The algorithmic computation 6f andC’ is explained in [3, §7].
The behaviolC’ is the unique controllable one witff;, = Cp. There are less useful
noncontrollable behaviod” with Cfj = Cp.

The interconnection of the given behavi®mwith C’ is given by

D — {(Z) e Wrtmtetm). ploy = N'o u} where

D= () e BEHEXErm MG, (Q) (92)

N' = (_3%2 131) e BrHm)x(p+m)
SinceByp is the localization of3 andCyp that of C’ we infer (cf. [3, Cor. 3.8])

By " (D', ~N') = By* "™ (D, ~N)

0 . (93)
— D} =Dp, D'y =Dy =0, H=D'"N'=D7!N.

Summing up we obtain

Theorem 5.3. Let B be aD-stabilizable periodic |10-behavior, i.e(,D;, —N;) has

a right inverse inBI(D”er)X” . The behaviorg’, D', constructed above, argW-
behaviors, i.e. periodic behaviors. The feedback intemeationD’ is a D-stable
|O-behavior with proper transfer matrikl € C(»+m)x@+m) C = SN*N from (89).
Thus the compensatdY is properlyD-stabilizing and moreover controllable and all
such compensators are obtained in the described fashionalRwost all X € C™*P
from (84) the matricesS; and S; belong toGl,,(Q) and bothCp and C’ are 10-
behaviors with input.c and outputys.

Remark 5.4. (Properness of the controllgConsider the data of Algorithm 5.2 and
Thm. 5.3. By construction the interconnected IO behavidrand Dy have a proper
transfer matrix/{ whereas properness of the plant transfer mattix= D, N, =



6 TRACKING AND DISTURBANCE REJECTION 23

(DY)~'N? is not assumed. Recall thalmost allconstructed controllers are 10 be-
haviors and thus have a transfer matlx, in detail

C'={(32) e W™, Sjoys = —Rjous},
Co=Cp={(}2) € WET™ Sjoyy = —R, ouy}
S; € B™™(Glm(Q), S € C™™(\Gl(Q), R} € B™?, R € C™"?,

Ge=—(S) 'R = =S 'R € Q""" = F(A)N™" NP,

(94)
Properness afi¢, i.e.,G¢ € IE‘(A){)WXNP, is necessary and sufficient in order tBat
can be implemented with elementary building blocks. In [Bml 3.27] it was shown
thatalmost allcontrollers from Thm. 5.3 are 10 behaviors with a propers¢fanmatrix
Gc. Moreover, if the transfer matrie of the plant is strictly proper then all controllers
C’ from Thm. 5.3 are 10 behaviors with proper transfer matrfx,[£6, Cor. 5.2.20].
Symmetrically, if the controller is an 10 behavior with stiy proper transfer matrix
then the plant transfer matri¥ is proper.

6 Tracking and disturbance rejection

We assume @-stabilizable plant as in Theorem 5.3 and consider the plpfi2-
stabilizing controller<’ andCj, = Cp of this theorem. The input signals, resp.
ug Of D’ are interpreted as disturbances of the input, resp. of thgubof B. In ad-
dition we assume a reference signat W?. We assume that a nonzefoe F[A] is
given such that

Yor=0,1You =0, Youy =0, (95)

i.e., that the signals, , uo, r are generated by an autonomous system. We consider the
interconnected tracking system (see Figure 2)

T = {(3}) e W ptm)+etm)te, (*)} where

(%) Dyoyr = Nyo(ur+yz2), Sjoyzs+ Rjo(ug+y1 —r) =0 (96)
1/“3“1:0’ 1/)011,2:0, ’[/)OT:O'

So the input signal of the controller is the error sigaak y; + us — r that is the

Uy Uy + Y2 Y1+ us U9
M
Jr

e

Y2 Y1 +ug—r T

Figure 2: The tracking behavigr'.
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difference between the disturbed outputt u, of the plant and the reference signal

The aim is to construct controllers witb-stablee for all w1, us, r satisfying (95). The
error behavior is the behavior of all error signals, i.e.,

&g :=1im (7" — WP, (ﬂ) n—>e:y1+uQ—r)

i (97)

= {y1+uQ—reWp; (;) eT’}.

The controllerC’ is said totrack the reference signal and to reject disturbances;
andus that satisfy (95) i€, = 0. If this is the case all error signals are asymptotically
stable, cf. (79)-(81) and Lemma 5.1.

Theorem 6.1. (i) The D-stabilizing controllerC’ from Thm. 5.3 tracks the reference
signalr and rejects the disturbances andu, satisfying(95) if and only if

Z =118, € Bp*P, (98)
(i) There is such a controller if and only if the inhomogeunsdinear matrix equation
SO = NX 4+ 4z (99)

has a solutionX € C™*» = §VmxNp and Z € BL* P+,

The computation of the solutiofX, Z) is described in [3, §7].
Proof. (i) Since the functof—)yp, is exact and hence
&y :zim(’]ﬁ%Wg, (1?) +—>e:y1+qur)
the conditiong], = 0 holds if and only if the following implication holds:
( % ) Wﬂgp+m)+(p+m)+p
D10y1 :NIO(Ul +y2), Sl’oy2+R20(uQ+y1 —’I") =0 =e=0 (100)
¢OU1:0, wOUQZO, 1,[)07':0

Since
B]%DXP(Dlv _Nl) = BI}))XP(D% _Nl0)7 B]Il)xm(Rgv Sl,) = B]?IL))X"%RM Sl) (101)
the implication (100) is equivalent to the implication

y +m)+(p+m)+ N w

(g)EWng )+(p )P7y:(52)7u:(uf)7
D?Oylle()o(u1+y2),Sloy2+Rlo(u2+y1_r):0 —e=0
You =0, Pouy=0,9%or=0

(102)
or, in shorter notation with (88), to
Do(fa)=No (") ory=Ho (") _o (103
Yo(y)=0
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- _ ( —-N°R;, S.N} . . R
With H = ( DR, —Rrr-lih“ ) we get the equivalent implication

Yo(¥)y=0=e=y; +us—7r=(idy —NR;) o (ug — ) + S, N o uy

e S, DY o (ug — 1) + S, N2 ouy = (S,DY, S, N, —S,.D?) o (*) = 0.

(104)

Here we used (85), i.e.,

(5 ) (7 20y = (") = id, ~N'R = 8,D).  (105)

We finally derive the equivalent implication
v () ewgtr o () =0 — (8,0, S.NP, ~5,Df) o () = 0.

Sinceg, Wp is an injective cogenerator this is equivalent to

(S, DY, S, NP, 8, DY) € BL*PHm+r)y,

= 715,(DY,~NP) € BYX ™ (107)

= Z:=y¢7'S, =¢7 'S (D},—NP) (% ) € BE.
(ii) Recall from (84) that

0 0
(i) = (%) - ()X (108)
Inserting this into (98) furnishes the inhomogeneous agqn&99)
S0 = NOX +Z.

So (99) follows from the properties of the controlt&r If, conversely, (99) has a
solution (X, Z) one uses Algorithm 5.2 to define the controllgr and thenC’ with
this X. Then (99) implies (98) and therefore the controllétracksr and rejects:;
andus.

O

A more general tracking interconnectigi than in (96) assumes an additional
D-stable 10-behavioB3; with proper (andD-stable) transfer matrif; € C™*? (cf.
Lemma 5.1) that transforms the reference signafl dimensionp into its outputr, of
dimensionm:

Bo:={("?)€ W™, D}ory =Nlor},

109
(D7, —N7?) € B™"H) | D? € Gl,,(Q), Ti := (D)~ "N} € CPH™ (109

Notice thatB, can be implemented sin@g is proper. From Lemma 5.1 we know that
D? € Gl,,(Bp) and thatl; = (D?)~' N} is a left coprime factorization ovéBy,. For

a given controlleiC’ according to Thm. 5.3 the generalized interconnected imgck
behavior7” is defined by the equations

Dyoyy = Nio(ur+y2), Sjoya+ Rjo(y1 +uz) =7y, Diory = Nfor
Yor=0,1You =0, Youy =0.
(110)
The error signal is := y; + u2 — r again. By definition the matricés;, S}, T;) form
an(R, S, T)-controllerif all error signals of 7’ areD-stable, i.e., if the (autonomous)
error behavio€ of all error signals id)-stable or satisfie§y = 0.
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Theorem 6.2. Consider theD-stable 10-behavioi3; with proper transfer matrixz;
from (109) and a stabilizing controlleC’ according to Thm. 5.3 with its associated
data. The matriceéRy, S/, T;) form an(R, S, T')-controller if and only if

1S, T N(T) — Ry) € BRXP. (111)
Proof. For signals with components i the equations (110) are equivalent to

D oy =N o (ur +y2), Sioys+ Rio(y1 +u2) =12, D ora = NZor,
Yor=0,vYou; =0, Ppouz =0, yvu7r7r2€W]D.@~

(112)
Due to
0 _ a0 -1 S, NO m
(Igll SAz[l ) - (fRT. D§> € Glyym(C), D € Gl (Bp), T € C™7, (113)

ry =Tior, id, = S.D} + N R, H = (*NSRz 8NP )

—-D°R; —R.N}

the equations (112) are equivalent to

y:Hou—i—(_SI;‘gg) (%)or, Yor=0,vou; =0, Ypouy =0 (114)

that imply

Yy = fNBRl ouy + STNZO ouy + NBTZ or,
e=uy +uy —r=(S.DY SN N°T; —id,) o (uz,us, )", (115)
NT, —id, = N(T) — R;) — S,.Dy.

By definition the matrice$R;, S;, T;) define an(R, S, T')-controller if and only if the
equations (112) imply = 0. By means of (115) this is equivalent to the implication

¢ o (u23 ulaT)T =0= (ST’D?v ST‘NZ()?NET‘I - ldp) ° (u27u17T)T =0. (116)

By the same argument as in the proof of Thm. 6.1 equations) (446 (112) are
equivalent and this completes the proof.
O

Remark 6.3. In Thm. 6.1 assume th&. = ¢S.., S. € BY*?. Then condition (98) is
trivially satisfied and moreover

id, = D{'S, + N'R, = (¥D})S.. + NR,.. (117)

This implies thatx» DY, —N}) is right invertible oveBy,. Notice that in (98) and (99)
¥ can be multiplied with a unit ifdp = Sa_,)-1 and hence we may assume that
P eS.

In the sequel we assume thate S and that(y'D?, —N?) has a right inverse

’

(_SIQO) even inC®+mxp ja.

id, = (¥D})S; + NP R = D{(4:S;) + N R) = DS} + N/'R, S) = 45,.
(118)
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Thus ( —5150 isa rlght inverse OfD?, 7NZO) in C(P+m)><l7 and this can be Comp|eted
with the matrices from (83), (84), (85) satisfying

()= (55) — (50) X, (Bus) = (RY.S9) + X (D), ~NP), X e Cmr
(119)
and

0 0 0 0\ 1 0
(5727 € Clyym(©) = Glygpamy(8), (2 07) = (5 30 82 =ws,.
(120)
For the robustness assertion of the next Thm. 6.4 we empéogdta and results of [16,
§2.2] and assume that the stability regidis open. Therid|| := max.cc\p|d(2)|is a
norm onS and induces maximum norms 84>¢ andGl,(S). The product of matrices
is continuous an@1,(S) is an open topological subgroup$f<¢. A stabilizing track-
ing controller with matrice$R,, S;) from Thm. 6.1 is calledobustif it is a controller
with the same properties for all nearby plants in the jusingefinorm.

Theorem 6.4. Assume w.l.0.g. that € S and that(y'D?, —N}?) has a right inverse
in Cp+m)xp — §N(p+m)xXNp,

(i) Consider the matrices fronil18) and complete them to those (83). Choose a
matrix X € C™*? and define the matrices fro(@19). Then the controller defined by
the matriceg R;, Si, R, S,-) from (119)satisfies the necessary and sufficient condition
for tracking and disturbance rejection from Thm. 6.1, ive7,S, € B2*?, if and only

if N?X € BL*Py, for instance ifX € C™*Pq.

(ii) Each controller from (i) is robust.

Proof. (i) Since S? = ¥S!. € CP*Pyy C BL P4 the assertion follows fron$, =
SV — NYX.
(ii) Consider a controller according to (i) and especidaltig matrices

(22 (5 M) = (), s eBEPy, ves.  (120)
Now consider a plantD?, — N?) sufficiently near tq DY, —N?). Then
U:=(D},—N7) (5. ) near(D},—N}) (5. ) =id,
— U € Glyy(8) = GL(C), ( % )= (5, ) U eclrtmr,
—id, = (D), ~NP) (% ), 5, e BYPy.

Moreover B
(50 (%) = (RS (5,) U™t =0,

Then there is a unique cqurr(ng') € Clptm)xm gych that

B —No\ ( & N\ _ (id, 0 S a1
(359) (5.5)= (%) 5.=s07 emprv ves. 22
According to Thm. 6.1 the last equation says that the cdetralith the equation
Ry owug + S; 0y = 0is a properlyD-stabilizing controller of the plant with the
equationD} o y; = N} ou; and that this controller tracks signalgind rejects signals
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u1 anduy satisfying (95). So the controlléz;, S;) stabilizes a whole family of plants
(DY, —N}) around the plantD?, —N}) and this is the defining property of robustness.
O]

Lemma 6.5. For the left and right coprime factorizatiors = (D?)~* NP = N2(D?)~!
overC = SV¥*N andy € S the following properties are equivalent:

1. (yid,, NP) is right invertible.
2. (vid,, N?) is right invertible. .
3. (¥DY, —N}) is right invertible.

Proof. We assume w.l.0.g. thatis not a unit. This impliep < m.

3. = 1.: obvious.

1. = 3.: Consider all prime# of S and their residue fieldg(c) := S/So > f :=
f +So, f € S. Recall that a matrix? € SVP** is right invertible if and only if
ranky () (R) = Np for all primeso of S. If 1. is satisfied we conclude

V primeso € S: Np = ranky,) (F?, —Nilo) = ranky(y) (¥ ide,VlO)
— 3(4) € k(o)N@+m>XNP . DOA L NOB = idy,

if ) =0: rankk(o.)(ij)D?, —Nilo) = rankk(g)(i ide,W) = Np
ifo#0: DY(()"tA) + NPB = idn, = ranky(,) (DY, —NP) = Np

= Vprimeso € S : rankyy) (YD}, —Nilo) = Np = 3.

1. <= 2.: N andN? are equivalent. The equivalence of 1. and 2. is then shown as
that of 1. and 3.. O

According to [16, Thm. 2 on p. 296] the condition 2. of Lemm& éharacterizes
the existence of robust compensators in the LTI case andtaum8. is precisely the
assumption of Thm. 6.4.

Corollary 6.6. Assume a controller according to Thm. 6.4,(i), and addg@ibnthe D-
stable periodic 10-behaviaB, from (109)with the proper transfer matri¥; € C™*?.
If y=1(T; — R;) € By *? the matriceg R}, S;, T}) form arobust(R, S, T')-controller,
cf. [4, (6.38)].
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