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Ryan Webster 1 Julien Rabin 1 Loı̈c Simon 1 Frédéric Jurie 1

Abstract
With the widespread application of deep networks
in industry, membership inference attacks, i.e. the
ability to discern training data from a model, be-
come more and more problematic for data privacy.
Recent work suggests that generative networks
may be robust against membership attacks. In
this work, we build on this observation, offering a
general-purpose solution to the membership pri-
vacy problem. As the primary contribution, we
demonstrate how to construct surrogate datasets,
using images from GAN generators, labelled with
a classifier trained on the private dataset. Next,
we show this surrogate data can further be used
for a variety of downstream tasks (here classifi-
cation and regression), while being resistant to
membership attacks. We study a variety of differ-
ent GANs proposed in the literature, concluding
that higher quality GANs result in better surrogate
data with respect to the task at hand.

1. Context and Motivation
The fantastic recent advances in deep learning are strongly
and inextricably related to the existence of public datasets.
Such datasets not only allow researchers to learn from and
experiments with the data but also to measure progress and
challenge themselves with other researchers in competitions.
If Pascal VOC (Everingham et al., 2010) was among the
first, many followed such as ImageNet (Deng et al., 2009)
for object classification or recently CelebA-HQ (Karras
et al., 2018a) as a benchmark for generative models. The
contemporary machine learning research landscape would
undoubtedly be very different without such datasets.

However, several important application areas do not fully
benefit from the progress of machine learning because of
the lack of massive public datasets. Indeed, building such
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Figure 1. Overview of the proposed framework for creating private
data surrogates and its application to train a private task-driven
network. In a nutshell, the data surrogate D′ is simply obtained by
combining image samples from a generator network G (e.g. using
GAN) and associating them with plausible labels obtained from
a classifier C trained on the private train dataset DT . From this
public dataset, it is possible to train a privacy preserving classifier
C′ displaying similar performance and accuracy (in practice by
comparing C′(DV ) and C(DV ) on a separate validation set DV ).
We further demonstrate empirically that the obtained public dataset
D′ (and by composition the network C′) is robust to membership
attack that is described in Algorithm 1.

datasets is difficult due to privacy issues that will inevitably
arise.

Privacy issues not only prevent the release of public datasets:
the distribution of already trained deep networks itself poses
severe risks of information leakage. Modern convolutions
networks have parameters in millions, and, as shown by
Zhang et al. (Zhang et al., 2016) and Yeom et al. (Yeom
et al., 2018) classification networks can memorize images,
posing direct threats to privacy. Such models can leak pri-
vate training data to an attacker via their bias towards train-
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ing samples.

One common attack against machine learning models is the
membership attack, which discerns data points that were
used for training. Neural networks performing classification
on images are known to be vulnerable to such attacks. For
instance, in (Shokri et al., 2017), a membership attack was
successfully performed against an MNIST model, even if
the network parameters were not available to the attacker. In
essence, these attacks exploit neural networks tendency to
overfit, and can use simple cues such as output logit entropy.

In response to such membership attacks, various heuristic
and theoretical attack defenses have also been proposed.
There is the mathematical framework of differential privacy,
which is often used to provide privacy guarantees in machine
learning frameworks. For example, classifiers with privacy
guarantees can be achieved with the teacher ensemble mech-
anism (Papernot et al., 2018) (PATE), or through knowledge
transfer (Papernot et al., 2016). Empirical defenses have
also been proposed for membership attacks in particular. For
example, (Nasr et al., 2018a) proposes adding an adversary
during training which simulates an attacker and therefore
minimizes a utility privacy trade-off.

1.1. Privacy of Generative Models

While generative adversarial networks (GANs) (Goodfel-
low et al., 2014) are a relatively new advent, they certainly
have changed the landscape of machine learning, for exam-
ple, achieving state of the art in image synthesis (Karras
et al., 2018b; Miyato et al., 2018; Iizuka et al., 2017) and
a plethora of other generative tasks. Recent work has been
devoted to defining and measuring overfitting in generative
models, for example, in (Webster et al., 2019; Im et al.,
2018; Gulrajani et al., 2019). (Webster et al., 2019) pro-
poses directly recovering training and test images with the
generator and comparing recovery error, with the hypothesis
that training images should exhibit smaller error.

Finally, some recent works approach the question of deep
learning with privacy via direct sanitation of data for release.
Mirjalili et al.(Mirjalili et al., 2018) used convolutional auto-
encoders to remove other information (e.g. , genre) than the
one related to identity from training face images. Sokolic et
al.(Sokolic et al., 2017) proposed a data sanitization mecha-
nism during which users’ data is modified to prevent specific
attacks before these data are actually used for training. The
same goal is sought by Bertran et al. (Bertran et al., 2018),
Wu et al.(Wu et al., 2018) or Rezaei et al.(Rezaei et al.,
2018), by defining a collaborative sanitization function re-
taining valuable information for the tasks while eliminating
private information. Finally, PATE-GAN (Yoon et al., 2019)
proposes a framework to generate data using a GAN like
framework and adopting privacy via the PATE mechanism.

In this work, we also seek to directly release data immune to
membership attacks by presenting two contributions: First,
a simple but efficient surrogate technique is proposed to
generate a synthetic dataset that can be released in public,
which ideally achieves the same level of performance as
the original dataset while ensuring its protection to member-
ship attack. The methodology for generating, labeling and
evaluating this data is documented in Fig. 1.

Second, two recent membership attacks against generative
models are executed against GAN generators and shown
to be ineffective. Finally, while this study is preliminary,
we evaluate two face datasets, CelebA-HQ and UTK-Face,
across a variety of state of the art GAN generators as well
as various tasks to demonstrate consistency of our observa-
tions.

The rest of the paper is organized as follows: Section 2
exposes the construction of the surrogate dataset as well as
its evaluation. Section 3 details the proposed membership
attack protocol to assess the efficiency of our surrogate
dataset. Section 4 shows experimental results, followed by
a discussion in Section 5.

2. Surrogate Data Creation and Evaluation
Typically, methods offering privacy in machine learning do
so with a cost and consider privacy bounds alongside the fi-
nal utility of the model (Nasr et al., 2018b; Yoon et al., 2019;
Papernot et al., 2018). For example PATE-GAN (Yoon et al.,
2019) demonstrates the utility of generated data through un-
supervised tasks under various privacy guarentees.

We propose evaluating utility on supervised tasks by first
labeling unconditional samples and finally taking the stan-
dard validation accuracy on real images. Figure 1 details
the entire pipeline:

• train a classifier C and a generator G from the private
training dataset DT ;

• build the publicly released dataset D′ from G and C,
combining randomly generated samples x′ = G(z)
where z ∼ PZ with predicted labels ` = C(x′) from
the private classifier;

• train a classifier C ′ from the surrogate dataset D′;

• validate and compare C ′ and C on a validation set DV .

Experiments detailed in Section 4 demonstrate for various
GAN approaches that the surrogate classification network
C ′ can achieve similar performance than the one trained
directly on private data. We now present two membership
attacks used to assess privacy of surrogate data.
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3. Assessing privacy of Generative Models by
Membership Attacks

In this work, we consider two membership attack models
against generative networks. Both approaches utilize over-
fitting of the generative network G, with respect to some
attack function A. Following LOGAN (Hayes et al., 2019),
we discern the training set by simply sorting the values of
A, taking the lowest values to be the training set. For in-
stance in LOGAN, A is taken to be the trained discriminator
D, in which case the training set is taken as those samples
which the discriminator most confidently predicts to be real.
Algorithm 1 details precisely how this attack is performed.

Algorithm 1 Membership attack
Input: Training set DT , validation set DV

1: Set the attack score functionA, either from the recovery
loss function in Eq. (1) or the discriminator D.

2: Let xi ∈ DT ∪ DV , such that{
xi ∈ DT if i ≤ N
xi ∈ DV if N + 1 ≤ i ≤ 2N

3: Sorted indices: I ← arg sort{A(xi)}1≤i≤2N
Output:

4: Estimated set of training images: T ← {xI(i)}1≤i≤N
5: Membership attack accuracy:
Acc← |I ∩ {i : 1 ≤ i ≤ N}|/N

3.1. Recovery Attacks

In (Webster et al., 2019), training and validation images
were recovered using optimization. Generative networks
were said to overfit if the statistics of training and validation
recovery errors were different in some measure, for example
the difference of medians. In (Liu et al., 2018), recovery
errors were used similarly to perform membership attacks,
where the optimization was performed over an input network
to the latent space, rather than input codes.

Inspired by these approaches, we define the following latent
recovery loss function

fG(xi) := ‖φ(G(E(xi)))− φ(xi)‖22 (1)

where xi ∈ DT ∪ DV is in either the training or validation
sets, φ are image features (such as convolution layers of
VGG-19), G is the GAN generator trained on DT and E is
the attack encoder. Indeed, contrarily to the aforementioned
methods that rely on latent recovery optimization for every
single image from a validation set, we resort here to a feed-
forward recovery method that consists in using an encoder
from the image domain that is exclusively trained on gener-
ated samples G(z) by solving minE Ez∼PZ

fG(E(G(z))).

We consider using perceptual features for φ, as they are
generally considered to be well suited for synthesis tasks
(Johnson et al., 2016), but also consider using other feature
networks, such as VGG-Face (Parkhi et al.) or even φ = Id
for an image domain loss. Furthermore, notice that we only
train E on generated samples G(z), so that E is invariant to
the training and validation set split of G.

3.2. Discriminative Attacks

Following the work of (Hayes et al., 2019), Discriminative
membership attacks are performed against GANs by using
the discriminator D to sift between test and train images.
Recall that D is trained along with the generator G on the
training set DT . For convenience, we assume here that D
is trained to score 0 for real images xi ∈ DT and 1 for
generated images x′i = G(zi).

4. Results
We train the following GANs and will use the abbrevia-
tions in parentheses: Progressive GANs presented in (Kar-
ras et al., 2018a) (PGGAN) using official code, the zero-
centered gradient penalty Resnet in (Mescheder et al., 2018)
with the official code (MESCH) and finally deep convo-
lutional GAN (Radford et al., 2015) (DCGAN) and least
squares GAN (Mao et al., 2017) (LSGAN) with our own
implementation.

4.1. Attribute Recognition on CelebA-HQ

The CelebA-HQ dataset (Karras et al., 2018a) is a typi-
cal GAN benchmark dataset, which includes 40 attributes
li, from which we considered the following ones: gender,
smiling, young, glasses, blond.

Table 1 (and Table 3 in appendix) shows that a classifier
C ′ trained with a surrogate dataset D′ (generated with the
proposed approach described in Section 2) performs as well
as a classifier C directly trained on the private dataset D.
As demonstrated by the FID scores that evaluate the quality
of the generator (lower is better), the drop in performance
strongly correlates with the quality of the synthesized im-
ages used for training.

4.2. Safety to Membership Attacks

We assess safety of every GAN models trained versus the
membership attacks described in Section 3. Table 2 (and
Table 4 in the appendix) shows that membership attacks
described in Algorithm 1 are largely unsuccessful when the
size of the training set |DT | is large enough. For evaluation
of membership attack accuracy, we have used N = 2000
images from DT and DV .

The discriminator attack of LOGAN is overall most success-
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Gender Smiling Average (5 attributes) Change in Performance FID

VGG-Face Features

C Real Data 94.50 85.20 90.64 - -

C′

DCGAN 91.90 82.10 86.50 4.14 67.07
MESCH 92.60 81.45 88.90 1.74 26.31
LSGAN 92.10 80.80 88.35 2.29 42.01
PGGAN 93.10 83.05 89.35 1.29 19.17

Table 1. Performance of various surrogate datasets on the CelebA-HQ (Karras et al., 2018a) binary attribute recognition task. Top row
represents a classifier C trained on the original dataset DT , subsequent rows represent classifiers C′ trained with GAN images that are
labelled with C (see Section 2 for details). Accuracy represents percent correct on a validation set DV .

L2 Recovery VGG-Face Recovery VGG-19 Recovery Discriminator D
DCGAN 54.1 54.5 51.6 57.1
MESCH 53.9 50.8 52.5 50.1

LSGAN (|DT | = 26k) 54.8 54.1 54.0 62.9
LSGAN (|DT | = 5k) 58.1 56.2 57.8 99.4

PGGAN 52.0 50.3 52.1 N/A

Table 2. Membership attack accuracies (in %) for various GAN methods trained on the CelebA-HQ dataset and various attack methods
(see Algorithm 1). When not specified otherwise, the size of the training dataset is |DT | = 26k and for the validation set |DV | = 2k.
GAN methods are reported in the first column. The next three columns use latent recovery attack with loss function fG (see Eq. 1), with φ
taken to be the identity, VGG-Face or VGG-19 features respectively. The final column reports the discriminative attack accuracy with the
discriminator D from the GAN training (the discriminator of PGGAN requires feeding a whole batch which prevented us to implement
this attack). As a baseline, the same discriminative attack is done on LSGAN with a smaller training dataset (5k) demonstrating that in
such setting the discriminator network is capable of memorizing almost perfectly the entire training dataset.

ful, for example achieving nearly 63% accuracy on LSGAN
even with 26k training images, although interestingly the
regularized discriminator in MESCH will yield unsuccess-
ful discriminator attacks even for small datasets, while ap-
pearing to be slightly vulnerable to recovery attacks. Note
that this observation is not in contradiction to the results
in LOGAN (Hayes et al., 2019), which showed successful
discriminator attacks across the board, as that study primar-
ily studied small training sets and focused on the DCGAN
training technique. To show our observation is consistent
with LOGAN, we also include LSGAN with a small training
set of |DT | = 5k, which yields a near perfect discrimina-
tor attack. Finally, we note that a discriminator attack is a
fairly unrealistic scenario, as the discriminator parameters
are typically never used from an application standpoint. Fur-
thermore, an attacker has to have moderate knowledge of
the dataset if he wants to retrain a discriminator (as in (Im
et al., 2018)), which is somewhat counter intuitive to the
attack in the first place. On the other hand, optimization of
encoder E using Eq. (1) can be done merely by sampling
G, as is done in this document, but requires the parameters
of G. Finally, we note that we did not in fact use the labels
given to the surrogate data D′ to perform our membership
attacks. We do not believe this would significantly affect
the membership attack accuracy, as this information is im-
plicitly available to the attacker, for example when using a
semantic network like VGG-Face for a recovery attack.

5. Discussion and Conclusion
In this work, we presented a technique for the public release
of data using GANs and verified empirically the data appear
retains its utility while gaining privacy. More precisely, we
have demonstrated that GANs surrogates are effective for
age regression and face attribute classification. To verify
privacy, two different inference attack mechanisms have
been investigated. The first one is based on image recovery
and the second one on the discriminator optimized during
GAN training, which has been reported to overfit the train-
ing dataset. A major advantage to the presented method
is that it can work off-the-shelf with any GAN generator.
On the other hand, complex training procedures such as
PATE-GAN only exacerbate already unstable GAN train-
ing and may result in low quality data samples. While we
demonstrated data surrogates greatly reduce vulnerability
to membership attacks, more insight should be shed into
the mechanism behind this. Hopefully, this would allow for
mathematical guarantees instead of purely empirical ones.

Future investigations will include the question of adapting
this strategy to conditional GANs for situations where train-
ing an additional classifier could be avoided. Additionally,
GANs need large datasets for training which raises the ques-
tion of the extension of the proposed framework for small
private datasets. The extension to multiple private datasets
is also not straightforward, but would, however, provide a
useful tool for distributed learning.
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Age (MAD error, in years) Change in Performance (in years) FID

VGG-Face Features

C Real Data 5.22 - -

C ′

DCGAN 12.03 6.81 89.68
LSGAN 5.56 0.34 31.05
PGGAN 5.12 -0.10 30.65

Table 3. Performance of various surrogate datasets on the age regression task of UTK-Face (Zhang & Qi, 2017). Top row represents a
classifier trained on the original dataset, subsequent rows represent classifiers trained with GAN images (see Section 2). MAD is the
Median Absolute Difference (see Eq. 2) on the predicted versus ground-truth age for the validation set DV (lower is better). FID scores
are reported in the last column (lower is better) to assess the quality of generated images.

L2 Recovery VGG-Face Recovery VGG-19 Recovery Discriminator
DCGAN 52.3 53.5 52.1 50.9
LSGAN 53.4 53.9 53.6 75.8
PGGAN 54.7 56.8 54.1 -

Table 4. Membership attack accuracies (in %) for various GAN methods trained on the UTK-Face dataset and various attack methods
(see Algorithm 1). When not specified otherwise, the size of the training dataset is |DT | = 26k and for the validation set |DV | = 2k.
GAN methods are reported in the first column. The three next columns use latent recovery attack with loss function fG (see Eq. 1), with φ
taken to be the identity, VGG-Face or VGG-19 features respectively. The final column reports the discriminative attack accuracy with the
discriminator D from the GAN training.

Appendix: Additional experiments
Tables 3 and 4 report additional results on the UTK-face
dataset (Zhang & Qi, 2017) that are consistent with the
experiments on CelabA-HQ. Particularly, networks with
higher quality samples (as measured by the FID score) are
performing better on the task. This dataset is composed of
20k images of faces ranging from 0 to 116 years old. The
task networks are here trained on |DT | = 10k images to per-
form age regression instead of binary attribute classification.
The test set is again composed of |DV | = 2k images.

The only difference with the previous experiments on
CelebA-HQ (in Table 1 is that the performance of the task
networks C and C ′ for age regression is measured using
median absolute difference between estimated labels C(xi)
and the ground truth `(xi), which writes:

MAD(C) = median{|C(xi)− `(xi)|, xi ∈ DV}. (2)

Finally, note that in Table 4 the discriminative attack on LS-
GAN is slightly more successful, likely due to the fact of the
much smaller training set size of |DT | = 10k. The discrim-
inative attack seems far less consistent, as it performs no
better than random guessing on the DCGAN network with
the same training set size. Future work should investigate
discriminative attacks in more detail, across a wider range
of datasets, GAN techniques and dataset sizes.

In the same line and accordingly with recent results from
(Webster et al., 2019), Figure 2 illustrates the ability of a
generative model (here LSGAN) to overfit a dataset when

trained with an insufficient number of examples.

Last, Figure 3 illustrates the interest of latent recovery attack
with the proposed perceptual encoder E (see Section 3.1)
on PGGAN and CelebA-HQ. As reported in (Webster et al.,
2019), when trained on a sufficient number of images, re-
covered images with GANs are of similar quality for test
and train images.
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