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Abstract

In analogy to the Kǔcera-Youla parametrization we construct and parametrize
all stabilizing controllers of a stabilizable linear periodic discrete-time input/output
system, the plant. We establish a necessary and sufficient algebraic condition for
the existence of controllers among these for which the output of the plant tracks a
given reference signal in spite of disturbance signals on the input and the output of
the plant. With a minor additional assumption the tracking stabilizing controllers
are robust. As in the linear time-invariant (LTI) case the reference anddisturbance
signals are assumed to be generated by an autonomous system. Our results are the
analogues for periodic behaviors of the corresponding LTI results ofVidyasagar.
A completely different approach to stabilization and control of discrete periodic
systems was developed by Bittanti and Colaneri. We derive a categoricalduality
between periodic behaviors over the time-axis of natural numbers and finitely gen-
erated modules over a suitable noncommutative ring of difference operators and
use this for the proof of the main stabilization and control results. Morita’s theory
of equivalences between module categories is employed as an essentialalgebraic
tool. All results of the paper are constructive.

AMS-classification: 93D15, 93D09, 93C55, 93C35, 93B25
Key-words: periodic behavior, stabilizing controller, tracking, disturbance rejection,
robustness, Morita equivalence

1 Introduction

In analogy to the Kǔcera-Youla parametrization we construct and parametrize all stabi-
lizing controllers of a stabilizable linearN -periodic(N > 0) discrete-time input/output
(IO) system, the plant (Thm. 5.3). We establish a necessary and sufficient algebraic
condition for the existence of controllers among these, forwhich the output of the plant
tracks a given reference signal in spite of disturbance signals on the input and the out-
put of the plant (Thms. 6.1, 6.2). With a minor additional assumption the tracking
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stabilizing controllers arerobust(Thm. 6.4). As in the linear time-invariant (LTI) case
the reference and disturbance signals are assumed to be generated by an autonomous
system. Our results are the analogues for periodic behaviors of the corresponding LTI
results of Vidyasagar [16, §§5.1, 5.2, 5.7, 7.5]. They solveopen problems that were
raised in [1, §7].
In contrast to [11], [1] and [5] and in accordance with [9], [2] and [16] (in the LTI
case) we considerN -periodic systems on the time-axisN ∋ t of natural numbers and
not onZ. A periodic system is a linear time-varying (LTV) system whose coefficient
functionsa areN -periodic, i.e., satisfya(t + N) = a(t) for t ∈ N. If F denotes any
field or, in Sections 5 and 6, the fieldR orC of real or complex numbers, the coefficient
functions form the commutative algebraFZ/ZN of functions fromZ/ZN to F where
we posea(t) := a(t + ZN) for t ∈ N. The monoidN acts ona ∈ F

Z/ZN via algebra
isomorphisms by(j ◦ a)(t + ZN) := a(j + t + ZN). This action gives rise to the
noncommutative skew-polynomial algebraof difference operators, cf. [5, (25)],

A := F
Z/ZN [q; ◦] = ⊕∞

j=0F
Z/ZNqj with qja = (j ◦ a)qj , j ∈ N, a ∈ F

Z/ZN . (1)

The most general and standard signal space for one-dimensional discrete systems the-
ory is the space

W := F
N := {w = (w(t))t∈N : N→ F, t 7→ w(t)} (2)

of sequences or functions fromN toF. The components of the error signals in the stabi-
lization theory (F = R,C) are, however, much more special and indeed exponentially
stable and, in particular, belong to the Banach spaces

ℓ∞ =

{
w ∈ F

N; sup
t∈N

|w(t)| <∞

}
andℓp :=

{
w ∈ F

N;
∑

t∈N

|w(t)|p <∞

}
(3)

for p ∈ N, p > 0. The proper and stable transfer matrix of the constructed closed loop
behavior acts via convolution on vectors with entries inF

N. This transfer operator
is (ℓp, ℓp)-stable forp = 0, 1, · · · ,∞, i.e., maps vectors with components inℓp onto
vectors with the same properties. This is well known from theLTI case.
The standard action

◦ : A×W →W with (q ◦ w)(t) := w(t+ 1), (a ◦ w)(t) := a(t)w(t), (4)

for a ∈ F
Z/ZN , w ∈ W, t ∈ N makesW an injectiveA-left module, butnot a

cogenerator, cf. Thm. 3.4 and Remark 3.5. As usual this action is extendedto one of
a matrix

R =
d∑

j=0

Rjq
j ∈ Ar×k, Rj ∈

(
F
Z/ZN

)r×k

onw = (w1, · · · , wk)
⊤ ∈W k :=W k×1 :

(R ◦ w)(t) =

d∑

j=0

Rj(t)w(t+ j), B :=
{
w ∈W k; R ◦ w = 0

}
.

(5)
The equationR ◦ w = 0 is a linear system of difference equations withN -periodic
coefficients. Its solution spaceB is the associatedperiodic orAF

N-behaviorand the
principal object of study in this paper.
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The center ofA is the commutative polynomial algebraZ := F[∆], ∆ := qN , that
acts on the signal spacêW := F

NN via left shift, i.e.,

(∆ ◦ ŵ)(τ) := ŵ(τ +N), ŵ ∈ Ŵ = F
NN , τ ∈ NN = {0, N, 2N, · · ·} , (6)

and makes it an injective cogenerator with its ensuing categorical duality between LTI

ZŴ -behaviors and finitely generated (f.g.)Z-modules, cf. [5, (20)-(22)]. By means of
the isomorphism

W = F
N ∼= ŴN =

(
F
NN
)N

, w 7→ ŵ := (w0, · · ·wN−1)
⊤ with

w(j + τ) := wj(τ), 0 ≤ j ≤ N − 1, τ ∈ NN,
(7)

we derive a categorical equivalence between periodic behaviors, i.e.,AW -behaviors,
andZŴ -behaviors (Thm. 3.4) that is our formulation of the correspondence of pe-
riodic behaviors and their lifted LTI form, cf. [5, Thm. 4.6]. It enables the transfer
of Vidyasagar’s LTI stabilization and control theory [16] to periodic behaviors and the
application of [3]. The algebraA is canonically a subalgebra of the matrix algebra
B := ZN×N . SinceAW is not a cogenerator, periodic behaviors are not dual to f.g.
A-left modules, but to f.g.B-left modules (Thm. 3.14). This is shown by means of
the isomorphism (7) and by Morita’s theory of equivalent module categories that also
implies the precise structure of these modules. F.g.A-modules have a more compli-
cated structure and were studied in [9], but are not employedfor the study of periodic
behaviors in the present paper.
The main results of this paper described above are containedin Sections 5 and 6. Sec-
tion 3 describes the module-behavior duality for periodic behaviors on the time-axis
N. For the time-axisZ the theory is simpler and was treated with similar methods in
[5] where we also explained the relation with previous work [11], [1], [2]. In Section
4 we apply Morita theory to derive essential notions for and properties of periodic be-
haviors and their dual f.g.B-left modules, for instance autonomy, controllability, the
existence and characterization of input/output (IO) structures and left and right coprime
factorizations. We show that in the Morita framework a periodic behavior and its lifted
LTI behavior coincide via the isomorphism (7). This simplifies the considerations of
Sections 5 and 6 considerably. In Section 5 we also discuss the characteristic variety
or set of poles of an autonomous behavior and define and characterize the stability of
autonomous and of input/output systems.
By means of the algorithms from [3] all results of this paper are constructive, but have
not yet been implemented in the periodic case.
History: A completely different approach to stabilization and control of discrete peri-
odic systems given by state space equations is exposed by Bittanti and Colaneri [2, pp.
353-404], see also [8] and [17] (continuous time). Commutative and noncommutative
rings of (partial) differential operators and their modules have been an important tool
in Algebraic Analysissince the seminal work of Ehrenpreis, Malgrange and Palamodov
for constant coefficients in the 1960s and later, for varyingcoefficients, in the work of
Kashiwara and many other researchers. In systems theory already Kalman employed
polynomial modules, but from a different point of view, and Ylinen [18] already used
skew-polynomial rings of differential operators. In connection with Rosenbrock’s poly-
nomial and Willems’ behavioral approach modules were introduced by Fliess and the
second author in 1990, also for multidimensional behaviors, and were also used in [9].
Themodule theoretic reformulation of the fractional representation approach(cf. the
bibliographies of [16] and [14] for important contributorsto the latter field) and its
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application to stabilization problems is due to Quadrat, cf. [14], and was also applied
in [3]. In this approach acommutative domainS of stable operators, often a Banach
algebra, with its quotient fieldK is given. A system is described by a transfer matrix
H ∈ Kr×k, hence hidden modes are removed and autonomous systems as inSection 6
cannot be used. A similar framework is used in [6]. Our ringB of difference operators
is neither commutative nor a domain, but the Morita theory enables the reduction of
the problems to the commutative operator domainsF[s] andS, as used in [16] and [3].

2 Terminology and notations

We have to use various notions from algebra. We refer to the books [15], [13] and
[12] for the basic algebraic language concerning rings, modules and categories. For
the convenience of the reader we give here a list of notationswith short explanations,
essentially in the order in which they appear in the paper:

1. Abbreviations: f.d.=finite-dimensional, f.g.=finitely generated, IO= input/output,
LTI=linear time-invariant, LTV=linear time-varying, resp.=respectively, w.l.o.g.=
without loss of generality, w.r.t.=with respect to

2. Xr×k := the abelian group ofr × k-matrices with entries in the abelian group
X,X1×k :=rows,Xk := Xk×1 :=columns

3. F = a field,F = R,C in Sections 5 and 6

4. FZ/ZN ( ⊂
identification

F
N): the commutative coefficient ring of periodic functions

a : N→ F of periodN with a(t) := a(t), t := t+ ZN ∈ Z/ZN, t ∈ N

5. ǫi = ǫ2
i
, ǫi(j) = δi,j , i, j ∈ Z/ZN : the standardF-basis ofFZ/ZN consisting

of idempotents

6. A := F
Z/ZN [q; ◦]: the noncommutativeF-algebra of skew-polynomials in the

indeterminateq with coefficients inFZ/ZN

7. Z := center(A) := {z ∈ A; ∀a ∈ A : az = za} = F[∆]: the center ofA and
polynomial algebra in the indeterminate∆ := qN with coefficients inF

8. W = F
N := the space of signal functions (sequences)w : N → F andA-left

module with the shift action(q ◦ w)(t) := w(t+ 1) and(a ◦ w)(t) := a(t)w(t)
for a ∈ F

Z/ZN

9. Ŵ := F
NN := the space of signals (sequences)ŵ : NN → F andZ-module

with the action(∆ ◦ ŵ)(jN) = ŵ(jN +N) = ŵ((j + 1)N),W ∼= ŴN

10. AMod := the class or category ofA-left modules

11. HomA(M,N): theZ-module ofA-linear maps betweenA-left modulesM,N

12. Z :A Mod→Z Mod, M 7→ ǫ0M : the exact left adjoint toA

13. A :Z Mod→A Mod, P 7→ PN : the exact right adjoint toZ

14. B = ZN×N ⊃
identification

A: Z -algebra ofN ×N -matrices

15. SZ := Z \ {0}: multiplicative monoid of nonzero polynomials inZ = F[∆]



3 PERIODIC BEHAVIORS ONN 5

16. K := ZSZ = F(∆): quotient ring ofZ w.r.t. SZ, quotient field ofZ

17. Q := BSZ = KN×N : quotient ring ofB with denominators inSZ and matrix
ring over the fieldK

18. F(∆)pr ⊂ F(∆): ring of proper rational functions in∆

19. In the following:F = R,C

20. D ⊆ {λ ∈ C; |λ| < 1}: nonempty (open) subset of the open unit disc

21. SD ⊂ SZ: saturated monoid of (D)-stable polynomials, i.e., with roots inD

22. ZD := ZSD : quotient ring of (D)-stable rational functions with denominators in
SD

23. BD := BSD ,MD :=MSD : quotient ring and module

24. WD, resp.ŴD: injective cogenerator quotient signal modules overBD, resp.ZD

25. S := ZD ∩ F(∆)pr: ring of proper and(D)-stable rational functions

26. C := SN×N : matrix ring overS

27. B ⊆W p+m: input/outputBW -behavior,B0: its autonomous part,BD ⊆W
p+m
D

:
its quotient

28. B̂ ⊆ Ŵ ℓ: autonomousZŴ -behavior,char(B̂): its characteristic variety or set of
characteristic values or poles

3 Module-behavior duality for periodic behaviors onN

We treat discrete periodic behaviors on the time-axisN in analogy to the case of the
latticeZ

r [5, §4]. The main goal is the proof of Thm. 3.14 that describesthe equiva-
lence between periodic behaviors and their lifted LTI formsand the duality of these to
their associated modules constructively. Morita equivalence plays a decisive part.

Consider the cyclic groupZ/ZN, N > 0, with the elementsi := i+ ZN, i ∈ Z,
a fieldF, the time axisN and the signal spaceW := F

N. The algebraFZ/ZN with the
componentwise multiplication is identified with the subalgebra ofN -periodic functions
onN, i.e.,

F
Z/ZN =

{
a ∈ F

N; ∀t ∈ N : a(t) = a(t+N)
}
, a(t) = a(t). (8)

It has theF-basisǫi, i ∈ Z/ZN, of complete orthogonal idempotents defined by
ǫi(t) = δi,t. As in [5] the monoidN acts onZ/ZN , resp. onFZ/ZN by i ◦ j = i + j,
resp. by(i ◦ a)(t) = a(i+ t) and then

F
Z/ZN = ⊕i∈Z/ZNFǫi = ⊕

N−1
i=0 Fǫi, j ◦ ǫi = ǫi−j . (9)
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As in [5, (23)-(25), (69)-(74)] we get the (noncommutative)skew-polynomial algebra
(cf. (1))

A := F
Z/ZN [q; ◦] = ⊕i∈Z/ZN,j∈N

Fǫiq
j , qjǫi = ǫi−jq

j

Z := center(A) = F[∆], ∆ := qN ,

A = ⊕N−1
i,j=0Zǫiq

j , ǫiA = ⊕N−1
j=0 Zǫiq

j , Aǫi = ⊕
N−1
j=0 Zǫi−jq

j ,

ǫ0A = ⊕N−1
j=0 Zǫ0q

j , ǫ0Aǫ0 = Zǫ0

v :=
( ǫ

0

···
ǫ
0
qN−1

)
∈ (ǫ0A)N , ǫ0A = Z1×Nv.

(10)

The algebraA acts on the signal spaceW = F
N by means of (4) and makes it

an A-left module. A matrixR ∈ Ar×k gives rise to theequation moduleU :=
A1×rR ⊆ A1×k, thesystem factor moduleM := A1×k/U and the behaviorB :={
w ∈W k; R ◦ w = 0

}
. The following simple, but importantF-linear isomorphism

HomA(M,W ) ∼=
Malgrange 1962

B, Φ 7→ w = (w1, · · · , wk)
⊤,

W = F
N, Φ(ξ + U) = ξw =

k∑

j=1

ξj ◦ wj , ξ = (ξ1, · · · , ξk) ∈ A1×k,
(11)

holds and shows that the ubiquitousHom-spaces (see Thm. 3.4 below)

HomA(M,W ) ∼= HomZ(ǫ0M, Ŵ ), Ŵ = F
NN , (12)

and the results about them have a direct systems theoretic significance. For f.g.A-
left modulesM with a given representationM = A1×k/U as in (11) the Malgrange
isomorphism is canonical (functorial) and hence we identify B = HomA(M,W ).
Sinceǫi is idempotentAǫi is a projective direct summand ofA, but, in contrast to
the case of the time-axisZ [5], the Aǫi are not isomorphic toAǫ0 and the latter is
not a progenerator, i.e., a f.g. projective generator ofAMod. The moduleǫ0A is
a (Z,A)- bimodule and free of dimensionN asZ-module with theZ-basisv. We
identify Z1×N =

ident.
ǫ0A by z = (z0, · · · , zN−1) =

ident.
zv. If P is anyZ-module then

HomZ (ǫ0A, P ) is a leftA-module with the action

(aϕ)(ǫ0b) = ϕ(ǫ0ba), a, b ∈ A, ϕ ∈ HomZ (ǫ0A, P ) . (13)

The map

HomZ (ǫ0A, P )
∼= PN := PN×1, ϕ 7→ ϕ(v) =: y = (y0, · · · , yN−1)

⊤, yj = ϕ(ǫ0q
j),

(14)
is aZ-isomorphism. We identifyHomZ (ǫ0A, P ) = PN , ϕ = ϕ(v). We turnPN

into anA-left module by transport of structure along the isomorphism of (14), hence

ay = aϕ(v) := ϕ(va)

ǫjy = (0, · · · , 0,
j
yj , 0, · · · , 0)

⊤, j = 0, · · · , N − 1

qy = (y1, · · · , yN−1, ∆ ◦ y0)
⊤, ∆ = qN ∈ Z.

(15)
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Corollary 3.1. Consider the signal modulesAF
N andZF

NN . There is theZ-isomorphism

F
N ∼= HomZ(ǫ0A,F

NN ) ∼=
(
F
NN
)N

, w 7→ ŵ =
( w0

···
wN−1

)
, with

wi(τ) := w(i+ τ), 0 ≤ i ≤ N − 1, τ ∈ NN.
(16)

This isomorphism is evenA-linear where
(
F
NN
)N ∼= HomZ(ǫ0A,F

NN ) has theA-
structure from(15).

We define the two functors

Z : AMod→ ZMod, M 7→ Z(M) := ǫ0M, and

A : ZMod→ AMod, P 7→ A(P ) := HomZ(ǫ0A, P ) = PN .
(17)

The functors areexactsinceAǫ0, resp.ǫ0A areA-projective, resp.Z-free.

Corollary 3.2. ([9, Thm. 5]) The moduleAǫ0 is f.g., projective as direct summand of
A, but not free.

Proof. Assume

Aǫ0
∼=
A

A1×m =⇒ Zǫ0 = ǫ0Aǫ0
∼=
Z
(ǫ0A)1×m =⇒ 1 = dimZ

(
(ǫ0A)1×m

)
= mN.

(18)
This is a contradiction.

Lemma 3.3. For M ∈ AMod andP ∈ ZMod there is the functorial isomorphism

HomZ (ǫ0M,P ) ∼= HomA(M,PN ), ϕ 7→ Φ, where

Φ(x) =
(
ϕ(ǫ0x), · · · , ϕ(ǫ0q

N−1x)
)⊤
, ϕ(ǫ0x) = Φ(x)0.

(19)

The isomorphism means thatZ (A) is left (right) adjoint toA (Z) [15, §IV.9]

Proof. The isomorphism follows fromϕ(ǫ0q
jx) = Φ(qjx)0 =

(
qjΦ(x)

)
0
= Φ(x)j .

We recall that anA-moduleAW is calledinjectiveif the contravariant functor

HomA(−,W ) : AMod→ ZMod, M 7→ HomA(M,W ), (20)

preserves the exactness of sequences or, equivalently, maps monomorphisms to epimor-
phisms. IfAW is injective it is also acogeneratorif and only if HomA(M,W ) = 0
impliesM = 0.

Theorem 3.4. The isomorphisms(16)and (19) imply the functorial isomorphism

B̂ := HomZ

(
ǫ0M,FNN

)
∼= B := HomA(M,FN), ϕ↔ Φ, where

Φ(x)(j + τ) = ϕ(ǫ0q
jx)(τ), x ∈M, j = 0, · · · , N − 1, τ ∈ NN.

(21)

SinceZ :M 7→ ǫ0M is exact and sinceZFNN is the standard LTI injective cogenera-
tor, the signal moduleAF

N is injective too and

ǫ0M = 0 ⇐⇒ HomA(M,FN) = 0. (22)

Hence any (periodic)AF
N-behaviorB is canonically an LTIZFNN -behaviorB̂.
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SinceM 7→ ǫ0M andM 7→ HomA(M,FN) are exact the full subcategory

C :=
{
C ∈ AMod; ǫ0C = 0 or HomA(C,FN) = 0

}
(23)

is aSerre subcategory, i.e., closed under isomorphisms, submodules, factor modules,
extensions and direct sums.

Remark 3.5. The categoryC contains nonzero modules, and henceAF
N is not a co-

generator.

The largest submodule ofM in C is called its (C)-radical and denoted by

Ra(M) = {x ∈M ; ǫ0Ax = 0} . (24)

The representationǫ0A = ⊕N−1
j=0 Zǫ0q

j and a simple computation imply

Ra(A) = {a ∈ A; ǫ0Aa = 0}

=
{
a ∈ A; ∀j = 0, · · · , N − 1 : ǫ0q

ja = 0
}
= 0.

(25)

As usual the adjointness implies the functorial morphisms [15, Prop. 9.3]

ζ : ZA → id
ZMod, η : id

AMod → AZ

ζP : ǫ0P
N → P, ǫ0(y0, · · · , yN−1)

⊤ = (y0, 0, · · · , 0)
⊤ 7→ y0

ηM :M → ǫ0M
N , x 7→ (ǫ0q

0x, · · · , ǫ0q
N−1x)⊤.

(26)

The morphismζ is obviously an isomorphism. Like all adjointness morphisms these
satisfy the relations

A
ηA

−→ AZA
Aζ
−→ A, A(ζP )ηA(P ) = idA(P )

Z
Zη
−→ ZAZ

ζZ
−→ Z, ζZ(M)Z(ηM ) = idZ(M) .

(27)

Corollary 3.6. For everyP the mapηA(P ) : A(P )→ AZA(P ) is an isomorphism.

Proof. This follows fromA(ζP )ηA(P ) = idA(P ) and the isomorphy ofζP .

An A-moduleM is calledclosedif ηM is an isomorphism. Let(A,ǫ
0
)Mod denote

the full subcategory ofAMod of all closedA-modules. The adjointness of (19) and
Cor. 3.6 imply

Corollary 3.7. (cf. [15, Prop. XI.8.7]) The adjoint functorsZ andA imply the inverse
categorical equivalences

Z : (A,ǫ
0
)Mod

∼=
−→ ZMod, M 7→ ZM = ǫ0M,

A : ZMod
∼=
−→ (A,ǫ

0
)Mod, P 7→ AP = PN .

(28)

SinceZ andA : ZMod → AMod are exact the subcategory(A,ǫ
0
)Mod of closed

modules is closed under isomorphisms, kernels, cokernels and extensions and, in par-
ticular, abelian.

In slightly superficial terms acategorical equivalencebetween categories is aone-
one correspondencebetween the classes of objects with natural (functorial) properties.
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Corollary 3.8. For all M ∈ AMod andC ∈ (A,ǫ
0
)Mod the isomorphism

HomA(AZM,C) ∼= HomA(M,C), Φ 7→ ΦηM , (29)

holds. This means that the exact functorM 7→ AZM = ǫ0M
N is left adjoint to the

inclusion(A,ǫ
0
)Mod ⊂ AMod.

Proof. This follows from the commutative diagram

M
ηM
−−→ AZM = ǫ0M

N

↓ ϕ ↓ AZϕ

C
ηC

∼=
−−−→ AZC

=⇒ ϕ =
(
η−1
C AZϕ

)
ηM . (30)

Theorem 3.9. According to Cor. 3.1ηFN is an isomorphism. HenceAF
N is closed and

indeed an injective cogenerator in the category(A,ǫ
0
)Mod of closedA-modules. For

all M ∈ AMod the map

HomA(AZM,FN) ∼= HomA(M,FN), Φ 7→ ΦηM , (31)

is an isomorphism according to(29). Thus everyAF
N-behavior is described by a

unique closed module. The functor

(A,ǫ
0
)Modfg →

{
AF

N-behaviors
}
, M 7→ HomA(M,FN), (32)

thus establishes a categorical duality between the category of f.g. closedA-left mod-
ules and that of (periodic)AF

N-behaviors.

Lemma 3.10. For all M the kernel and cokernel ofηM belong toC, more precisely

ker(ηM ) = Ra(M), ǫ0 ker(ηM ) = 0 andǫ0 cok(ηM ) = 0. (33)

Proof. (i) We apply the exact functorZ :M 7→ ǫ0M to the exact sequence

0→ ker(ηM )
inj
−→M

ηM
−→ AZM

can
−→ cok(ηM )→ 0,

hence the sequence

0→ Z ker(ηM )
Z inj
−→ ZM

ZηM
−→ ZAZM

Z can
−→ Z cok(ZηM )→ 0

(34)

is also exact. ButζZ(M)Z(ηM ) = idZ(M) by (27) andζ is an isomorphism, hence
alsoZηM = ζ−1

Z(M) is an isomorphism. This impliesZ ker(ηM ) = ǫ0 ker(ηM ) = 0

and likewiseZ cok(ηM ) = ǫ0 cok(ηM ) = 0.
(ii) The equationǫ0 ker(ηM ) = 0 impliesker(ηM ) ⊆ Ra(M).Conversely,ǫ0 Ra(M) =
0 implies the commutative exact diagram

0→ Ra(M))
inj
−→ M

can
−→ M/Ra(M) → 0

↓ ηRa(M) ↓ ηM ↓ ηM/Ra(M)

0→ 0
AZ inj
−→ AZ(M)

AZ can
−→ AZ(M/Ra(M)) → 0

=⇒ ηM (Ra(M)) = 0 =⇒ Ra(M) ⊆ ker(ηM ).

(35)
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The closed modules can also be described byMorita equivalence, cf. [15, §IV.10,
§XI.8]. The ( Z,A)-bimoduleǫ0A has theZ-basisv := (ǫ0, · · · , ǫ0q

N−1)⊤. If R
is any ringRop denotes the opposite ring ofR, i.e.,R = Rop as abelian group and
r1 ·op r2 = r2r1. Then

HomZ(ǫ0A, ǫ0A)op ∼= B := ZN×N , α 7→ b, α(v) = bv, (36)

is an algebra isomorphism and induces the category equivalence

ModHomZ(ǫ
0
A,ǫ

0
A)
∼= BMod, M 7→M, bx = xα, α(v) = bv, x ∈M, (37)

betweenHomZ(ǫ0A, ǫ0A)-right andB-left modules. Sinceǫ0A is a free generator of
ZMod the Morita theorem [12, §18] yields the category equivalence

ZMod
A
∼= ModHomZ(ǫ

0
A,ǫ

0
A)

∼=
(37)

BMod,

P 7→ HomZ(ǫ0A, P ) 7→
(14)

PN = PN×1.
(38)

The structure ofPN asB-left module is given by the matrix multiplication

(b, y) 7→ by, b ∈ B = ZN×N , y = (y0, · · · , yN−1)
⊤ ∈ PN . (39)

The structure ofǫ0A asA-right module induces the algebra homomorphisms

A → HomZ(ǫ0A, ǫ0A)op ∼= ZN×N

a 7→ (ǫ0b 7→ ǫ0ba) 7→ ρ(a)
where

va = ρ(a)v, ρ(ǫi) = diag(0, · · · , 0,
i
1, 0, · · · , 0), ρ(q) =

( 0 1 0 ··· 0
0 0 1 ··· 0
··· ··· ··· ··· ···
0 0 0 ··· 1
qN 0 0 ··· 0

)
.

(40)

Corollary 3.11. ( [9, Prop. 1])

ρ(ǫkq
l)ij =





1 if i = k, j = k + l, k + l ≤ N − 1

qN if i = k, j = k + l − n, k + l ≥ N

0 otherwise

(41)

With the standard basisEk,l, 0 ≤ k, l ≤ N − 1, of ZN×N this signifies

ρ(ǫkq
l) =

{
Ek,k+l if k + l ≤ N − 1

qNEk,k+l−N if k + l ≥ N
. (42)

Example 3.12. LetN = 2. Then

ρ(ǫ0zq
0) = E0,0 = ( 1 0

0 0 ) , ρ(ǫ0q
1) = E0,1 = ( 0 1

0 0 ) ,

ρ(ǫ1q
0) = E1,0 = ( 0 0

1 0 ) , ρ(ǫ1q
1) = q2E0,0 = q2 ( 1 0

0 0 )
(43)

Corollary 3.13. Consider the maps

A
ηA

−→ AZA = (ǫ0A)N ∼= B = ZN×N

a 7→ ηA(a) =

(
ǫ
0
q0a
···

ǫ
0
qN−1a

)
= va = ρ(a)v 7→ ρ(a)

. (44)

Sinceker(ηA) = Ra(A) = 0 the mapsηA and thus alsoρ are injective, and hence
A is a subalgebra ofB via the explicitly givenρ from Cor. 3.11. This corollary also
implies thatηA andρ are not surjective and that henceA is not a closedA-left module.
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Via ρ everyB-module is also anA-left module. IfP is anyZ-module then the
A-structure ofPN induced fromρ is that of (15). SinceA : P 7→ PN is a category
equivalence fromZMod both onto(A,ǫ

0
)Mod and ontoBMod we conclude

Theorem 3.14. (i) The exact functorsZ andA induce the category equivalence

Z : (A,ǫ
0
)Mod = BMod ∼= ZMod : A, M 7→ ǫ0M,PN ← P. (45)

In particular, every closedA-moduleM is a B-module where theA- and theB-
structures ofM are related byρ.
(ii)
(
BModfg

)op
∼=

(
ZModfg

)op
∼=

{
AF

N-behaviors
}
∼=

{
ZF

NN -behaviors
}

M ↔ P ↔ B ↔ B̂

P = ǫ0M, M = PN ,

B = HomA(M,FN) = HomB(M,FN) ∼= B̂ = HomZ(P,F
NN ).

(46)
So the algebraic counter-part of the category of periodic behaviors, i.e., ofAF

N-
behaviors, is the category of f.g. leftB-modules and not that of f.g.A-modules.

According to Thm. 3.14 the study ofAF
N-behaviors requires that of f.g.B-

modules whereas f.g.A-modules are not needed. Properties of the latter are more
complicated and were discussed in [9].

4 System theory via Morita equivalence

In this section we apply Thm. 3.14 and indeed discuss a slightly more general situation.
Let Z be a commutative principal ideal domain andZ1×N its standard progenerator

with the standard basisv ∈
(
Z1×N

)N
. We use the antiisomorphism (36)

B := ZN×N ∼= HomZ(Z
1×N ,Z1×N )op, b↔ α, α(v) = bv (47)

and theMorita equivalence

A : ZMod ∼= BMod : Z, P → PN , ǫ0M ←M, ǫ0 := diag(1, 0, · · · , 0). (48)

In particular, aB-left module isB-f.g. if and only if it isZ-f.g..
We also assume an injective cogenerator signal moduleZŴ andBW := ŴN that by
equivalence is an injective cogenerator signal leftB-module.

Remark 4.1. The main, but not the only (see below) example for the preceding data is
that from Thm. 3.14, i.e.,Z = F[∆] andB = ZN×N . We identify

Z1×N = ǫ0A = ⊕N−1
j=0 Zǫ0q

j , v = (ǫ0q
0, · · · , ǫ0q

N−1)⊤,

A =
Cor. 3.13

ρ(A) ⊂ B, a = ρ(a),

ǫi = ρ(ǫi) = diag(0, · · · , 0,
i
1, 0, · · · , 0), q = ρ(q) =

( 0 1 0 ··· 0
0 0 1 ··· 0
··· ··· ··· ··· ···
0 0 0 ··· 1
qN 0 0 ··· 0

)
.

(49)
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In this case the basis vectors and the rows and columns of matrices inZN×N are
numbered from0 to N − 1 and we keep this numbering also in the more general
situation of this section. The signal modules are

Ŵ = F
NN andW = F

N =
ident.

(
F
NN
)N
∋ w,

w = (w0, · · · , wN−1)
⊤, w(i+ τ) = wi(τ), i = 0, · · · , N − 1, τ ∈ NN.

(50)

The Morita functorA : P 7→ PN maps

Z1×N to
(
Z1×N

)N
=

ident.
ZN×N = B, (51)

where the leftB-structure of the left side is that from (39) and ofB the canonical one.
The Morita equivalenceA preserves projectivity. In particular, for a f.g.Z-moduleP
andM = PN one gets the equivalences

P is Z-torsionfree, i.e.Z-free⇐⇒ M is Z-free⇐⇒ M is B-projective. (52)

If (52) is satisfied the corresponding behaviorHomB(M,W ) ∼= HomZ(P, Ŵ ) is
called controllable. Further the moduleZN = AZ is the unique indecomposable
projective leftB-module, but not free. Every f.g. submodule ofZ1×Nk is free of di-
mension≤ Nk and therefore every submodule ofB1×k is projective and the direct
sum of at mostNk summandsZN , but not free in general.

Lemma 4.2. (i) A f.g. projectiveB-moduleM is free if and only ifN2 divides
dimZ(M).
(ii) If B1×k = U1 ⊕ U2 thenU1 is free if and only ifU2 is free and thenk =
dimB(U1) + dimB(U2).

Proof. Sinceǫ0B = Z1×N anddimZ(Z
1×N ) = N a f.g. projectiveB-moduleM is

free if and only ifN dividesdimZ(ǫ0M) orN2 dividesdimZ(M) = N dimZ(ǫ0M).
(ii) Due todimZ(B) = N2 (ii) follows directly from (i).

The functorA maps a freeZ-module of dimension divisible byN onto a freeB-
module, especially

A : Z1×Nk = (Z1×N )1×k = Z1×(N×k) 7→
(
(Z1×N )1×k

)N
=
(
ZN×N

)1×k
. (53)

Notice that the identificationZ1×Nk = (Z1×N )1×k requires to divide the numbers
1, · · · , Nk into k blocks of lengthN . Such a division is either adapted to the context
or chosen arbitrarily. For two such modules there is the isomorphism

HomZ

(
(Z1×N )1×r, (Z1×N )1×k

)
∼= Br×k, ϕ = ◦R↔ R, ϕ(η) = ηR =: ξ,

whereR = (R(i, j))i,j ∈ Br×k, R(i, j) ∈ B,

η = (η(1), · · · , η(r)), η(i) ∈ Z1×N , ξ = (ξ(1), · · · , ξ(k)), ξ(j) ∈ Z1×N

ξ = ϕ(η) = ηR, ξ(j) =
r∑

i=1

η(i)R(i, j).

(54)
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This isomorphism preserves products, i.e., transforms theproduct of composable maps
into the matrix product. The isomorphism

HomB(B
1×r,B1×k) ∼= Br×k, Φ = ◦R↔ R,Φ(Y ) = Y R =: X,

Y = (Y (1), · · · , Y (r)), X = (X(1), · · · , X(k)), X = Y R, X(j) =
r∑

i=1

Y (i)R(i, j),

(55)
is the natural one. The equivalence functorA maps theZ-linear map◦R onto the
B-linear map◦R, more precisely

A
(
◦R : (Z1×N )1×r → (Z1×N )1×k

)
=
(
◦R : (Z1×N )1×r → (Z1×N )1×k

)N

= ◦R : B1×r → B1×k.
(56)

In the sequel we therefore identify

Br×k = HomB(B
1×r,B1×k) = HomZ

(
(Z1×N )1×r, (Z1×N )1×k

)
,

in particularBk×k = ZNk×Nk ⊃ Glk(B) = GlNk(Z)

=
{
R ∈ ZNk×Nk; det(R) ∈ U(Z)

}

A(Z1×NrR) = (Z1×NrR)N = B1×rR ⊆ B1×k

dimZ(B
1×rR) = N dimZ(Z

1×NrR) = N rankZ(R).

(57)

HereU(Z) is the group of units or invertible elements ofZ.

Remark 4.3. The preceding identification (57) implies in particular that the Smith
form of matrices inZNr×Nk can be applied toR ∈ Br×k and thatR is equivalent to
a block matrix(D 0

0 0 ) whereD is a diagonal matrix ofZ-rank l = rankZ(R). If l =
mN+n, m, n ∈ N, n < N, one can assume moreover thatD = diag(d1, · · · , dm, dm+1)
where thedµ are diagonal inB = ZN×N and of fullZ-rankN or regular (nonzero-
divisors) inB for µ ≤ m. The row moduleB1×rR ⊂ B1×k is always projective,
but B-free only if theZ-rank l = mN + n is divisible byN or n = 0 and hence
dm+1 = 0. ThenR is row-equivalent to a matrixR′ ∈ Bm×k whose rows are a
B-basis of the row-moduleB1×rR = B1×mR′.

For b ∈ B = ZN×N andw = (w0, · · · , wN−1)
⊤ ∈ W = ŴN the action ofb on

w from (39) is defined by

b ◦ w =

(
N−1∑

ν=0

bµν ◦ wν

)

0≤µ≤N−1

. (58)

More generally we get

W k = (ŴN )k = ŴNk ∋ w = (w1, · · · , wk)
⊤,

wj = (wj,0, · · · , wj,N−1) ∈W = ŴN .
(59)

The matrixR ∈ Br×k from (54) induces theZ-linear system map

◦R :W k = ŴNk →W r = ŴNr, w 7→ R ◦ w, (R ◦ w)i =
k∑

j=1

R(i, j) ◦ wj ,

(R ◦ w)i,µ =

k∑

j=1

N−1∑

ν=0

R(i, j)µν ◦ wj,ν .

(60)
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The associated behavior is

B =
{
w ∈W k = ŴNk; R ◦ w = 0

}
∼=

Malgrange

HomB

(
B1×k/B1×rR,W

)
∼=

Morita
HomZ

(
Z1×Nk/Z1×NrR, Ŵ

)
.

(61)

The behaviorB is thus aBW - and aZŴ -behavior. Interpreted as the latter it is an
LTI behavior and the standard LTI systems theory for the injective cogenerator signal
moduleZŴ , for instance forF[∆]F

NN , can be applied to it. The system factor modules
of the behaviorB appear in the exact sequences

B1×r ◦R
−−→ B1×k can

−−→ M → 0

(Z1×N )1×r ◦R
−−→ (Z1×N )1×k can

−−→ ǫ0M → 0

whereM := B1×k/B1×rR = (ǫ0M)N , ǫ0M = Z1×Nk/Z1×NrR

(62)

and wherecan denotes the canonical map onto the factor module.
It is obvious that the preceding considerations can be applied to all matricesR ∈ Br×k

and therefore to allBW -behaviors and especially to all periodicAF
N-behaviors, but

not to all ZŴ -behaviors because the number of rows and columns ofR as a matrix
with entries inZ were assumed to be multiples ofN .
The quotient field

K := ZSZ =
{
s−1a; s ∈ SZ, a ∈ Z

}
, SZ := Z \ {0} ⊂ Z (63)

plays an important part in the LTI theory and thus here too. For Z = F[∆] it is the field
F(∆) of rational functions. It gives rise to the quotient ring

Q := BSZ = K⊗Z B =
{
s−1b; s ∈ SZ, b ∈ B

}
= KN×N (64)

that is asimple artinianK-algebra. By the standard LTI theory theZŴ -behavior
B from (61) isautonomousif and only if ǫ0M is a torsion moduleor, equivalently,
ǫ0MSZ = 0. TheBW -behaviorB is called autonomous if and only it is such as LTI
behavior, cf. [5, §4.3]. According to (62) this means thatM is aZ-torsion module or
MSZ = 0. ForZ = F[∆] autonomy is also equivalent to theF-finite dimensionality
of M andǫ0M . For the signal moduleBFN it also means that the trajectories inB are
determined by initial conditionsin the following sense: There is a numberd ∈ N such
that theinitial projection

B → (FN)dk, w 7→ (w(0), · · · , w(d− 1))⊤, (65)

is injective.
Input/output (IO) structuresof theBW -behaviorB are defined in the following fashion:
Let δj , j = 1, · · · , k, be the standard basis ofB1×k and

w := (δ1 +B1×rR, · · · , δk +B1×rR)⊤ ∈Mk (66)

the canonical set ofB-generators ofM . An IO-structure ofM is given by a subfamily
u = (u1, · · · ,um)⊤ ∈ Mm of w such that theui areB-linearly independent and
M/B1×mu is aZ-torsion module. After the usual permutation of thewj we assume
that

w = ( yu ) ∈M
p+m, y = (y1, · · · ,yp)

⊤, p+m = k. (67)
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Correspondingly the matrixR andB are decomposed as

R = (Dl,−Nl) ∈ Br×(p+m) andB =
{
( y
u ) ∈W

p+m; Dl ◦ y = Nl ◦ u
}
. (68)

The IO-property of( yu ) can be alternatively characterized as follows:

Lemma 4.4. For ( yu ) ∈ M
p+m as above andM0 := B1×p/B1×rDl the following

properties are equivalent:
(i) The decompositionw = ( yu ) is an IO-decomposition.
(ii) The sequence

0→ B1×m (◦(0,idm))
ind−−−−−−−−→ M

(
◦
(
idp

0

))
ind−−−−−−−−→ M0 → 0

η 7→ ηu, (ξ, η) ( y
u ) 7→ ξ +B1×rDl

(69)
is exact andM0 is aZ-torsion module.
(iii) The projectionB → Wm, w = ( y

u ) 7→ u, is surjective and theBW -behavior
B0 := {y ∈W p; Dl ◦ y = 0} is autonomous.
(iv) The induced mapQ1×m = B1×m

SZ
→MSZ , δi 7→

ui

1 , is aQ-isomorphism.
(v) The submoduleB1×r(Dl,−Nl) is free of dimensionp andDl has a left inverse in
Qp×r.
(vi) rankZ(Dl) = rankZ(R) = pN , i.e., (Dl,−Nl) ∈ Br×(p+m) = ZNr×N(p+m)

defines an IO-decomposition of theZŴ -behaviorB.
SinceB1×rR = B1×r(Dl,−Nl) is free of dimensionp we may always assumer = p
w.l.o.g.. In this caseDl ∈ Glp(Q) = GlNp(K) and the matrix

G = D−1
l Nl ∈ Qp×m = KNp×Nm (70)

is thetransfer matrixof the IO-behaviorB. It is characterized by the equationQ1×rR =
Q1×p(idp,−G).

Proof. (i) ⇐⇒ (ii): The exactness of (69) without the0 on the left is standard and
the remaining properties in (ii) are precisely the conditions of (i).
(ii) ⇐⇒ (iii): by duality sinceBW is an injective cogenerator.
(iii) ⇐⇒ (iv): This follows from the exactness ofM 7→ MSZ and the fact thatM0

is Z-torsion if and only ifM0
SZ

= 0.
(iv) =⇒ (v): (a) The isomorphism from (iv) implies

Q1×m ∼=MSZ
∼= Q⊗B M ∼= Q1×k/Q1×rR

=⇒dimZ(B
1×rR) = dimK(Q1×rR) = dimK(Q1×k)− dimK(Q1×m)

= (k −m)N2 = pN2 =⇒ B1×rR free, dimB(B
1×rR) = p.

(b) The torsion property ofM0 implies

0 =M0
SZ
∼= Q⊗B M0 ∼= Q1×p/Q1×rDl.

This is equivalent to the existence of a left inverse ofDl in Qp×r.
(v) =⇒ (iv): As in (iv) =⇒ (v) we conclude thatM0 is Z-torsion. This implies that

Q1×m →MSZ
∼= Q1×k/Q1×rR (71)

is surjective. Dimension count furnishes

dimK

(
Q1×k/Q1×rR

)
= dimK

(
Q1×k

)
− dimK

(
Q1×rR

)

= N2k −N2p = N2m = dimK

(
Q1×m

)
.
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The dimension equality over the fieldK implies that the surjection (71) is bijective.
(iv) ⇐⇒ (vi): By standard LTI theory the IO-property of theZŴ -behaviorB is
equivalent to the isomorphy

(◦(0, idNm))ind : K1×Nm ∼= K1×Nk/K1×Nr(Dl,−Nl).

By Morita equivalence this isomorphism is equivalent to theisomorphism from (iv).

Corollary and Definition 4.5. Assume w.l.o.g. thatr = p in Lemma 4.4. Then the
standard sequence

0→ B1×p ◦(Dl,−Nl)
−−−−−−−→ B1×(p+m) can

−−→M → 0 (72)

is exact and the following properties are equivalent:

(i) (Dl,−Nl) has a right inverse.

(ii) M is Z-free and then indeedB-free of dimensionm.

The representationG = D−1
l Nl is then called aleft coprime factorizationofG.

Proof. By Morita equivalenceZ-freeness andB-projectivity ofM coincide. Equation
(72) implies that (i) is equivalent to the existence of a direct decompositionB1×(p+m) ∼=
B1×p × M or the projectivity ofM . Lemma 4.2 implies thatM is B-free with
dimB(M) = m.

Recall that the behaviorB ∼= HomZ(ǫ0M, Ŵ ) ∼= HomB(M,W ) is controllableas
LTI, resp. as periodic behavior if and only ifM is Z-free, resp.B-projective.

Remark 4.6. Lemma 4.4 shows that an IO-decomposition of theBW -behavior is also
one of theZŴ -behaviorB, but there are many more IO-decomposition ofB asZŴ -
behavior than asBW -behavior. Whereas an arbitrary LTI behavior admits at least
one IO-decomposition this is not true for periodic behaviors since already the neces-
sary condition that the projective moduleB1×rR be free need not be satisfied. But
even if B1×rR is free of dimensionp and r = p w.l.o.g. there need not be a de-
compositionR = (Dl,−Nl) ∈ Bp×(p+m) (after a suitable column permutation) with
Dl ∈ Glp(Q), for instance in

N = 2 andR = ( ( 1 2
0 0 ),(

0 0
1 3 ) ) = ( 1 2 0 0

0 0 1 3 ) ∈ B1×2 = Z2×4.

So the IO-decomposition of a periodic behavior is an essential additional structure.
In [1, Def. 53] the authors define an IO-decomposition ofB as one of the LTI behavior,
but for the time-axisZ instead ofN here. For the further considerations in the present
paper this notion is too weak.

Lemma 4.7. Assume thatR = (D0
l ,−N

0
l ) ∈ Bp×(p+m) with D0

l ∈ Glp(Q) and
freeM := B1×(p+m)/B1×p(D0

l ,−N
0
l ). In other words,R = (D0

l ,−N
0
l ) is an IO-

decomposition andG := (D0
l )

−1N0
l is a left coprime factorization. Then there are

matricesD0
r , N

0
r , R

0
l , S

0
l , R

0
r , S

0
r ∈ B•×• of suitable sizes with the following proper-

ties:
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(i) The following two sequences are exact,

0→ B1×p ◦(D0

l ,−N0

l )−−−−−−−→ B1×(p+m)
◦

(
N0

r

D0

r

)

−−−−−→ B1×m → 0

0← B1×p
◦

(
S0

r

−R0

r

)

←−−−−−− B1×(p+m) ◦(R0

l ,S
0

l )←−−−−−− B1×m ← 0,

(73)

in particularD0
lG = N0

l andGD0
r = N0

r .

(ii) B1×p(D0
l ,−N

0
l ) = ker

(
◦
(

G
idm

)
: B1×(p+m) → Q1×m

)
. This shows that the

left coprime factorizationG = (D0
l )

−1N0
l is unique up to row equivalence of

(D0
l ,−N

0
l ).

(iii) The following matrix equations hold:

(D0
l ,−N

0
l )
(

S0

r

−R0

r

)
= idp, (R

0
l , S

0
l )
(

N0

r

D0

r

)
= idm, D

0
r ∈ Glm(Q)

(
D0

l −N0

l

R0

l S0

l

)(
S0

r N0

r

−R0

r D0

r

)
=
(

idp 0
0 idm

)
= idp+m,

(
D0

l −N0

l

R0

l S0

l

)−1

=
(

S0

r N0

r

−R0

r D0

r

)
.

(74)
ThenG = N0

r (D
0
r)

−1 is called aright coprime factorizationof G that is also

unique up to column equivalence of
(

N0

r

D0

r

)
.

(iv) All other quadrupelsSl, Rl, Rr, Sr ∈ B•×• with the properties from (i) and (iii)
(without the index0) are obtained with arbitraryX ∈ Bm×p by

(
Sr

−Rr

)
=
(

S0

r

−R0

r

)
−
(

N0

r

D0

r

)
X, (Rl, Sl) = (R0

l , S
0
l ) +X(D0

l ,−N
0
l ). (75)

This is a variant of the famousKučera-Youla parametrization.

(v) Generically (in the Zariski topology ofBm×p = ZNm×Np) or for almost allX
the additional inclusionsSl ∈ Glm(Q) andSr ∈ Glp(Q) hold. This means that
(Rl, Sl) is also an IO-decomposition.

Proof. SinceM is free of dimensionm equation (72) and replacement ofM byB1×m

furnish the first exact sequence in (73). The remaining assertions are elementary al-
gebra [16, Ch. 4], [3, Lemmas 2.3, 3.10]. The proof ofD0

r ∈ Glm(Q) follows
from idm = RlN

0
r + SlD

0
r = (RlG+ Sl)D

0
r . The first exact sequence in (73) and(

N0

r

D0

r

)
=
(

G
idm

)
D0

r imply (ii).

Lemma 4.8. An arbitrary matrixG ∈ Qp×m admits a left coprime factorizationG =
(D0

l )
−1N0

l as in Cor. 4.5 that, in turn, gives rise to all data of Lemma 4.7, in particular
to the right coprime factorizationG = N0

r (D
0
r)

−1.

Proof. Item (ii) of Lemma 4.7 suggests to define

U := ker
(
◦
(

G
idm

)
: B1×(p+m) → Q1×m

)

=⇒M := B1×(p+m)/U =
ident.

B1×(p+m)
(

G
idm

)
⊆ Q1×m.
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All f.g. B-submodules of theK-spaceQ1×m areZ-torsionfree andB-projective.
HenceM is B-projective and

MSZ = Q1×(p+m)
(

G
idm

)
= Q1×m

=⇒ dimZ(M) = dimK (MSZ) = dimK

(
Q1×m

)
= N2m.

We infer thatM isB-free of dimensionm and induces a direct decompositionB1×(p+m) ∼=
U ×M . This and Lemma 4.2 , in turn, imply thatU isB-free of dimensionp and thus
of the form

U = B1×p(D0
l ,−N

0
l ) with dimB(U) = p, D0

lG = N0
l and(D0

l ,−N
0
l ) = D0

l (idp,−G)

=⇒ Np = rankZ(D
0
l ,−N

0
l ) = rankZ(D

0
l ).

With Lemma 4.4,(vi), we conclude that(D0
l ,−N

0
l ) is an IO-decomposition and with

Cor. 4.5,(ii), thatG = (D0
l )

−1N0
l is the left coprime factorization, unique up to row

equivalence.

5 Stabilizing controllers

In this section we construct and parametrize all stabilizing controllers of an IO-F[∆]N×NF
N-

behavior by reduction to the LTI case.
The assumptions and notations of Section 4 remain in force with the specialization to
the data from Section 3. In addition we assume the base fieldF := R,C of real or
complex numbers, the polynomial algebraZ = F[∆] and the subalgebraF(∆)pr ⊂
K = F(∆) of proper rational functions [16, Ch. 2]. The relevant signal spaces are

F[∆]Ŵ := F
NN andBW = ŴN = F

N, cf. Thm. 3.14, with the action(∆ ◦ ŵ)(τ) =

ŵ(τ +N) for ŵ ∈ Ŵ andτ ∈ NN .
For stabilization we choose a nonempty subsetD of the open unit disc{λ ∈ C; |λ| < 1}
and, forF = R in addition, thatD is stable under conjugation and contains at least one
real number, cf. [3, p. 970, (5)]. The saturated submonoidSD of all D-stableor just
stable polynomials consists of the polynomials inZ = F[∆] whose roots lie inD. The
quotient ringsZD := F[∆]SD ⊂ F(∆), resp.S := SD := ZD

⋂
F(∆)pr [16, p. 14]

are the rings ofstable, resp. of stable and properrational functions. All these rings
are principal ideal domains. If∆ − α ∈ SD thenZD is the quotient ring ofSD with
powers of(∆−α)−1 as denominators, i.e.,ZD = S(∆−α)−1 [3, (5)]. Algorithms forS
use the fact that this ring is euclidean [16, §2.1] or are reduced to standard polynomial
algorithms overF[(∆− α)−1] [3, §7].
A Z-moduleP gives rise to itsZD-quotient module

PD := PSD :=
{
s−1x; x ∈ P, s ∈ SD

}
. (76)

In particular, the modulêWD is an injective cogenerator overZD [3, §2]. This was
an essential tool in [3] for the construction of compensators and will below be used
for periodic systems. All commutative rings above give riseto theirN × N -matrix
extensions

Z = F[∆] ⊂ ZD = ZSD ⊂ K = F(∆)⋂ ⋂ ⋂

B = ZN×N ⊂ BD := BSD = ZN×N
D

⊂ Q = KN×N

andF[(∆− α)−1] ⊂ S = SD ⊂ ZD, C := SN×N ⊂ BD = ZN×N
D

(77)



5 STABILIZING CONTROLLERS 19

to which the theory of Section 4 is applicable. Notice that only constant polynomials
in Z = F[∆] are proper and contained inSD. By Morita equivalence the signal module
WD :=WSD = F

N

D
is an injective cogenerator overBD.

We assume an IO-behavior with the following data:

(Dl,−Nl) ∈ Bp×(p+m) = ZNp×N(p+m), Dl ∈ Glp(Q) = GlNp(K),

U = B1×p(Dl,−Nl) ⊆ B1×(p+m) = Z1×N(p+m), M := B1×(p+m)/U

M0 := B1×p/B1×pDl, G := D−1
l Nl ∈ Qp×m = KNp×Nm,

B :=
{
( y
u ) ∈W

p+m = ŴN(p+m); Dl ◦ y = Nl ◦ u
}
∼= HomB(M,W )

B0 :=
{
y ∈W p = ŴNp; Dl ◦ y = 0

}
∼= HomB(M

0,W )

BD :=
{
( y
u ) ∈W

p+m
D

= Ŵ
N(p+m)
D

; Dl ◦ y = Nl ◦ u
}
∼= HomBD

(MD,WD)

B0D :=
{
y ∈W p

D
= ŴNp

D
; Dl ◦ y = 0

}
∼= HomBD

(M0
D,WD)

(78)

where by (61)B can be interpreted as a (periodic)BW -behavior or as an LTIZŴ -
behavior. In its latter form it admits the standard LTI stabilization theory [7], [16],[4],
[3]. It turns out that all LTI results forB can be translated to results concerning the
periodic behavior. We are going to do this below. By definition the IO-behavior is(D)-

stableif its autonomous partB0 :=
{
y ∈W p = ŴNp; Dl ◦ y = 0

}
has this property.

Stability is characterized in the following lemma and requires thecharacteristic variety
andpolynomial-exponential signalsthat we recall for the base fieldC and the signal
moduleC[∆]C

NN . Its torsion module admits the primary ormodal decomposition

torC[∆](C
NN ) = ⊕λ∈CC

NN (λ), CNN (λ) =

{
C[τ/N ](λτ/N )τ∈NN if λ 6= 0

C
(NN) if λ = 0

C
NN (λ) = ⊕∞

k=0Ceλ,k, eλ,k(τ) :=

{(
τ/N
k

)
λ(τ/N)−k if λ 6= 0

δτ/N,k if λ = 0

(∆− λ)l ◦ eλ,k =

{
eλ,k−l if k ≥ l

0 if k < l.

(79)
HereC(NN) ⊂ C

NN consists of the sequenceŝw = (ŵ(τ))τ∈NN with finite support
{τ ∈ NN ; ŵ(τ) 6= 0}. The quotientsτ/N come, of course, from the fact thatNN
contains multiples ofN only andC[τ/N ] consists of polynomial functions ofτ/N . If

B̂ =
{
ŵ ∈

(
C

NN
)ℓ

; R̂ ◦ ŵ = 0
}
, R̂ ∈ C[∆]k×ℓ, rank(R̂) = ℓ, (80)

is any autonomous behavior itscharacteristic varietyor set ofpolesis the finite set

char(B̂) :=
{
λ ∈ C; rankC(R̂(λ)) < rank(R̂) = ℓ

}

=
{
λ ∈ C; B̂

⋂
C

NN (λ)ℓ 6= 0
}
=
{
λ ∈ C; B̂

⋂
C

ℓeλ,0 6= 0
}

and then

B̂ = ⊕λ∈char(B̂)

(
B̂
⋂

C
NN (λ)ℓ

)
(modal decomposition).

(81)
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Hence all trajectorieŝw of B̂ are exponentially and asymptotically stable or satisfy
limτ→∞ ŵ(τ) = 0 if and only if char(B̂) is contained in the open unit disc. Slightly
different statements hold forF = R. The preceding considerations are applicable to
B0 from (78).

Lemma 5.1. ([3, Thm. 3.2]) For the IO-behavior from(78) the following properties
are equivalent:

(i) B is (D)-stable, i.e., by definition,B0
D
= 0 or M0

D
= 0.

(ii) The characteristic variety ofB0 is contained inD, i.e.,

char(B0) = {λ ∈ C; rankC(Dl(λ)) < rankZ(Dl) = Np} ⊂ D. (82)

(iii) Dl ∈ Glp(BD) = GlNp(ZD).

(iv) (a)G = D−1
l Nl ∈ B

p×m
D

= Z
Np×Nm
D

.
(b)MD is ZD-free.
According to Cor. 4.5 condition (b) implies thatMD is BD-free of dimension
m, (Dl,−Nl) has a right inverse inB(p+m)×p

D
= Z

N(p+m)×Np
D

and thatG =
D−1

l Nl is theleft coprime factorizationofG overBD.

SinceD is assumed to be a subset of the open unit disc all trajectories of the (D)-stable
behaviorB0 are asymptotically stable and this is the decisive consequence of stability.

Notice that Lemma 5.1 uses the fact thatBD
WD is an injective cogenerator.

A D-stabilizingoutput feedback controllerC′ ofB is a behavior that is interconnected to
B in the usual way such that the interconnected behaviorD′ is aD-stable IO-behavior,
i.e., satisfiesD′0

D
= 0; cf. Algorithm 5.2 for the details. This latter condition in-

volves the localized signal spaceWD only and therefore it suffices to considerBD
WD-

behaviors only. We do this in the sequel. Conversely, every such behavior is the lo-
calization of aBW -behavior. Following Vidyasagar [16] we construct onlyD′ with
proper transfer matrix and call the controllersC′ properlyD-stabilizing. This requires
to use the ringsS andC = SN×N and their modules instead ofZD andBD.
The LTI behaviorB is D-stabilizable, i.e., admits aD-stabilizing compensator, if and
only if it satisfies condition (iv),(b), of Lemma 5.1. This means thatG = D−1

l Nl is the
left coprime factorization overBD.

Algorithm 5.2. We assume that the givenBW -IO-behaviorB is D-stabilizable or, in
other words, thatG = D−1

l Nl is the left coprime factorization overBD. According to
[16, Ch. 5, Thm. 5.2.1], [4], [3, Thm. 3.12] all properlyD-stabilizing controllersCD of
BD and their interconnected behaviorsDD are obtained with the following steps: We
apply Lemma 4.8 and Lemma 4.7 to the ringsS ⊂ K = quot(S) andC = SN×N ⊂
Q = KN×N and the transfer matrixG = D−1

l Nl and construct the matrices

D0
l , N

0
l , D

0
r , N

0
r , S

0
l , R

0
l , S

0
r , R

0
r ∈ C•×• = SN•×N• (83)

such that (i), (ii), (iii) of Lemma 4.7 hold. In particular,G = (D0
l )

−1N0
l = N0

r (D
0
r)

−1

are the left, resp. right coprime factorizations overS and overC. All other quadrupels
Sl, Rl, Sr, Rr with the same properties are obtained by the choice of an arbitrary matrix
X ∈ Cm×p = SNm×Np and

(
Sr

−Rr

)
=
(

S0

r

−R0

r

)
−
(

N0

r

D0

r

)
X, (Rl, Sl) = (R0

l , S
0
l ) +X(D0

l ,−N
0
l ). (84)
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They satisfy
(

D0

l −N0

l

Rl Sl

)
∈ Glp+m(C) = GlN(p+m)(S),

(
D0

l −N0

l

Rl Sl

)−1

=
(

Sr N0

r

−Rr D0

r

)
. (85)

For almost allX the matricesSl andSr satisfydetS(Sl) 6= 0 anddetS(Sr) 6= 0 or,
equivalently,Sl ∈ Glm(Q) = GlNm(K) andSr ∈ Glp(Q) = GlNp(K). The left
coprime factorizationG = (D0

l )
−1N0

l overS andC is also such overZD ⊃ S and
BD ⊃ C. According to Lemma 4.7 it is unique up to row equivalence andtherefore

G = D−1
l Nl = (D0

l )
−1N0

l , B
1×p
D

(Dl,−Nl) = B
1×p
D

(D0
l ,−N

0
l ) =⇒

BD =
{
( y1

u1
) ∈W p+m

D
; Dl ◦ y1 = Nl ◦ u1

}
=
{
( y1

u1
) ∈W p+m

D
; D0

l ◦ y1 = N0
l ◦ u1

}
.

(86)
The controllerCD of BD asBD

WD-behavior is given by the equations

CD :=
{
( u2

y2
) ∈W p+m

D
; Rl ◦ u2 + Sl ◦ y2 = 0

}
. (87)

If Sl ∈ Glm(Q) the controller is also an IO-behavior with inputu2 and outputy2. The
output feedbackBD

WD-behaviorDD is defined by (see Figure 1)

u := ( u2

u1
) , y := ( y1

y2
) ∈W p+m

D

DD :=
{
( y
u ) ∈W

(p+m)+(p+m)
D

;
( y1

u1+y2

)
∈ BD,

( y2

u2+y1

)
∈ CD

}

=

{
( y
u ) ∈W

(p+m)+(p+m)
D

;

{
D0

l ◦ y1 = N0
l ◦ (u1 + y2)

Rl ◦ (u2 + y1) + Sl ◦ y2 = 0

}

=
{
( y
u ) ∈W

(p+m)+(p+m)
D

; D ◦ y = N ◦ u
}

whereD :=
(

D0

l −N0

l

Rl Sl

)
∈ Glp+m(C), N :=

(
0 N0

l

−Rl 0

)
∈ C(p+m)×(p+m).

(88)

The numberingu = ( u2

u1
) of the components ofu is chosen such that bothu andy

belong toW p+m
D

. Equation 85 implies thatDD is aBD
WD IO-behavior with inputu and

u1
r ✲

u1 + y2

+
✲ BD(B)

✲r

y1

❄r
u2

r✛
y1 + u2

+
✛CD (C′)✛r

y2

✻
r

Figure 1: The interconnected behaviorDD (D′).

outputy and isD-stable, cf. Lemmas 4.4 and 5.1. Its transfer matrix inC(p+m)×(p+m)

is

H =
(

Hy1,u2
Hy1,u1

Hy2,u2
Hy2,u1

)
:= D−1N =

(
Sr N0

r

−Rr D0

r

)(
0 N0

l

−Rl 0

)
=
(85)

(
−N0

rRl SrN
0

l

−D0

rRl −RrN
0

l

)
.

(89)
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The unique controllableBW -compensatorC′ of B with localizationCD = C′
D

is ob-
tained as follows: Define the f.g. projective modules

V := B1×m
D

(Rl, Sl) ⊆ B
1×(p+m)
D

, V ′ := B1×(p+m)
⋂
V ⊆ B1×(p+m)

=⇒ B1×(p+m)/V ′ ⊆ B
1×(p+m)
D

/V, V ′
D = V,

=⇒ dimZ(V
′) = dimZD

(V ′
D) = dimZD

(V ) = N2 dimBD
(V ) = N2m.

(90)

Moreover, sinceB1×(p+m)
D

/V isZ-free so is itsZ-submoduleB1×(p+m)/V ′ and thus
the latter isB-projective. Again by Lemma 4.2 we infer thatV ′, resp.B1×(p+m)/V ′

areB-free of dimensionsm, resp.p. In particular,V = B1×m(R′
l, S

′
l)where(R′

l, S
′
l) ∈

Bm×(p+m) hasB-linearly independent rows. Define

C′ := V ′⊥ :=
{
( u2

y2
) ∈W p+m; R′

l ◦ u2 + S′
l ◦ y2 = 0

}
.

V ′
D = B1×m

D
(R′

l, S
′
l) = V = B1×m

D
(Rl, Sl)

=⇒ C′D =
(
V ′⊥

)
D
= V ⊥ = CD.

(91)

ThereforeCD is the localization ofC′. SinceB1×(p+m)/V ′ is B-free the compensator
C′ is controllable. The algorithmic computation ofV ′ andC′ is explained in [3, §7].
The behaviorC′ is the unique controllable one withC′

D
= CD. There are less useful

noncontrollable behaviorsC′′ with C′′
D
= CD.

The interconnection of the given behaviorB with C′ is given by

D′ =
{
( y
u ) ∈W

(p+m)+(p+m); D′ ◦ y = N ′ ◦ u
}

where

D′ :=
(

Dl −Nl

R′

l S′

l

)
∈ B(p+m)×(p+m)

⋂
Glp+m(Q)

N ′ :=
(

0 Nl

−R′

l 0

)
∈ B(p+m)×(p+m).

(92)

SinceBD is the localization ofB andCD that ofC′ we infer (cf. [3, Cor. 3.8])

B
1×(p+m)
D

(D′,−N ′) = B
1×(p+m)
D

(D,−N)

=⇒ D′
D = DD, D

′0
D = D0

D = 0, H = D′−1
N ′ = D−1N.

(93)

Summing up we obtain

Theorem 5.3. Let B be aD-stabilizable periodic IO-behavior, i.e.,(Dl,−Nl) has

a right inverse inB(p+m)×p
D

. The behaviorsC′,D′, constructed above, areBW -
behaviors, i.e. periodic behaviors. The feedback interconnectionD′ is a D-stable
IO-behavior with proper transfer matrixH ∈ C(p+m)×(p+m), C = SN×N , from (89).
Thus the compensatorC′ is properlyD-stabilizing and moreover controllable and all
such compensators are obtained in the described fashion. For almost allX ∈ Cm×p

from (84) the matricesSl and S′
l belong toGlm(Q) and bothCD and C′ are IO-

behaviors with inputu2 and outputy2.

Remark 5.4. (Properness of the controller) Consider the data of Algorithm 5.2 and
Thm. 5.3. By construction the interconnected IO behaviorsD′ andDD have a proper
transfer matrixH whereas properness of the plant transfer matrixG = D−1

l Nl =
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(D0
l )

−1N0
l is not assumed. Recall thatalmost allconstructed controllers are IO be-

haviors and thus have a transfer matrixGC , in detail

C′ =
{
( u2

y2
) ∈W p+m; S′

l ◦ y2 = −R′
l ◦ u2

}
,

C′D = CD =
{
( u2

y2
) ∈W p+m

D
; Sl ◦ y2 = −Rl ◦ u2

}

S′
l ∈ Bm×m

⋂
Glm(Q), Sl ∈ Cm×m

⋂
Glm(Q), R′

l ∈ Bm×p, Rl ∈ Cm×p,

GC = −(S′
l)

−1R′
l = −S

−1
l Rl ∈ Qm×p = F(∆)Nm×Np.

(94)
Properness ofGC , i.e.,GC ∈ F(∆)Nm×Np

pr , is necessary and sufficient in order thatC′

can be implemented with elementary building blocks. In [3, Thm. 3.27] it was shown
thatalmost allcontrollers from Thm. 5.3 are IO behaviors with a proper transfer matrix
GC . Moreover, if the transfer matrixG of the plant is strictly proper then all controllers
C′ from Thm. 5.3 are IO behaviors with proper transfer matrix, cf. [16, Cor. 5.2.20].
Symmetrically, if the controller is an IO behavior with strictly proper transfer matrix
then the plant transfer matrixG is proper.

.

6 Tracking and disturbance rejection

We assume aD-stabilizable plant as in Theorem 5.3 and consider the properly D-
stabilizing controllersC′ andC′

D
= CD of this theorem. The input signalsu1, resp.

u2 of D′ are interpreted as disturbances of the input, resp. of the output ofB. In ad-
dition we assume a reference signalr ∈ W p. We assume that a nonzeroψ ∈ F[∆] is
given such that

ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0, (95)

i.e., that the signalsu1, u2, r are generated by an autonomous system. We consider the
interconnected tracking system (see Figure 2)

T ′ :=
{(

y
u
r

)
∈W (p+m)+(p+m)+p; (∗)

}
where

(∗) Dl ◦ y1 = Nl ◦ (u1 + y2), S
′
l ◦ y2 +R′

l ◦ (u2 + y1 − r) = 0

ψ ◦ u1 = 0, ψ ◦ u2 = 0, ψ ◦ r = 0.

(96)

So the input signal of the controller is the error signale := y1 + u2 − r that is the

u1
r ✲

u1 + y2

+
✲ B ✲r r✛y1 + u2 u2

❄r
r
r✛

y1 + u2 − r

−
✛C′✛r

y2

✻
r

Figure 2: The tracking behaviorT ′.
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difference between the disturbed outputy1+u2 of the plant and the reference signalr.
The aim is to construct controllers withD-stablee for all u1, u2, r satisfying (95). The
error behavior is the behavior of all error signals, i.e.,

E ′ := im
(
T ′ →W p,

(
y
u
r

)
7→ e = y1 + u2 − r

)

=
{
y1 + u2 − r ∈W

p;
(

y
u
r

)
∈ T ′

}
.

(97)

The controllerC′ is said totrack the reference signalr and to reject disturbancesu1
andu2 that satisfy (95) ifE ′

D
= 0. If this is the case all error signals are asymptotically

stable, cf. (79)-(81) and Lemma 5.1.

Theorem 6.1. (i) TheD-stabilizing controllerC′ from Thm. 5.3 tracks the reference
signalr and rejects the disturbancesu1 andu2 satisfying(95) if and only if

Z := ψ−1Sr ∈ B
p×p
D

. (98)

(ii) There is such a controller if and only if the inhomogeneous linear matrix equation

S0
r = N0

rX + ψZ (99)

has a solutionX ∈ Cm×p = SNm×Np andZ ∈ B
p×(p+m)
D

.

The computation of the solution(X,Z) is described in [3, §7].

Proof. (i) Since the functor(−)D is exact and hence

E ′D := im
(
T ′
D →W p

D
,
(

y
u
r

)
7→ e = y1 + u2 − r

)

the conditionE ′
D
= 0 holds if and only if the following implication holds:





(
y
u
r

)
∈W

(p+m)+(p+m)+p
D

Dl ◦ y1 = Nl ◦ (u1 + y2), S
′
l ◦ y2 +R′

l ◦ (u2 + y1 − r) = 0

ψ ◦ u1 = 0, ψ ◦ u2 = 0, ψ ◦ r = 0

=⇒ e = 0 (100)

Since

B
1×p
D

(Dl,−Nl) = B
1×p
D

(D0
l ,−N

0
l ), B

1×m
D

(R′
l, S

′
l) = B1×m

D
(Rl, Sl) (101)

the implication (100) is equivalent to the implication




(
y
u
r

)
∈W

(p+m)+(p+m)+p
D

, y = ( y1

y2
) , u = ( u2

u1
) ,

D0
l ◦ y1 = N0

l ◦ (u1 + y2), Sl ◦ y2 +Rl ◦ (u2 + y1 − r) = 0

ψ ◦ u1 = 0, ψ ◦ u2 = 0, ψ ◦ r = 0

=⇒ e = 0

(102)
or, in shorter notation with (88), to

{
D ◦ ( y1

y2
) = N ◦

(
u2−r
u1

)
or y = H ◦

(
u2−r
u1

)

ψ ◦ ( ur ) = 0
=⇒ e = 0. (103)
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With H =
(

−N0

rRl SrN
0

l

−D0

rRl −RrN
0

l

)
we get the equivalent implication

ψ ◦ ( ur ) = 0 =⇒ e = y1 + u2 − r = (idp−N
0
rRl) ◦ (u2 − r) + SrN

0
l ◦ u1

=
(105)

SrD
0
l ◦ (u2 − r) + SrN

0
l ◦ u1 = (SrD

0
l , SrN

0
l ,−SrD

0
l ) ◦ (

u
r ) = 0.

(104)

Here we used (85), i.e.,
(

Sr N0

r

−Rr D0

r

)(
D0

l −N0

l

Rl Sl

)
=
(

idp 0
0 idm

)
=⇒ idp−N

0
rRl = SrD

0
l . (105)

We finally derive the equivalent implication

∀
(

u2

u1

r

)
∈W p+m+p

D
: ψ ◦

(
u2

u1

r

)
= 0 =⇒ (SrD

0
l , SrN

0
l ,−SrD

0
l ) ◦

(
u2

u1

r

)
= 0.

(106)
SinceBD

WD is an injective cogenerator this is equivalent to

(SrD
0
l , SrN

0
l ,−SrD

0
l ) ∈ B

p×(p+m+p)
D

ψ

⇐⇒ ψ−1Sr(D
0
l ,−N

0
l ) ∈ B

p×(p+m)
D

⇐⇒ Z := ψ−1Sr = ψ−1Sr(D
0
l ,−N

0
l )
(

Sr

−Rr

)
∈ B

p×p
D

.

(107)

(ii) Recall from (84) that
(

Sr

−Rr

)
=
(

S0

r

−R0

r

)
−
(

N0

r

D0

r

)
X. (108)

Inserting this into (98) furnishes the inhomogeneous equation (99)

S0
r = N0

rX + ψZ.

So (99) follows from the properties of the controllerC′. If, conversely, (99) has a
solution(X,Z) one uses Algorithm 5.2 to define the controllerCD and thenC′ with
thisX. Then (99) implies (98) and therefore the controllerC′ tracksr and rejectsu1
andu2.

A more general tracking interconnectionT ′ than in (96) assumes an additional
D-stable IO-behaviorB2 with proper (andD-stable) transfer matrixTl ∈ Cm×p (cf.
Lemma 5.1) that transforms the reference signalr of dimensionp into its outputr2 of
dimensionm:

B2 :=
{
( r2r ) ∈Wm+p; D2

l ◦ r2 = N2
l ◦ r

}
,

(D2
l ,−N

2
l ) ∈ Bm×(m+p), D2

l ∈ Glm(Q), Tl := (D2
l )

−1N2
l ∈ Cp+m.

(109)

Notice thatB2 can be implemented sinceTl is proper. From Lemma 5.1 we know that
D2

l ∈ Glm(BD) and thatTl = (D2
l )

−1N2
l is a left coprime factorization overBD. For

a given controllerC′ according to Thm. 5.3 the generalized interconnected tracking
behaviorT ′ is defined by the equations

Dl ◦ y1 = Nl ◦ (u1 + y2), S
′
l ◦ y2 +R′

l ◦ (y1 + u2) = r2, D
2
l ◦ r2 = N2

l ◦ r

ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0.
(110)

The error signal ise := y1 +u2− r again. By definition the matrices(R′
l, S

′
l , Tl) form

an(R,S, T )-controller if all error signalse of T ′ areD-stable, i.e., if the (autonomous)
error behaviorE of all error signals isD-stable or satisfiesED = 0.
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Theorem 6.2. Consider theD-stable IO-behaviorB2 with proper transfer matrixTl
from (109) and a stabilizing controllerC′ according to Thm. 5.3 with its associated
data. The matrices(R′

l, S
′
l , Tl) form an(R,S, T )-controller if and only if

ψ−1Sr, ψ
−1N0

r (Tl −Rl) ∈ B
p×p
D

. (111)

Proof. For signals with components inWD the equations (110) are equivalent to

D0
l ◦ y1 = N0

l ◦ (u1 + y2), Sl ◦ y2 +Rl ◦ (y1 + u2) = r2, D
2
l ◦ r2 = N2

l ◦ r,

ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0, y, u, r, r2 ∈W
•
D .

(112)
Due to
(

D0

l −N0

l

Rl Sl

)−1

=
(

Sr N0

r

−Rr D0

r

)
∈ Glp+m(C), D2

l ∈ Glm(BD), Tl ∈ Cm×p,

r2 = Tl ◦ r, idp = SrD
0
l +N0

rRl, H =
(

−N0

rRl SrN
0

l

−D0

rRl −RrN
0

l

) (113)

the equations (112) are equivalent to

y = H ◦ u+
(

Sr N0

r

−Rr D0

r

) (
0
Tl

)
◦ r, ψ ◦ r = 0, ψ ◦ u1 = 0, ψ ◦ u2 = 0 (114)

that imply

y1 = −N0
rRl ◦ u2 + SrN

0
l ◦ u1 +N0

r Tl ◦ r,

e = y1 + u2 − r = (SrD
0
l , SrN

0
l , N

0
r Tl − idp) ◦ (u2, u1, r)

⊤,

N0
r Tl − idp = N0

r (Tl −Rl)− SrD
0
l .

(115)

By definition the matrices(R′
l, S

′
l , Tl) define an(R,S, T )-controller if and only if the

equations (112) implye = 0. By means of (115) this is equivalent to the implication

ψ ◦ (u2, u1, r)
⊤ = 0 =⇒ (SrD

0
l , SrN

0
l , N

0
r Tl − idp) ◦ (u2, u1, r)

⊤ = 0. (116)

By the same argument as in the proof of Thm. 6.1 equations (116) and (112) are
equivalent and this completes the proof.

Remark 6.3. In Thm. 6.1 assume thatSr = ψS′
r, S

′
r ∈ B

p×p
D

. Then condition (98) is
trivially satisfied and moreover

idp = D0
l Sr +N0

l Rr = (ψD0
l )S

′
r +N0

l Rr. (117)

This implies that(ψD0
l ,−N

0
l ) is right invertible overBD. Notice that in (98) and (99)

ψ can be multiplied with a unit inZD = S(∆−α)−1 and hence we may assume that
ψ ∈ S.

In the sequel we assume thatψ ∈ S and that(ψD0
l ,−N

0
l ) has a right inverse(

S′

r

−R0

r

)
even inC(p+m)×p, i.e.,

idp = (ψD0
l )S

′
r +N0

l R
0
r = D0

l (ψS
′
r) +N0

l R
0
r = D0

l S
0
r +N0

l R
0
r , S

0
r = ψS′

r.
(118)
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Thus
(

S0

r

−R0

r

)
is a right inverse of(D0

l ,−N
0
l ) in C(p+m)×p and this can be completed

with the matrices from (83), (84), (85) satisfying

(
Sr

−Rr

)
=
(

S0

r

−R0

r

)
−
(

N0

r

D0

r

)
X, (Rl, Sl) = (R0

l , S
0
l ) +X(D0

l ,−N
0
l ), X ∈ Cm×p

(119)
and
(

D0

l −N0

l

Rl Sl

)
∈ Glp+m(C) = GlN(p+m)(S),

(
D0

l −N0

l

Rl Sl

)−1

=
(

Sr N0

r

−Rr D0

r

)
, S0

r = ψS′
r.

(120)
For the robustness assertion of the next Thm. 6.4 we employ the data and results of [16,
§2.2] and assume that the stability regionD is open. Then‖d‖ := maxz∈C\D |d(z)| is a
norm onS and induces maximum norms onSk×ℓ andGlℓ(S). The product of matrices
is continuous andGlℓ(S) is an open topological subgroup ofSℓ×ℓ. A stabilizing track-
ing controller with matrices(Rl, Sl) from Thm. 6.1 is calledrobustif it is a controller
with the same properties for all nearby plants in the just defined norm.

Theorem 6.4. Assume w.l.o.g. thatψ ∈ S and that(ψD0
l ,−N

0
l ) has a right inverse

in C(p+m)×p = SN(p+m)×Np.
(i) Consider the matrices from(118) and complete them to those of(83). Choose a
matrixX ∈ Cm×p and define the matrices from(119). Then the controller defined by
the matrices(Rl, Sl, Rr, Sr) from (119)satisfies the necessary and sufficient condition
for tracking and disturbance rejection from Thm. 6.1, i.e.,ψ−1Sr ∈ B

p×p
D

, if and only
if N0

rX ∈ B
p×p
D

ψ, for instance ifX ∈ Cm×pψ.
(ii) Each controller from (i) is robust.

Proof. (i) SinceS0
r = ψS′

r ∈ Cp×pψ ⊂ B
p×p
D

ψ the assertion follows fromSr =
S0
r −N

0
rX.

(ii) Consider a controller according to (i) and especially the matrices
(

D0

l −N0

l

Rl Sl

)(
Sr N0

r

−Rr D0

r

)
=
(

idp 0
0 idm

)
, Sr ∈ B

p×p
D

ψ, ψ ∈ S. (121)

Now consider a plant(D̃0
l ,−Ñ

0
l ) sufficiently near to(D0

l ,−N
0
l ). Then

U := (D̃0
l ,−Ñ

0
l )
(

Sr

−Rr

)
near(D0

l ,−N
0
l )
(

Sr

−Rr

)
= idp

=⇒ U ∈ GlNp(S) = Glp(C),
(

S̃r

−R̃r

)
:=
(

Sr

−Rr

)
U−1 ∈ C(p+m)×p,

=⇒ idp = (D̃0
l ,−Ñ

0
l )
(

S̃r

−R̃r

)
, S̃r ∈ B

p×p
D

ψ.

Moreover
(Rl, Sl)

(
S̃r

−R̃r

)
= (Rl, Sl)

(
Sr

−Rr

)
U−1 = 0.

Then there is a unique column
(

Ñr

D̃r

)
∈ C(p+m)×m such that

(
D̃0

l −Ñ0

l

Rl Sl

)(
S̃r Ñr

−R̃r D̃r

)
=
(

idp 0
0 idm

)
, S̃r = SrU

−1 ∈ B
p×p
D

ψ, ψ ∈ S. (122)

According to Thm. 6.1 the last equation says that the controller with the equation
Rl ◦ u2 + Sl ◦ y2 = 0 is a properlyD-stabilizing controller of the plant with the
equationD̃0

l ◦ y1 = Ñ0
l ◦ u1 and that this controller tracks signalsr and rejects signals
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u1 andu2 satisfying (95). So the controller(Rl, Sl) stabilizes a whole family of plants
(D̃0

l ,−Ñ
0
l ) around the plant(D0

l ,−N
0
l ) and this is the defining property of robustness.

Lemma 6.5. For the left and right coprime factorizationsG = (D0
l )

−1N0
l = N0

r (D
0
r)

−1

overC = SN×N andψ ∈ S the following properties are equivalent:

1. (ψ idp, N
0
l ) is right invertible.

2. (ψ idp, N
0
r ) is right invertible. .

3. (ψD0
l ,−N

0
l ) is right invertible.

Proof. We assume w.l.o.g. thatψ is not a unit. This impliesp ≤ m.
3. =⇒ 1.: obvious.
1. =⇒ 3.: Consider all primesσ of S and their residue fieldsk(σ) := S/Sσ ∋ f :=
f + Sσ, f ∈ S. Recall that a matrixR ∈ SNp×ℓ is right invertible if and only if
rankk(σ)(R) = Np for all primesσ of S. If 1. is satisfied we conclude

∀ primesσ ∈ S : Np = rankk(σ)(D
0
l ,−N

0
l ) = rankk(σ)(ψ idNp, N0

l )

=⇒ ∃ ( A
B ) ∈ k(σ)N(p+m)×Np : D0

lA+N0
l B = idNp

=⇒

{
if ψ = 0 : rankk(σ)(ψD

0
l ,−N

0
l ) = rankk(σ)(ψ idNp, N0

l ) = Np

if ψ 6= 0 : ψD0
l ((ψ)

−1A) +N0
l B = idNp =⇒ rankk(σ)(ψD

0
L,−N

0
l ) = Np

=⇒ ∀ primesσ ∈ S : rankk(q)(ψD
0
L,−N

0
l ) = Np =⇒ 3.

1. ⇐⇒ 2.: N0
l andN0

r are equivalent. The equivalence of 1. and 2. is then shown as
that of 1. and 3..

According to [16, Thm. 2 on p. 296] the condition 2. of Lemma 6.5 characterizes
the existence of robust compensators in the LTI case and condition 3. is precisely the
assumption of Thm. 6.4.

Corollary 6.6. Assume a controller according to Thm. 6.4,(i), and additionally theD-
stable periodic IO-behaviorB2 from (109)with the proper transfer matrixTl ∈ Cm×p.
If ψ−1(Tl −Rl) ∈ B

m×p
D

the matrices(R′
l, S

′
l , Tl) form arobust(R,S, T )-controller,

cf. [4, (6.38)].

References

[1] J. Aleixo, J.W. Polderman, P. Rocha, ’Representations and structural properties
of periodic systems’,Automatica43(2007), 1921-1931

[2] S. Bittanti, P. Colaneri,Periodic Systems: Filtering and Control, Springer, New
York, 2009

[3] I. Blumthaler, U. Oberst, ’Design, parametrization, and pole placement of sta-
bilizing output feedback compensators via injective cogenerator quotient signal
modules’,Linear Algebra and its Applications436(2012), 963-1000

[4] H. Bourlès,Linear Systems, ISTE-Wiley, London, 2010



REFERENCES 29

[5] H. Bourlès, B. Marinescu, U. Oberst, ’The injectivity ofthe canonical signal
module for multidimensional linear systems of difference equations with vari-
able coefficients’,Multidimensional Systems and Signal Processing, 2015, DOI
10.1007/s11045-015-0331-x

[6] M.W. Cantoni, K. Glover, ’Gap-metric robustness analysis of linear periodically
time-varying feedback systems’,SIAM J Control Optimization38(2000), 803-822

[7] C.T. Chen,Linear System Theory and Design, Harcourt Brace College Publishers,
Fort Worth, 1984

[8] G.E. Dullerud, K. Glover,Robust performance of periodic systems, IEEE Trans-
actions on Automatic Control41(1995), 1146-1159

[9] Y. El Mrabet, H. Bourlès, ’Algebraic Theory of Linear Periodic Discrete-Time
Systems in their Polynomial Matrix and Module Descriptions’, Proc. 35th Con-
ference on Decision and Control, Kobe, 1996

[10] Y. El Mrabet, H. Bourlès, ’Periodic-polynomial interpretation for structural prop-
erties of linear periodic discrete-time systems’,Systems and Control Letters
33(1998), 241-251

[11] M. Kuijper, J.C. Willems, ’A behavioral framework for periodically time-varying
systems’,Proc. 36th IEEE Conference on Decision and Control, San Diego, 1997

[12] T.Y. Lam,Lectures on Modules and Rings, Springer, New York, 1999

[13] J.C. McConnell, J.C. Robson,Noncommutative Noetherian Rings, John Wiley
and Sons, Chichester, 1987

[14] A. Quadrat, On a generalization of the Youla-Kučera parametrization. Part II:
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