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Generalized convergence conditions of the parameter

adaptation algorithm in discrete-time recursive identification

and adaptive control

Bernard Vau a, Henri Bourlès a

aSATIE Ecole normale supérieure de Paris-Saclay, 94230 CACHAN France.

Abstract

In this paper, we extend convergence conditions for the parameter adaptation algorithm, used in discrete-time recursive
identification schemes, or in adaptive control. Whereas the classical stability analysis of this algorithm consists in checking
the strictly real positiveness of an associated transfer function, we demonstrate that convergence can be obtained even when
this condition is not fulfilled, under some assumptions on the algorithm forgetting factors. These results regarding both
deterministic and stochastic contexts are obtained by analyzing convergence with a prescribed degree of stability.
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1 Introduction

The parameter adaptation algorithm (PAA) described
in [Landau, Lozano, M´ Saad, Karimi, 2011] is a corner-
stone in adaptive control. It provides an on-line param-
eter estimation of a discrete-time system and is exten-
sively used in recursive identification schemes. The is-
sue of PAA convergence analysis has been addressed
for a long time [Landau, 1965] by considering that this
algorithm can always be represented as an equivalent
closed-loop including a linear time-varying (LTV) feed-
back system in interaction with a discrete feedforward
linear time-invariant (LTI) system. Hyperstability the-
ory imposes the strictly real positiveness condition of
the transfer function linked to the feedforward LTI sys-
tem and, as this condition is only sufficient, in some
cases when it is not fulfilled, the PAA convergence can
be nevertheless observed. The purpose of this paper is
to provide less restrictive convergence conditions for the
PAA. We show that under classical assumptions on the
algorithm forgetting factors, such as those considered
in, e.g., [Lozano, 1983], the algorithm stability can be
proved even if the LTI system strictly real positiveness
is not satisfied. These results provide new analysis tools
able to cope, in particular, with an LTI system trans-
fer function having poles on the unit circle. The here-
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after developments are based upon controlled LTI sys-
tems with a prescribed degree of stability that have been
studied in [Anderson, Moore, 1971] and [Bourlès, 1987]
in the continuous-time case, and in [Bourlès, 1990] in
the discrete-time-case. Likewise Kalman filters with a
prescribed degree of stability have been developed in
[Anderson, Moore 1979]. Since the PAA is a variant of
the Kalman filter, we combine these approaches in the se-
quel with developments achieved in a deterministic con-
text [Landau, Silveira, 1979] and in a stochastic context
[Landau, 1982] to obtain these generalized convergence
conditions.

2 Deterministic context

In the beginning of this section, we refer systematically
to [Landau, Lozano, M´ Saad, Karimi, 2011] (pp.102-
103) for the description of the PAA, and in particular
we reuse the same notation. The PAA aims at making
as close to zero as possible a prediction (or adaptation)
error between the output of the system to be identified
and an adjustable model output. Let us denote by:
ν(t+ 1) : The a-posteriori adaptation error (scalar),
φ(t): The observation vector (size (nφ, 1)),
θ: The parameters vector to be estimated (size (nφ, 1)),

θ̂(t): The current estimated parameters vector (size
(nφ, 1)).
We consider systems for which the a-posteriori error is
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given by:

ν(t+ 1) = H(q−1)(θ − θ̂(t+ 1))Tφ(t) (1)

In this expressionH(q−1) is the operator associated with
the (bicausal) transfer function H(z−1), which is a ratio
of two monic polynomials. The PAA equations are:

θ̂(t+ 1) = θ̂(t) + F (t)φ(t)ε(t+ 1) (2)

F−1(t+ 1) = λ1F
−1(t) + λ2φ(t)φT (t) (3)

F (t) is the adaptation gain (positive definite matrix),
0 < λ1 ≤ 1, 0 ≤ λ2 < 2 are the forgetting factors. A
sufficient convergence condition for the PAA, is that the
transfer function:

H(z−1)− λ2
2

be strictly positive real. From equations (1),(2),(3) an
equivalent closed-loop can be drawn. For this purpose

let us denote by: θ̃(t) = θ̂(t)− θ: the parameters vector
error (size (nφ, 1)),

u(t+ 1) = −φT (t)θ̃(t+ 1): the input of H(q−1) (scalar),
y(t+ 1) = ν(t+ 1): the output of H(q−1) (scalar),
ũ(t+ 1) = ν(t+ 1): the associated LTV system input,

ỹ(t+1) = φT (t)θ̃(t+1): the LTV system output (scalar),

x̃(t) = θ̃(t): the LTV system state vector (size (nφ, 1)),
x(t): the state vector of the operatorH(q−1) (size (n, 1)).
The LTV system state space equations are:

x̃(t+ 1) = Ã(t)x̃(t) + B̃(t)ũ(t+ 1) (4a)

ỹ(t+ 1) = C̃(t)x̃(t) + D̃(t)ũ(t+ 1) (4b)

(4c)

With:
Ã(t) = Inφ ,

B̃(t) = F (t)φ(t), (size (nφ, 1)),

C̃(t) = φT (t), (size (1, nφ)),

D̃(t) = φT (t)F (t)φ(t), (scalar).
In what follows, a controllable and observable linear sys-
tem is considered as an operator associating the output
to the input, with zero initial conditions. The LTI sys-
tem state space equations are written:

x(t+ 1) = Ax(t) +Bu(t) (5a)

y(t) = Cx(t) +Du(t) (5b)

With A of size (n, n),
B of size (n, 1),
C of size (1, n)
D a scalar.
The equivalent closed-loop is represented in Fig.1. For
any signal s = {s(t)} (determinist or stochastic), denote
by sρ the signal {ρts(t)}, ρ ≥ 1. Considering the signal

Fig. 1. Classical PAA closed-loop

y(t) = H(q−1)u(t), the relation between yρ(t) and uρ(t)
is yρ(t) = Hρ(q

−1)uρ(t), with Hρ(q
−1) = H(ρq−1),

[Bourlès, 1990]. An equivalent closed-loop can be derived
from the loop represented in Fig.1, in which the feed-
back LTV system input and output are now ũρ(t + 1),
ỹρ(t + 1), and the feedforward LTI system input and
output correspond to uρ(t) and yρ(t). The state space
equations of the so-called ρ-LTV system are given by:

x̃ρ(t+ 1) = Ãρ(t)x̃ρ(t) + B̃ρ(t)ũρ(t+ 1) (6a)

ỹρ(t+ 1) = C̃ρ(t)x̃ρ(t) + D̃ρ(t)ũρ(t+ 1) (6b)

With:
Ãρ = ρInφ ,

B̃ρ = F (t)φ(t) (size (nφ, 1)),

C̃ρ(t) = ρφT (t) (size (1, nφ)),

D̃ρ = φT (t)F (t)φ(t) (scalar).
Fig. 2 describes the equivalent PAA closed-loop, with
ρ-signals.

Fig. 2. Equivalent PAA closed-loop with ρ-signals

Imposing that ỹρ(t) and ũρ(t) converge towards 0 is
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equivalent to impose a degree of stability ρ to the clas-
sical closed-loop in Fig. 1.

Theorem 1 Consider the PAA algorithm given by (1),
(2), and (3). Assume that there exists ρ ≥ 1 such that
the following conditions hold:

(1) λ1 ≤ 2− ρ2, 0 ≤ λ2 < 2
(2) The transfer function H(ρz−1)− λ2

2 is strictly posi-
tive real.

Then one has:

lim
t→∞

νρ(t+ 1) = 0 (7)

lim
t→∞

[
θ − θ̂(t+ 1)

]T
φ(t)ρt = 0 (8)

lim
t→∞

[
ρ
(
θ − θ̂(t+ 1)

)
−
(
θ − θ̂(t)

)]T
F−1(t) · · ·

· · ·
[
ρ
(
θ − θ̂(t+ 1)

)
−
(
θ − θ̂(t)

)]
ρ2t = 0 (9)

[
θ̂(t)− θ

]T
F−1(t)

[
θ̂(t)− θ

]
ρ2t < const <∞ (10)

Proof: Since the case ρ = λ1 = 1 has already been
treated in ([Landau, Lozano, M´ Saad, Karimi, 2011],
Thm. 3.1) we assume ρ > 1. The transfer function
H(ρz−1) − λ2

2 is strictly real positive if and only if

(by definition) H(ρz−1) belongs to the class L(Λ), as
defined in [Landau, Lozano, M´ Saad, Karimi, 2011],
p. 556. The feedback loop using ρ-signals is stable
and ỹρ(t), ũρ(t) converge towards 0 if the LTV sys-
tem (6), belongs to the class N(Γ), as defined in
[Landau, Lozano, M´ Saad, Karimi, 2011], p. 558, with
Γ = λ2. According to lemma C.7 of the same reference,
the system (6) belongs to the class N(Γ) if there exist
three sequences of non-negative definite symmetric ma-
trices {P (t)} , {R(t)} , {Q(t)} and a matrix sequence
{S(t)} such that:

ÃTρ (t)P (t+1)Ãρ(t)−P (t) = −Q(t)+C̃Tρ (t)ΓC̃ρ(t) (11)

C̃ρ(t)− B̃Tρ (t)P (t+ 1)Ãρ(t) = ST (t)− D̃T
ρ (t)ΓC̃ρ(t)

(12)

D̃ρ(t)+D̃
T
ρ (t)−B̃Tρ (t)P (t+1)B̃ρ(t) = Rρ(t)−D̃T

ρ (t)ΓD̃ρ(t)
(13)[

Q(t) S(t)

ST (t) R(t)

]
≥ 0 (14)

By choosing P (t + 1) = F−1(t + 1), (11) leads to

Q(t) = (1− λ1ρ2)F−1(t) and Γ = λ2 (since Ãρ = ρInφ

and C̃ρ(t) = ρφT (t)); (12) yields S(t) = ρ(1−λ1)φT (t),

(since B̃ρ = F (t)φ(t) and D̃ρ = φT (t)F (t)φ(t)) and with
(13) we get R(t) = (2− λ1)φTF (t)φ(t). Using the Schur
complement, and assuming λ1 < 1/ρ2 (in order that
Q(t) be non negative), the condition (14) is equivalent
to R(t) − ST (t)Q−1(t)S(t) ≥ 0,which is equivalent to
(2−λ1)−ρ2(1−λ1)2/(1−λ1ρ2) ≥ 0 i.e. λ1 ≤ 2−ρ2. No-
tice that 2−ρ2 < 1/ρ2 since ρ > 1. Thus according to the-
orem C.1 of [Landau, Lozano, M´ Saad, Karimi, 2011],
we obtain:

lim
t→∞

yρ(t+ 1) = lim
t→∞

uρ(t+ 1) = lim
t→∞

νρ(t+ 1) = 0

x̃Tρ (t)F−1(t)x̃ρ(t) ≤ const <∞

lim
t→∞

[
x̃Tρ (t) ũTρ (t+ 1)

] [ Q(t) S(t)

ST (t) R(t)

][
x̃ρ(t)

ũρ(t+ 1)

]
= 0

lim
t→∞

x̃Tρ (t)F−1(t)x̃ρ(t) = const

2

The interest of theorem 1 is that it provides a tool to
assess the PAA stability even if the transfer function
H(z−1)− λ2

2 is not strictly real positive. For ρ > 1, con-
vergence is obtained with a stability degree depending
on ρ. The price to pay lies in the fact that if ρ > 1, λ1
must be strictly inferior to 1, and therefore the adapta-
tion gain F (t) cannot tend towards 0.

3 Stochastic context

Let us assume now that the system is disturbed by an
output noise ω(t+ 1). Then the a-posteriori adaptation
error is given by:

ν(t+ 1) = H(q−1)
(
θ − θ̂(t+ 1)

)T
φ(t) +ω(t+ 1) (15)

ω(t + 1) is a martingale adapted to the sequence of
σ-algebra Ft where Ft is generated by the observa-
tion up to and including t. Additionally the following
conditions are assumed to hold; they are similar to
those of [Landau, Lozano, M´ Saad, Karimi, 2011], and
[Landau, 1982] :

E [ω(t+ 1) | Ft] = 0 (16)

E
[
ω2(t+ 1) | Ft

]
= σ2 <∞ (17)

lim
t→∞

1

N

N∑
t=0

ω2(t) <∞ (18)

We will prove the following lemmas and theorem:
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Lemma 1 Assume that there exists δ > 0 such that for

any t ≥ nφ,
∑t+nφ
i=t+1 φ(i)φT (i) − δI is positive definite.

Then one has for any ε > 0:

∞∑
t=1

trace(F (t+ 1))

(t+ 1)ε
<∞

Proof: The proof is essentially based on theorem 1 of
[Lozano, 1983]. Denote by σ(.) and σ(.) the smallest and
largest singular value, respectively. According to this ref-
erence one has:
F−1(t+1) = λt+1

1 F−1(0)+λ2
∑t
i=0 λ

t−i
1 φ(i)φT (i), thus:

σ(F−1(t+ 1)) ≥ λ2σ(
∑t
i=0 λ

t−i
1 φ(i)φT (i))

≥ λ2σ(
∑t
i=t−nφ+1 λ

t−i
1 φ(i)φT (i)), and:

σ(F−1(t+ 1)) ≥ λ2λ
nφ
1 σ(

∑t
i=t−nφ+1 φ(i)φ(i)T ).

The assumption yields: σ(F−1(t+ 1)) ≥ λ2λ
nφ
1 δ. There-

fore we have σ(F (t + 1) ≤ 1/(λ2λ
nφ
1 δ) < ∞. Since

F(t+1) is a symmetric definite positive matrix, the eigen-
values of F (t+ 1) coincide with its singular values. Thus
we have: trace(F + 1) ≤ nφ/(λ2λ

nφ
1 δ) <∞, and we ob-

tain
∑∞
t=1

trace(F (t+1))
(t+1)ε <∞, as desired.

2

Lemma 2 For λ1 ≤ 1 and ε > 0 one has:

∞∑
t=1

φT (t)F 2(t+ 1)φ(t)

(t+ 1)ε
<∞

Proof: The case λ1 = 1 has been treated by [Landau, 1982]
and [Landau, Lozano, M´ Saad, Karimi, 2011] (pp. 142-
143), so it remains to check the case λ1 < 1. For this
purpose, we notice at once that:
φT (t)F 2(t+ 1)φ(t) ≤ 1

λ1
φT (t)F (t)F (t+ 1)φ(t). This re-

sult is obtained from the inversion lemma applied to (3),

yielding: F (t+ 1) = 1
λ1

[
F (t)− F (t)φ(t)φ(t)TF (t)

λ1
λ2

+φ(t)T (t)F (t)φ(t)

]
and

by left-and right-multiplying by F (t+ 1), pre-multiplying
by φ(t)T and post-multiplying by φ(t). We can write:
φT (t)F 2(t + 1)φ(t) ≤ 1

λ1
trace(φT (t)φ(t)F (t + 1)F (t)),

which is equivalent -because of (3)- to φT (t)F 2(t +
1)φ(t) ≤ 1

λ1λ2
trace

(
(F−1(t+ 1)− λ1F−1(t))F (t+ 1)F (t)

)
,

yielding:
φT (t)F 2(t+ 1)φ(t) ≤

1
λ2λ1

trace (F (t)− F (t+ 1)) + 1−λ1

λ2λ1
trace (F (t+ 1))

By induction we obtain:∑∞
t=1

(φT (t)F 2(t+1)φ(t))
(t+1)ε ≤

1
λ2λ1

trace (F (0)) + (1−λ1)
λ2λ1

∑∞
t=1

trace(F (t+1))
(t+1)ε ,

and by Lemma 1 we get:∑∞
t=1

φT (t)F 2(t+1)φ(t)
(t+1)ε <∞.

2

Theorem 2 Let us assume that there exist ρ > 1 for
which the following conditions hold:

(1) λ1 ≤ 2− ρ2
(2) H

(
ρz−1

)
− λ2

2 is strictly positive real,

(3) lim
N→∞

1

N

N∑
t=0

φ(i)Tφ(i) <∞,

(4) There exists δ > 0 such that for any t ≥ nφ,
t+nφ∑
i=t+1

φ(i)Tφ(i)− δI is positive definite, where nφ is

the length of vector φ(t) .

Then, for any ε > 0, we have:

lim
N→∞

1

N (1+ε)

N∑
t=1

[ν(t)− ω(t)]
2

= 0 a.s. (19)

lim
N→∞

1

N (1+ε)

N∑
t=1

ν2(t) = lim
N→∞

1

N (1+ε)

N∑
t=1

ω2(t) a.s.

(20)

lim
N→∞

1

N (1+ε)

N∑
t=1

[(
θ̂(t)− θ

)T
φ(t− 1)

]2
= 0 a.s.

(21)

Proof: The proof is based on [Landau, 1982], and on
[Landau, Lozano, M´ Saad, Karimi, 2011] (theorem
D.3). Set y(t + 1) = θT (t + 1)φ(t); According to the
second reference (pp. 141-142) one has:
E [y(t+ 1)ω(t+ 1) | Ft] = γ(t)φT (t)F (t+1)φ(t)σ2 with

γ(t) =
(λ1+λ2φ

T (t)F (t)φ(t))
(1+φT (t)F (t)φ(t))

. This expression of γ(t) is

obtained from the expressions (4.104) and (4.106) of
the same book, and from the inversion matrix lemma
applied to (3). Let r(t + 1) = t(1+ε)ρ2t and: α(t + 1) =

E
[
(yρ(t+1)ωρ(t+1))

r(t+1) | Ft
]

= E
[
(y(t+1)ω(t+1))

(t+1)(1+ε)
| Ft

]
.

One can check that in the case λ1 < 1, and 0 < γ(t) < 2,
conditions of theorem D.3 mentioned above are:

a) Λ − Γ(t) ≥ 0, which is true since 1) and 2) are
satisfied simultaneously,

b) r(t + 1) ≥ r(t) which is immediate for ρ > 1 and
ε > 0,

c) α(t+1) ≥ 0 equivalent to γ(t)φT (t)F (t+1)φ(t)σ2 ≥
0. That is true because F (t+ 1) is a positive definite
matrix and γ(t) > 0, σ2 ≥ 0.

d)
∑∞
t=1 α(t) <∞.

In order to satisfy d), since γ(t) > 0 , we must verify that:∑∞
t=1

φT (t)F (t+1)φ(t)
(t+1)(1+ε)

< ∞ . According to lemma 2, we

have
∑∞
t=1

φT (t)F 2(t+1)φ(t)
(t+1)ε <∞

Besides, we get: φT (t)F (t+ 1)φ(t) =
φT (t)F (t+ 1)F−1(t+ 1)F (t+ 1)φ(t). Then:
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φT (t)F (t+ 1)φ(t) ≤
trace(F−1(t+ 1)φT (t)F 2(t+ 1)φ(t)), and owing to (2)
trace(F−1(t+ 1)) ≤ trace(F−1(t)) + λ2φ

T (t)φ(t)).
By induction we obtain:
trace(F−1(t+1)) ≤ λ2

∑t
i=0 φ

T (t)φ(t)+ trace(F−1(0))
and condition (3) of the theorem leads to:

supt≥1
trace(F−1(t+1))

(t+1) <∞. Therefore we get:∑∞
t=1

φT (t)F (t+1)φ(t)
(t+1)(1+ε)

≤∑∞
t=1

trace(F−1(t+1))
(t+1)

φT (t)F 2(t+1)φ(t)
(t+1)ε ≤

≤ supt≥1

(
trace(F−1(t+1))

(t+1)

)∑∞
t=1

φT (t)F 2(t+1)φ(t)
(t+1)ε ,

and since
∑∞
t=1

φT (t)F 2(t+1)φ(t)
(t+1)ε < ∞ by lemma 2, we

finally obtain:∑∞
t=1 α(t) =

∑∞
t=1

φT (t)F (t+1)φ(t)
(t+1)(1+ε)

< ∞, meaning that

the condition d) is satisfied. This ends the proof.
2

As λ1 is necessarily strictly inferior to 1, in the stochastic

context the vector θ̂(t) does not converge towards a con-
stant value. However, as shown by the simulation exam-
ple in Section 4, with ρ > 1 and λ1 < 1 both sufficiently
close to 1, the mean values of the estimated parameters
remain good approximations of the true values of these
parameters.

4 Simulation example

In order to illustrate the results obtained in the previous
paragraphs, we carry out simulations in which the feed-
forward transfer function of the equivalent loop has poles
lying on the unit circle. The identification is achieved
with the recursive output error with fixed compensator
[Landau, Lozano, M´ Saad, Karimi, 2011] (p. 171). The
transfer function to be identified is:

G(z−1) =
B(z−1)

A(z−1)
=

0.05z−1 − 0.08z−2

1− 1.81z−1 + z−2
(22)

The two complex conjugate poles of which belong to the
unit circle. At first we consider that no noise is added
on the system output. For the identification purpose,
the system is excited with a ten registers PRBS (with a
one sample internal period). The a-posteriori predicted

output ŷ(t) is given by: Â(t + 1, q−1)ŷ(t + 1) = B̂(t +
1, q−1)u(t+ 1) whereas the a-priori predicted output is:

Â(t, q−1)ŷo(t+ 1) = B̂(t, q−1)u(t+ 1). The output error
algorithm with fixed compensator consists in computing
the a-priori adaptation νo(t+ 1) according to:

νo(t+ 1) = εo(t+ 1) + L∗(q−1)ε(t+ 1) (23)

where ε(t+1) = y(t+1)− ŷ(t+1) is the a-posteriori pre-
diction error, εo(t+1) = y(t+1)−ŷo(t+1) is the a-priori

prediction error, and L∗(q−1) = L(q−1) − 1. Choos-
ing L(z−1) = 1− 1.7195z−1 + 0.885z−2, then according
to [Landau, Lozano, M´ Saad, Karimi, 2011], (pp. 160),
the hyperstability theory imposes that the transfer func-
tion L(z−1)/A(z−1)− λ2

2 be strictly real positive.

The PAA observation vector is given by:[
−ŷ(t) −ŷ(t− 1) u(t) u(t− 1)

]
A first simulation consists in using the output error with
fixed compensator, in which the forgetting factors are
set to λ1 = 1, λ2 = 1 and F (0) = I4. In this specific
case, there is no chance that L(z−1)/A(z−1) − λ2

2 be

strictly real positive because of the zeros ofA(z−1) on the
unit circle. We check that the PAA does not converge:
ν(t + 1) does not tend towards zero, and the estimated
parameters do not tend toward constants, as shown in
Fig.3. The transfer function L(ρz−1)/A(ρz−1)− λ2

2 be-

Fig. 3. Adaptation error and estimated parameters with
λ1 = 1, λ2 = 1 (deterministic context)

comes strictly real positive for ρ ≈ 1.0025. If we choose
ρ = 1.0028, and λ1 = 2 − ρ2 = 0.995, we verify, as dis-
played in Fig.4, that identification under the same con-
ditions entails the convergence of ν(t+1) towards 0, and
the estimated parameters to constant values: This is the
result predicted by theorem 1. The computed parame-
ters mean relative errors from t = 2000 to t = 6000 are
summarized in Table 1.

Parameters True Values Mean relative
errors (%)

b1 +0.05 2.2 10−2

b2 −0.08 1.0 10−2

a1 −1.81 8.2 10−6

a2 +1.00 5.2 10−4

Table 1
True parameters value and mean relative errors (%), from
t=2000 to t=6000 (deterministic context).
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Fig. 4. Adaptation error and estimated parameters with
λ1 = 0.995, λ2 = 1 (deterministic context)

We now add a pseudo-white Gaussian noise to the output
y(t) with a signal/noise ratio equal to 10dB (standard
deviation). The Fig.5 shows that estimated parameters
remain close to those obtained in a deterministic context,
and that no divergence occurs because of the noise.

Fig. 5. Adaptation error and estimated parameters with
λ1 = 0.995, λ2 = 1 (stochastic context)

The parameters mean relative errors from t=2000 to
t=6000, for a given noise realization, are displayed in
Table 2.

Parameters True Values Mean relative
errors (%)

b1 +0.05 2.5

b2 −0.08 2.3

a1 −1.81 5.0 10−2

a2 +1.00 1.2 10−1

Table 2
True parameters value and mean relative errors (%), from
t=2000 to t=6000 (stochastic context).

5 Conclusion

We have shown how the recursive parameter estimation
algorithm can be used in cases where the classical way
of doing (with the forgetting factors set to 1) provokes
divergence. Our method is based on two convergence
theorems which are generalizations of those existing. So,
convergence can be guaranteed even when the transfer
function associated with the equivalent closed-loop does
not satisfy the classical real positiveness condition in-
volved in hyperstability theory. These theorems address
both the deterministic and the stochastic context, and
are particularly well suited to identify systems which
may have poles on the unit circle.
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