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Abstract 
Lateral gene transfer (LGT) is a very common process in bacterial and archaeal 

evolution, playing an important role in the adaptation to new environments. In 

eukaryotes, its role and frequency remain highly debated, although recent research 

supports that gene transfer from bacteria to diverse eukaryotes may be much more 

common than previously appreciated. However, most of this research focused on 

animals and the true phylogenetic and functional impact of bacterial genes in less-

studied microbial eukaryotic groups remains largely unknown. Here, we have 

analyzed transcriptome data from the deep-branching stramenopile Opalinidae, 

common members of frog gut microbiomes and distantly related to the well-known 

genus Blastocystis. Phylogenetic analyses suggest the early acquisition of several 

bacterial genes in a common ancestor of both lineages. Those LGTs most likely 

facilitated the adaptation of the free-living ancestor of the Opalinidae-Blastocystis 

symbiotic group to new niches in the oxygen-depleted animal gut environment. 
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Lateral gene transfer (LGT) plays an important role in prokaryotic evolution. LGT 

provides bacteria and archaea with the possibility to adapt, sometimes very rapidly, 

to new environments by obtaining genes from organisms already living in those 

environments. Although the significance of this phenomenon is widely recognized in 

prokaryotes, LGT-mediated gene acquisition from distant donors remains a 

contentious issue in eukaryotes (Martin 2017; Leger et al. 2018). Nevertheless, there 

is increasing evidence for LGT in eukaryotes from prokaryotes as well as from other 

eukaryotes (e.g., Keeling and Palmer 2008; Karnkowska et al. 2016; Eme et al. 

2017; Husnik and McCutcheon 2017). A recent example concerns the stramenopile 

Blastocystis, which experienced LGTs from both eukaryotic and prokaryotic donors 

(Denoeud et al. 2011; Eme et al. 2017). 

Blastocystis is recognized as the most widespread human gut eukaryotic parasite 

(Clark et al. 2013). This strict anaerobic and single-celled protist displays some 

unique and interesting biological features, such as the presence of unusual 

mitochondrion-related organelles (MRO) that display functions of mitochondria, 

hydrogenosomes and mitosomes (Stechmann et al. 2008). Some Blastocystis 

enzymes crucial for life in oxygen-depleted conditions were acquired by LGT from 

prokaryotes. For instance, the sulfur-mobilization (SUF) machinery involved in Fe-S 

protein maturation in the cytoplasm appears to have been acquired from archaeal 

Methanomicrobiales (Tsaousis et al. 2012). Furthermore, Eme et al. (2017) reported 

74 purported cases of LGT mostly from prokaryotes to various subtypes of 

Blastocystis and suggested that several of the new LGT-acquired functions 

facilitated the metabolic adaptation of Blastocystis to the human gut in terms of 

metabolism but also to escape the immune defense mechanisms. The origins of 

those 74 gene families were very diverse. Although many of them were already 

present in the common ancestor of several Blastocystis subtypes, the time of their 

acquisition remained unclear due to the poor taxon sampling available for closely 

related stramenopile lineages. 

 Together with Alveolata and Rhizaria, Stramenopiles (or Heterokonta) constitute 

one of the main clades of the eukaryotic super-group SAR (Burki et al. 2007; Adl et 

al. 2019). Stramenopiles mostly encompass free-living phagotrophs or 

photosynthetic algae, but some are well-known parasites, such as the oomycetes 

and Blastocystis, or commensals, such as the Opalinidae (Patterson 1989; Andersen 

2004). Ribosomal RNA phylogenetic analyses suggested a close relationship 
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between Blastocystis and Opalinidae, supporting the existence of a deep-branching 

symbiotic (parasitic/commensal) clade adapted to live in the gut of very diverse 

vertebrates (Silberman et al. 1996; Kostka et al. 2004; Li et al. 2018). However, 

despite the phylogenetic affinity of Opalina and Blastocystis, their morphological 

characteristics and lifestyles are very different. Blastocystis is characterized by a 

round unflagellated cell largely filled by a large vacuole. The cytoplasm and 

organelles are concentrated in the thin peripheral area between the vacuole and the 

cell membrane. Members of the genus Blastocystis live in the intestines of humans, 

birds, cows and pigs, most likely as parasites (Tan 2004). By contrast, members of 

the genus Opalina have a leaf-like cell shape with numerous nuclei and hundreds of 

short flagella on the cell surface, which is reminiscent of the cellular organization of 

ciliates. They live mainly in the intestine of anurans (frogs and toads) but seem to be 

innocuous to their hosts being therefore most often reported as commensal 

symbionts (Kostka 2016). Using the numerous flagella, Opalina members actively 

move in the intestine. All other known Opalinidae species are also commensal 

symbionts (Kostka 2016). Phylogenetic analyses have supported the monophyly of 

the Opalinidae-Blastocystis clade with the Placidida, a lineage of small free-living 

marine flagellates such as Wobblia and Placidia (Li et al. 2018; Shiratori et al. 2015, 

2017; Derelle et al. 2016). Another free-living marine flagellate, Cantina marsupialis, 

is an anaerobic deep-branching relative that also possesses MROs (Yubuki et al. 

2015). Since the closest relatives of Opalinidae and Blastocystis are all free-living, 

their ancestor was most likely free-living as well. 

Here, we report the first transcriptome sequences from two Opalinidae strains, 

Opalina sp. OP10 and Opalinidae sp. Opal32, from two different continents (Europe 

and North America). OP10 and Opal32 cells were collected manually from the 

intestine of a Xenopus tropicalis frog and a Lithobates sphenocephalus tadpole, 

respectively. After transcriptome sequencing and assembly, we decontaminated the 

translated protein sequences inferred from the two transcriptomes to remove host 

and bacterial sequences (see Materials and Methods) and kept 7,232 and 18,765 

proteins for OP10 and Opal32, respectively. Using BUSCO (Simão et al. 2015), we 

determined 33.3% transcriptome completeness for OP10 and 57.4% for Opal32. For 

comparison, we also applied BUSCO on the near-complete genome of Blastocystis 

hominis and determined a completeness of 75.2%, indicating a reduced genome as 

expected for a derived symbiont. We found in our datasets 44.3% (OP10) and 76.3% 
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(Opal32) of the Blastocystis proteome (supplementary table S1, Supplementary 

Material online), suggesting a rather good coverage especially for Opal32. 
After transcriptome decontamination we searched with BLAST (Camacho et al. 2009) 

Opalinidae homologues of the 74 gene families likely acquired by LGT in Blastocystis (Eme 

et al. 2017). We recovered 37 and 38 of those LGT candidates in OP10 and Opal32, 

respectively. Thirty genes were common in both OP10 and Opal32, and seven and eight 

genes were unique in OP10 and Opal32, respectively. In total, 45 different candidate LGT 

genes were found in the two Opalinidae species. To verify that these sequences did not 

derive from the genomes of other gut microbes, we carried out two types of analyses. First, 

we investigated the codon usage of the coding sequences of both decontaminated 

transcriptomes and those of the LGT candidates and measured the frequency of optimal 

(FOP) codons, which indicates the ratio of optimal (most frequent) codons to synonymous 

codons. The proportion of synonymous codons is unique to each genome and often results 

in a unimodal distribution of the FOP score (Ikemura 1985), whereas the presence two FOP 

peaks has been linked to contamination with bacterial sequences (Heinz et al. 2012). We 

obtained single-peak FOP plots for our transcriptomes, indicating homogeneous codon usage 

and absence of contamination. All our LGT candidates fitted into these unimodal 

distributions supporting that they represent bona fide opalinid genes (supplementary figure 

S1, Supplementary Material online). Furthermore, their fit into the unimodal distribution 

supports an ancient integration of these LGT genes since they have adapted to the codon 

usage of the recipient genome. Second, we conducted phylogenetic analyses for all the LGT 

protein sequences. Phylogenetic trees showed that 29 of these proteins clustered robustly 

with their respective Blastocystis homologues (supplementary table S2 and supplementary 

figures S2-S30, Supplementary Material online). Those 29 proteins belonged to different 

functional families including carbohydrate metabolism, lipid metabolism, amino acid 

metabolism, and transporters. The phylogenetic analyses also allowed the identification of 

the donors of these sequences. Most of them had prokaryotic donors belonging to the 

Archaea, Proteobacteria and Actinobacteria, which are major components of frog gut 

microbiomes (Colombo et al. 2015). In some cases, the two Opalinidae species grouped 

with other eukaryotes belonging to the Amoebozoa, Excavata and Metazoa, suggesting 

eukaryote-to-eukaryote LGT, although it was impossible to infer from these trees whether 

the Opalinidae species were donors or recipients. Several of the LGT proteins most likely 

play important functions in the adaptation of Opalinidae to the anaerobic gut 

environment. One example is the mitochondrial iron-sulfur cluster (ISC) biogenesis 

system, essential for the assembly of iron-sulfur-containing proteins. These proteins 

are involved in a variety of metabolisms, including electron transport, nitrogen 
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fixation, and photosynthesis. In some protists living in low-oxygen environments, the 

canonical eukaryotic ISC machinery has been replaced by alternative bacterial 

machineries acquired via LGT, such as the nitrogen fixation (NIF) system and the 

bacterial sulfur mobilization (Suf) machinery. For instance, Entamoeba histolytica 

has a bacterial NIF system (van der Giezen et al. 2004), whereas 

Monocercomonoides exilis, which has completely lost mitochondria and the 

mitochondrial ISC pathway, contains a bacterial Suf system (Karnkowska et al. 

2015). By contrast, Blastocystis has an archaeal-like SufC+SufB fused protein 

(Tsaousis et al. 2012). Similar fused sufCB genes related to Methanomicrobiales 

homologues were also identified in anaerobic flagellates such as the jakobid 

Stygiella incarcerate and the breviate Pygsuia biforma  (Leger et al. 2016; Stairs et 

al. 2014). In prokaryotes, the suf operon is upregulated under oxidative stress 

(Outten et al. 2004), suggesting that the Suf machinery can be important for living in 

oxygen-depleted environments. We only identified an incomplete sufB gene in 

Opalina, which lacked a mitochondrial target signal. Similarly, SufCB is inferred to 

function in the cytosol in Blastocystis, Pygsuia and Stygiella (Tsaousis et al. 2012; 

Stairs et al. 2014; Leger et al. 2016). Our phylogenetic analysis showed that Opalina 

was closely related to these other anaerobic protists within a clade of 

Methanomicrobiales with robust support (fig. 1). These eukaryotes belong to three 

unrelated supergroups (Opalina and Blastocystis to SAR, Pygsuia to Breviatea, and 

Stygiella to Excavata). Therefore, one parsimonious explanation for this uneven 

distribution of SufCB is that one of these eukaryotic lineages first obtained the sufC 

and sufB genes from Methanomicrobiales, then both genes fused and, finally, the 

fused gene was transferred by eukaryote-to-eukaryote LGT to the other eukaryotic 

lineages. Since we only identified the sufB part in Opalina, it seems that it 

secondarily lost sufC after branching off from the lineages with fused sufCB. In fact, 

the well-supported separation of Opalina and Blastocystis in our tree (fig. 1) 

suggests that they have followed different evolutionary histories for the sufCB gene. 

Interestingly, the SufB and SufC proteins of M. exilis and Paratrimastix pyriformis are 

not related with the clade of Opalina, Blastocystis, Pygsuia, and Stygiella, indicating 

that they acquired these genes by independent LGT events from other prokaryotic 

donors. These genes were not identified in C. marsupialis. 

In anoxic conditions, some eukaryotes use rhodoquinone instead of ubiquinone 

to receive electrons from NADH in the mitochondrial complex I of the electron 
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transport chain (ETC) and generate rhodoquinol (Castro-Guerrero et al. 2005; Sakai 

et al. 2012; Takamiya et al. 1999). Rhodoquinol is then reoxidized by the 

mitochondrial complex II catalyzing the reverse reaction as a fumarate reductase 

(van Hellemond and Tielens 1994; Tielens et al. 2002). This pathway helps to 

produce ATP and to reduce the respiratory chain without using the mitochondrial 

complexes III to V. The putative methyltransferase RquA is required for 

rhodoquinone biosynthesis (Lonjers et al. 2012) and its distribution among 

eukaryotes suggests that it is important for the adaptation of the mitochondrial 

metabolism to low-oxygen environments. In Blastocystis, RquA was suggested to be 

targeted to the MRO (Eme et al. 2017). We identified RquA homologues in both 

OP10 and Opal32 that also contained predicted mitochondrial-targeting sequences. 

By contrast, this protein seemed to be absent in C. marsupialis. RquA is not very 

common in eukaryotes and previous phylogenetic analyses demonstrated that 

RquA-containing eukaryotes are scattered among prokaryotic lineages, mostly 

Proteobacteria. Stairs et al. (2018) proposed that LGT of rquA genes from bacteria to 

eukaryotes occurred at least twice before subsequent multiple independent LGTs 

among eukaryotes. Our updated RquA phylogeny (fig. 2) is consistent with this 

proposal. We retrieved two major clades, A and B: Opalina spp. branched together 

with Proteromonas and Blastocystis in clade A, composed mostly of alpha- and beta-

proteobacteria, and several other eukaryotes (Breviata, Amoebozoa and Euglenida). 

Group B also contained some eukaryotes (choanoflagellates, diatoms, and ciliates) 

embedded among bacteria, again mostly alpha- and beta-proteobacteria. The 

presence of alphaproteobacteria close to the eukaryotic sequences opens the 

possibility of a mitochondrial origin by endosymbiotic gene transfer (EGT). 

Nevertheless, several observations argue against this hypothesis: (i) the eukaryotic 

sequences are not monophyletic, (ii) several eukaryotic sequences appear to be 

closer to betaproteobacteria than to alphaproteobacteria, and (iii) if rquA was present 

in the last eukaryotic common ancestor (which already had mitochondria), it must 

have been lost independently many times to result in its current patchy distribution. 

Thus, the available data so far rather support the origin of eukaryotic rquA by LGT 

from bacteria followed by subsequent LGTs among eukaryotes. 
In most mitochondria, coenzyme A is transferred from acetyl-CoA to succinate by 

two types of acetate:succinate CoA-transferases (ASCT1B and ASCT1C). The 

resulting succinyl-CoA is used for ATP production by succinyl-CoA synthetase 
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(SCS). This ASCT/SCS system plays a crucial role in MROs of protists living in 

anoxic environments, such the human urogenital parasite Trichomonas vaginalis, for 

the production of ATP by substrate-level phosphorylation independent of the 

mitochondrial Krebs cycle   (van Grinsven et al. 2008). In the case of the free-living 

amoeboflagellate Naegleria gruberi, which contains classical mitochondria and 

transiently experiences low-oxygen conditions, ASCT was predicted to function in 

mitochondria (Fritz-Laylin et al. 2010). We identified an ASCT/SCS system in our 

Opalina transcriptomes. In contrast with the Blastocystis ASCT, which has an MRO-

targeting sequence, the Opalina asct1C and asct1B were incomplete ORFs and did 

not contain any recognizable mitochondrial targeting signal. The ASCT1C 

phylogenetic tree (fig. 3) recovered Opalina and Blastocystis grouped within a large 

clade also containing trichomonads, Naegleria, fungi, and dictyostelid cellular slime 

molds (Amoebozoa). This eukaryotic clade was closely related to 

Deltaproteobacteria and Firmicutes. As in the previous cases described above, this 

tree suggests a bacterial origin of the gene followed by eukaryote-to-eukaryote LGT. 

To carry out a more comprehensive comparison of the mitochondrial metabolism 

of Opalina with that of other MRO-containing anaerobic stramenopiles (the parasitic 

Blastocystis and the free-living C. marsupialis (Stechmann et al. 2008; Noguchi et al. 

2015)), we used BLAST to search for homologues of MRO proteins of these 

organisms in Opalina. We also manually annotated the Opalina mitochondrial 

proteins involved in major energy metabolism pathways. As shown above, Opalina 

obtained many genes for typical MRO anaerobic metabolism by LGT from either 

prokaryotes or other eukaryotes, but it also contains typical mitochondrial genes 

vertically inherited (supplementary tables S2 and S3, Supplementary Material 

online). Blastocystis spp. and C. marsupialis completely lack complexes III and IV, 

and F1Fo ATPase (complex V) (Gentekaki et al. 2017; Noguchi et al. 2015). Opalina 

possesses some genes of the tricarboxylic acid (TCA) cycle, complex I 

(NADH:ubiquinone oxidoreductase), and complex II (succinate dehydrogenase) of 

the ETC, but does not seem to encode any other recognizable canonical 

components such as complexes III and IV or the F1Fo ATPase (supplementary table 

S4, Supplementary Material online). This suggests that Opalina has a partial ETC 

that does not appear to function in energy generation. Data from Blastocystis and 

Pygsuia suggest that complex II functions in reverse as a fumarate reductase to 

regenerate the quinone pool under anaerobic conditions without using complex III, IV 
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and F1Fo ATPase to conduct oxidative phosphorylation. RquA, acquired by LGT in 

Opalina (see above), is the crucial enzyme for this alternative electron transport 

machinery. Opalina also possesses genes involved in classical mitochondrial 

activities, including transporters, fatty acid metabolism, amino acid metabolism, 

pyruvate metabolism, and [2Fe-2S] ferredoxin for FeS cluster assembly, some of 

which are lost in Blastocystis. (supplementary table S2, Supplementary Material 

online). By contrast, we did not identify in Opalina some essential mitochondrial 

proteins, such as those involved in the eukaryotic iron-sulfur cluster (ISC) synthesis 

system and several enzymes (pyruvate:ferredoxin oxidoreductase (PFO), [FeFe] 

hydrogenase (HydA), the HydA hydrogenase maturases HydE, HydF and HydG, and 

two subunits of the NADH:ubquinone oxidoreductase (NuoE and NuoF)) that are 

hallmarks of the MROs found in many anaerobic protists, including Blastocystis and 

Cantina. In those organisms, PFO oxidizes pyruvate to acetyl-CoA and CO2. The 

reduced ferredoxin is reoxidized by HydA that reduces protons to H2 gas. In Opalina, 

which lacks HydA, the pyruvate:NADP+ oxidoreductase (PNO), instead of PFO, 

presumably oxidizes pyruvate to acetyl-CoA and, then, acetyl-CoA can be utilized by 

the ASCT/SCS system to generate ATP by substrate-level phosphorylation. Since 

PFO and HydA are present in Blastocystis, we can propose two evolutionary 

scenarios: First, these two enzymes were present in the common ancestor of 

Opalina and Blastocystis and secondarily lost in the Opalina lineage or, second, they 

were obtained in Blastocystis independently after it diverged from the Blastocystis-

Opalina common ancestor. As in the case of Blastocystis and Cantina, we did not 

identify a pyruvate carrier in Opalina. Glycolysis is described as a cytosolic process 

in eukaryotes and its product, pyruvate, is imported into the mitochondrion by the 

pyruvate carrier. However, the second half of glycolysis in some stramenopiles has 

been predicted to occur in both the cytosol and mitochondria/MRO (Abrahamian et 

al. 2017). Moreover, in Blastocystis this second half of the glycolysis is solely 

localized in the MRO (Rártulos et al. 2018). Similarly, we identified in Opalina several 

enzymes of the second half of the glycolsis (glyceraldehyde phosphate 

dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and enolase (ENO)) with 

mitochondria-targeting signals (supplementary table S3, Supplementary Material 

online).  Despite these similarities and other shared key adaptations to the oxygen-

depleted gut environment, Opalina appears to have kept a less derived version of 
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the mitochondrial metabolism than its sister lineage Blastocystis and the 

stramenopile relative Cantina. 

 

Conclusion 

 Our examination of two Opalina transcriptomes based on sequence similarity 

searches and phylogenetic analyses identified 29 genes likely acquired by LGT by a 

common ancestor of both Blastocystis and Opalinidae (supplementary table S1, 

Supplementary Material online). Among these genes, those coding for the Suf, RquA 

and ASCT proteins play important roles in anaerobic metabolism in MROs. It is 

unclear when a common ancestor of these organisms entered the animal gut but 

some of the LGTs most likely facilitated the adaptation to this new oxygen-deprived 

environment before the divergence of these two lineages. Blastocystis MROs 

combine metabolic properties of both mitochondria and hydrogenosomes and 

contain PFO and [FeFe] hydrogenase as well as incomplete TCA cycle and the 

complexes I and II (Gentekaki et al. 2017; Stechmann et al. 2008 ). Although Opalina 

shares with Blastocystis many enzymes involved in anaerobic metabolisms acquired 

via LGT and both lineages have several metabolic modifications in common 

(incomplete TCA cycles and absence of complexes III and IV and F1Fo ATPase), 

our data suggest the absence of the typical hydrogenosomal enzymes PFO and 

[FeFe] hydrogenase. This important difference indicates that Blastocystis has 

achieved a more derived adaptation to hypoxic condition than Opalinidae. Opalina 

represents therefore an excellent model of intermediate adaptation between 

conventional aerobic mitochondria and derived anaerobic MROs and can help to 

understand the initial steps in the evolutionary path between both types of 

organelles. 
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Materials and Methods 
Isolation of Opalina sp. Cells 
For OP10 strains, the gut content of a Xenopus tropicalis frog was collected and 

resuspended in sterile PBS buffer. Eight Opalina cells were manually isolated under 

an inverted Leica DMI3000 microscope equipped with an Eppendorf TransferMan 4r 

micromanipulator. The cells were rinsed twice in sterile PBS and finally resuspended 

in 1.5 µl of sterile water. For Opal32 strain, a smear of ca. 100 µl of Lithobates 

sphenocephalus tadpole gut contents was placed onto a sterile Petri dish and 500 µl 

of sterile amphibian Ringer’s solution (ARS: in 1 L distilled water, 6.6 g NaCl, 0.15 g 

KCl, 0.15 g CaCl2, and 0.2 g NaHCO3) was added to the drop of gut content. 

Roughly 10 µl of this solution was examined under a Zeiss AxioSkop Plus upright 

microscope, and cells were imaged. A single cell was manually isolated using a 

micropipetter and washed six times in 100 µl of fresh and sterile ARS. The cell was 

then transferred to a 0.5 µl to nuclease-free PCR tube and processed as below.  

 

Opalina sp. Transcriptome Sequencing and Assembly  

For Opalina sp. OP10, RNA extraction, cDNA synthesis and amplification were done 

using the REPLI-g WTA Single Cell kit following the manufacturer's protocol 

(Qiagen). The resulting cDNA was sequenced using Illumina HiSeq 2500 paired-end 

sequencing (2x125 bp). For Opal32, the cell was subjected to a modified version of 

SmartSeq-2 (Picelli et al. 2014, Kang et al. 2017) and full-length cDNA was 

constructed. This cDNA was then sheared using a Covaris focused-ultrasonicator 

(Duty% 10, Intesity 5, Burst Cycle 200, Time 30s, Frequency Sweeping Mode). This 

sheared cDNA was prepped using NEBnext Ultra DNA library kit for Illumina (New 

England Biolabs) and sequenced on an Illumina MiSeq paired-end (2x300 bp) 

sequencing run. For both datasets, Illumina adapters were removed using 

Trimmomatic v. 0.36 (Bolger et al. 2014) and paired-end sequences were assembled 

using Trinity v.2.2.0 (Haas et al. 2013) with default parameters. A total of 24,170 

assembled transcripts were obtained from OP10 and 16,943 from Opal32.  

 

Transcriptome Decontamination and Completeness 
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The decontamination of the two transcriptomes was carried out by a three-step 

process. First, the transcriptome sequences were subjected to two rounds of 

assembly, before and after bacterial sequence removal by BlobTools v0.9.19 

(Laetsch et al. 2017). Second, open-reading frames were predicted and translated 

from the assembled transcripts using Transdecoder v2 (http:transdecoder.github.io) 

to produce protein sequences for OP10 and Opal32. Finally, to remove possible host 

sequences, the predicted protein sequences were searched by BLASTp (Camacho 

et al. 2009) against two predicted anuran proteomes. We used Xenopus tropicalis 

v9.1 for OP10 and, because of the lack of a proteome from the host species of 

Opal32 (Lithobates sphenocephalus) we used Rana catesbeiana RCv2.1, which is 

the closest member of the same Ranidae family with available sequence data. At the 

end, we obtained 8,432 and 11,480 protein sequences from OP10 and Opal32, 

respectively. 

To assess transcriptome completeness, we used BUSCO v2.0.1 (Simão et al. 

2015) on the decontaminated predicted proteins with the eukaryote_odb9 dataset of 

303 near-universal single-copy orthologs. As an additional step of quality 

completeness comparison, we calculated the completeness value of the near-

complete genome of Blastocystis hominis (ASM15166v1) and compared it with the 

opalinid data. 

Codon usage for the coding sequences of both transcriptomes and their LGT 

candidates were measured using the index of frequency of optimal (FOP) codons 

(Ikemura 1985). We calculated FOP values using CodonW (Peden 2005) with default 

settings and generated FOP plots using R (http://www.r-project.org). 

 
Identification of LGT Candidates and Phylogenetic Analysis 

We used the 74 LGT proteins of Blastocystis sp. ST1 Nand II (Eme et al. 2017) as 

queries to identify Opalinidae homologs using BLASTp searches (Camacho et al. 

2009) with an e-value cutoff of 1e-05. 37 and 38 proteins yielded hits in the OP10 

and Opal32 protein databases, respectively. Of these, 30 were found in both 

transcriptomes and 7 and 8 were unique to OP10 and Opal32, respectively. In total, 

45 proteins were recovered from the two strains as LGT candidates. To reconstruct 

their phylogenies, we searched these proteins by BLASTp against the non-

redundant GenBank database with an e-value cutoff of 1e-05 and maximum of 2,000 
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hits. To reduce the dataset size for subsequent phylogenetic analysis, hit sequences 

were clustered by CD-HIT (Limin et al. 2012) at 95% similarity. The resulting 45 

protein sequence datasets were aligned using MAFFT v7.388 with default settings 

(Katoh and Stanley 2013). Ambiguously aligned sites were removed using trimAl 

v1.4.rev15 (Capella-Gutierrez et al. 2009) with -automated1 setting prior to 

phylogenetic analyses. Preliminary phylogenies were reconstructed using FastTree 

2.1.7 (Price et al. 2010) and inspected manually to reduce the size of the data set by 

keeping only a few representatives for the prokaryotic clades distantly related to the 

eukaryotic sequences. We thus identified 29 proteins from the two Opalinidae strains 

as LGT candidates. The final datasets were aligned and trimmed as described 

above. Maximum likelihood phylogenetic trees for each dataset were constructed 

using IQ-TREE (Nguyen et al. 2015) with the best fitting model determined by 

applying the Bayesian Information Criterion (BIC) with the -m MFP (model selection) 

with default settings for each dataset. Branch supports were calculated with 1,000 

ultrafast bootstrap replicates.  

Protein cellular localization was predicted using TargetP 1.1 (Emanuelesson et 

al. 2000), MitoFates (Fukasawa et al. 2015) and TPpred 2.0 (Savojardo et al. 2014) 

with default settings. Homologs of mitochondrial proteins in Opalina sp. OP10 were 

searched with BLASTp using MRO sequences from two close relatives: Blastocystis 

(Stechmann et al. 2008) and Cantina marsupialis (Noguchi et al. 2015) 

(supplementary table S3, Supplementary Material online).  

 
Data Availability 

Protein sequence data sets used in this work, including complete and trimmed 

alignments and phylogenetic trees, are available for download at figshare 

(10.6084/m9.figshare.9746360). Opalina sequences have been submitted to 

GenBank (for accession numbers, see supplementary tables S2 and S3, 

Supplementary Material online). 

 

Supplementary Material 
Supplementary data are available at Molecular Biology and Evolution online. 

 

Acknowledgments 

 13

https://doi.org/10.6084/m9.figshare.9746360


This study was supported by European Research Council grants ProtistWorld (P.L.-

G., agreement no. 322669) and Plast-Evol (D.M. agreement no. 787904), the 

Agence Nationale de la Recherche (D.M., project ANR-15-CE32-0003 

“ANCESSTRAM”) and the Institut Diversité Ecologie et Evolution du Vivant (D.M. 

and N.P.). This project was supported in part by the United States National Science 

Foundation (NSF) Division of Environmental Biology (DEB) grant 1456054 

(http://www.nsf.gov), awarded to M.W.B. We thank Prof. Ronald Altig (Mississippi 

State University) for collection of tadpoles and Andrew J. Roger, Courtney Stairs, 

and Marlena Dlutek (Dalhousie University, Canada) for Opalina sp. Opal32 

transcriptome sequencing, which was supported by grant MOP-142349 from the 

Canadian Institutes of Health Research awarded to A.J. Roger. We thank two 

anonymous reviewers for constructive comments. 

 

 14



References 
Abrahamian M, Kagda M, Ah-Fong, AMV, Judelson HS 2017. Rethinking the evolution of 

eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links 

serine biosynthesis to glycolysis in mitochondria.  BMC Evol Biol. 17:241. 

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown 

MW, Burki F, et al. 2019. Revisions to the classification, nomenclature, and diversity of 

eukaryotes. J Eukaryot Microbiol. 66(1):4-119. 

Andersen RA. 2004. Biology and systematics of heterokont and haptophyte algae. Am J Bot. 

91:1508–1522.  

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence 

data. Bioinformatics. 30:2114-2120. 

Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski 

J. 2007. Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2:e790. 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. 

BLASTþ: architecture and applications. BMC Bioinformatics 10:421. 

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated 

alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-1973 

Castro-Guerrero NA, Jasso-Chávez R, Moreno-Sánchez R. 2005. Physiological role of 

rhodoquinone in Euglena gracilis mitochondria. Biochim Biophys Acta. 1710:113-121.  

Clark CG, van der Giezen M, Alfellani MA, Stensvold CR. 2013. Recent developments in 

Blastocystis research. Adv Parasitol. 82:1-32 

Colombo BM, Scalvenzi T, Benlamara S, Pollet N. 2015. Microbiota and mucosal immunity 

in amphibians. Front Immunol. 6:111. 

Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, 

Brochier-Armanet C, Couloux A, Poulain J, et al. 2011. Genome sequence of the 

stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 12:R29. 

Derelle R, López-García P, Timpano H, Moreira D. 2016 A phylogenomic framework to study 

the diversity and evolution of stramenopiles (=heterokonts). Mol Biol Evol. 33:2890-2898. 

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 2000. Predicting subcellular 

localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 

300:1005-1016. 
Eme L, Gentekaki E, Curtis B, Archibald J, Roger A. 2017. Lateral gene transfer in the 

adaptation of the anaerobic parasite Blastocystis to the gut. Curr Biol. 27:807–820. 

Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, 

Paredez A, Chapman J, Pham J, et al. 2010. The genome of Naegleria gruberi 

illuminates early eukaryotic versatility. Cell 140:631–642. 

 15



Fukasawa Y, Tsuji J, Fu S, Tomii K, Horton P, Imai K. 2015. MitoFates: improved prediction 

of mitochondrial targeting sequences and their cleavage sites. Mol Cell 

Proteomics.14:1113-1126. 

Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Elias M, Salas-Leiva DE, Herman EK, Eme L, 

Arias MC, Henrissat B, et al. 2017. Extreme genome diversity in the hyper-prevalent 

parasitic eukaryote Blastocystis. PLoS Biol. 15:e2003769–42. 

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, 

Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, 

Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. 

2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity 

platform for reference generation and analysis. Nat Protoc. 8:1494-1512. 

Heinz E, Williams TA, Nakjang S, Noël CJ, Swan DC, Goldberg AV, Harris SR. 2012. The 

genome of the obligate intracellular parasite Trachipleistophora hominis: new insights 

into microsporidian genome dynamics and reductive evolution. PLoS Pathog. 

8:e1002979.  

Husnik F, McCutcheon JP. 2018. Functional horizontal gene transfer from bacteria to 

eukaryotes. Nat Rev Micro. 16:67–79. 

Ikemura T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. 

Mol Biol Evol. 2:13–34. 

Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Čepička I, Kostka M, Kosakyan A, 

Alcântara DM, Roger AJ, Shadwick LL, Smirnov A, Kudryavstev A, Lahr DJG, Brown 

MW. 2017. Between a pod and a hard test: the deep evolution of amoebae. Mol Biol 

Evol. 34:2258-2270. 

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, 

Barlow LD, Herman EK, Soukal P, Hroudová M, Dolezal P, Stairs CW, Roger AJ, Elias 

M, Dacks JB, Vlček C, and Hampl V. 2016. A eukaryote without a mitochondrial 

organelle. Curr Biol 26:1274–1284. 

Katoh K, Standley DM. 2013.  MAFFT Multiple sequence alignment software version 7: 

improvements in performance and usability. Mol Biol Evol. 30:772–780 

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nat Rev 

Genet. 9:605–618. 

Kostka M. 2016. Opalinidae. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, 

editors. Handbook of the Protists. Springer, Charm, Switzerland. 

Kostka M, Hampl V, Cepicka I, Flegr J. 2004. Phylogenetic position of Protoopalina 

intestinalis based on SSU rRNA gene sequence. Mol Phylogenet Evol. 33:220–224. 

Laetsch DR, Blaxter ML, Leggett RM. 2017. BlobTools: Interrogation of genome assemblies. 

F1000Research. 6:1287. 

 16



Leger MM, Eme L, Hug LA, Roger AJ. 2016. Novel hydrogenosomes in the microaerophilic 

jakobid Stygiella incarcerata. Mol Biol Evol. 33:2318–2336. 

Leger MM, Eme L, Stairs CW, Roger AJ. 2018. Demystifying eukaryote lateral gene transfer. 

Bioessays. 40:e1700242. 

Li M, Ponce-Gordo F, Grim JN, Li C, Zou H, Li W, Wu S, Wang G. 2018. Morphological 

redescription of Opalina undulata Nie 1932 from Fejervarya limnocharis with molecular 

phylogenetic study of Opalinids (Heterokonta, Opalinea). J Eukaryot Microbiol. 65:783-

791 

Limin F, Beifang N, Zhengwei Z, Sitao W, Weizhong L, 2012. CD-HIT: accelerated for 

clustering the next generation sequencing data. Bioinformatics 28:3150-3152. 

Lonjers ZT, Dickson EL, Chu TPT, Kreutz JE, Neacsu FA, Anders KR, Shepherd JN. 2012. 

Identification of a new gene required for the biosynthesis of rhodoquinone in 

Rhodospirillum rubrum. J Bacteriol. 194:965–971. 

Martin WF. 2017. Too much eukaryote LGT. Bioessays. 39:1700115. 

Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, Hashimoto T, Inagaki Y, 

Fujikura K, Takishita K. 2015. Metabolic capacity of mitochondrion-related organelles in 

the free-living anaerobic stramenopile Cantina marsupialis. Protist 166:534–550. 

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective 

stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 

32:268-274. 

Outten FW, Djaman O, Storz G. 2004. A suf operon requirement for Fe-S cluster assembly 

during iron starvation in Escherichia coli. Mol Microbiol. 52:861–872. 

Peden  J  2005.  CodonW  version  1.4.2. http://codonw.sourceforge.net/ 
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S,Sandberg R.  2014. Full-length 

RNA-Seq from single cells using Smart-seq2. Nat. Protocols 9:171-181. 

Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – Approximately maximum-likelihood trees 

for large alignments. PLoS One 5(3):e9490. 

Patterson DJ. 1989. Stramenopiles: Chromophytes from a protistan perspective. In: Green 

JC, Leadbeater BSC, Diver WL, editors. The chromophyte algae: problems and 

perspectives. Clarendon Press, Oxford. p357–379.  

Río Bártulos C, Rogers MB, Williams TA, Gentekaki E, Brinkmann H, Cerff R, Liaud M-F, 

Hehl AB, Yarlett NR, Gruber A, Kroth PG, van der Giezen M. 2018. Mitochondrial 

glycolysis in a major lineage of eukaryotes. Genome Biol Evol. 10:2310-2325. 

Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K. 2012. Mitochondrial fumarate reductase 

as a target of chemotherapy: from parasites to cancer cells. Biochim Biophys Acta. 

1820:643-651. 

 17

http://codonw.sourceforge.net/


Savojardo C, Martelli PL, Fariselli P, Casadio R. 2014. TPpred2: improving the prediction of 

mitochondrial targeting peptide cleavage sites by exploiting sequence motifs. 

Bioinformatics 30:2973-2974. 

Shiratori T, Nakayama T, Ishida K-I. 2015. A new deep-branching stramenopile, Platysulcus 

tardus gen. nov., sp. nov. Protist 166:337–348. 

Shiratori T, Thakur R, Ishida K-I. 2017. Pseudophyllomitus vesiculosus (Larsen and 

Patterson 1990) Lee, 2002, a poorly studied phagotrophic biflagellate is the first 

characterized member of stramenopile environmental clade MAST-6. Protist 168:439–

451. 

Silberman JD, Sogin ML, Leipe DD, Clark CG. 1996. Human parasite finds taxonomic home. 

Nature 380:398–398. 

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. 2015. BUSCO: 

Assessing genome assembly and annotation completeness with single-copy orthologs. 

Bioinformatics. 31:3210–3212. 

Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der 

Giezen M, Roger AJ. 2014. A SUF Fe-S cluster biogenesis system in the mitochondrion-

related organelles of the anaerobic protist Pygsuia. Curr Biol. 24:1176-1186. 

Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, 

Roger AJ. 2018. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions 

of a gene involved in rhodoquinone biosynthesis. eLife 7:e34292 

Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, 

Clark CG, Roger AJ. 2008. Organelles in Blastocystis that blur the distinction between 

mitochondria and hydrogenosomes. Curr Biol. 18:580–585. 

Takamiya S, Matsui T, Taka H, Murayama K, Matsuda M, Aoki T. 1999. Free-living 

nematodes Caenorhabditis elegans possess in their mitochondria an additional 

rhodoquinone, an essential component of the eukaryotic fumarate reductase system. 

Arch Biochem Biophys. 371:284-289.  

Tan KSW. 2004. Blastocystis in humans and animals: new insights using modern 

methodologies. Vet Parasitol. 126:121–144. 

Tielens AGM, Rotte C, van Hellemond JJ, Martin W. 2002. Mitochondria as we don't know 

them. Trends Biochem Sci. 27:564–572. 

Tsaousis AD, de Choudens SO, Gentekaki E, Long S, Gaston D, Stechmann A, Vinella D, 

Py B, Fontecave M, Barras F. 2012. Evolution of Fe/S cluster biogenesis in the 

anaerobic parasite Blastocystis. Proc Natl Acad Sci USA 109:10426–10431. 

van der Giezen M, Cox S, Tovar J. 2004. The iron-sulfur cluster assembly genes iscS and 

iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol. 

4:7. 

 18



van Grinsven KWA, Rosnowsky S, van Weelden SWH, Pütz S, van der Giezen M, Martin W, 

van Hellemond JJ, Tielens AGM, Henze K. 2008. Acetate:Succinate CoA-transferase in 

the hydrogenosomes of Trichomonas vaginalis. J Biol Chem. 283:1411–1418. 

van Hellemond JJ, Tielens AGM 1994. Expression and functional properties of fumarate 

reductase. Biochem J. 304:321–331. 

Yubuki N, Pánek T, Yabuki A, Cepicka I, Takishita K, Inagaki Y, Leander BS. 2015. 

Morphological identities of two different marine stramenopile environmental sequence 

clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and 

Patterson, 1990) gen. nov., comb. nov. J Eukaryot Microbiol. 62:532–542. 

 19



 20

Figure Legends 
 

FIG. 1. Maximum likelihood phylogenetic tree of SufCB (188 sequences). Bootstrap 

values <50% are not shown. The long branch of Paratrimastix and 

Monocercomonoides has been shortened to 1/4. For the complete tree see 

supplementary figure S2, Supplementary Material online. 

 

FIG. 2. Maximum likelihood phylogenetic tree of RquA (102 sequences). Bootstrap 

values <50% are not shown. Groups A and B are defined according to Stairs et al. 

2018. For the complete tree see supplementary figure S3, Supplementary Material 

online. 

 

FIG. 3. Maximum likelihood phylogenetic tree of ASCT1C (96 sequences). Bootstrap 

values <50% are not shown. The branch of Schizosaccharomyces cryophilus has 

been shortened to 1/2. For the complete tree see supplementary figure S4, 

Supplementary Material online. 
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