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We analyze the stability of systems stemming from direct model-reference adaptive control. Although the statements of stability themselves are well-established for many years now, we provide a direct stability analysis both for linear and nonlinear systems under conditions of persistency of excitation. Our proofs are short and constructive as we provide strict Lyapunov functions that have all the required properties as established by Barbashin/Krasovskii's seminal papers on uniform global asymptotic stability.

INTRODUCTION

Ever since its origins in the 1960s, analysis and design of adaptive control systems has been a steering force in the advancement of control theory. Particularly popular are the speed-gradient adaptive control approach [START_REF] Fradkov | Adaptive control in complex systems[END_REF] and model-reference adaptive control [START_REF] Narendra | Robust adaptive control in the presence of bounded disturbances[END_REF], since they apply to a variety of physical systems. Although simple in nature and quite intuitive, these methods pose significant challenges to stability analysis, due to their inherent nonlinear and time-varying nature; even in the case when the plant to be controlled is linear time-invariant. A commonly-used method to establish the convergence of tracking errors is based on properties of signals in L p spaces; the most popular of these is known as Barbalȃt Lemma [START_REF] Barbȃlat | Systèmes d' Équations Différentielles d'Oscillations Non Linéaires[END_REF]. Guaranteeing convergence of the parameter errors, on the other hand, is a more challenging task of analysis. The recurrent, sufficient and necessary, condition under various control schemes is known as persistency of excitation and it was introduced in Åströmand Bohn [1965] in the context of identification of discretetime linear systems. Evolving from such context to the realm of continuous-time systems was a considerable step undertaken from the landmark papers [START_REF] Anderson | Exponential stability of linear equations arising in adaptive identification[END_REF]; Morgan and Narendra [1977a;[START_REF] Anderson | Stability of adaptive systems[END_REF]. Since then, not only the study of persistency of excitation has not been exhausted but it has taken various alternative forms -see [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF]1989] and the more recent papers [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]; [START_REF] Lee | On the equivalence relations of detectability and PE conditions with applications to stability analysis of time-varying systemss[END_REF]; [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] where definitions tailored for nonlinear systems were introduced. Analysis methods for linear systems often rely on the integration of the system's dynamics and hence, on the scrutiny of the state transition matrix [START_REF] Ioannou | Robust adaptive control[END_REF]. One of the most notable tools is the concept of uniform complete observability and the observation This article is supported by Government of Russian Federation (grant 074-U01) and by the French National Research Agency (ANR) via the project "HANDY" -contract number: ANR-18-CE40-0010.

that this is invariant under output injection [START_REF] Anderson | Stability of adaptive systems[END_REF]. Other methods, which rely on the uniform integrability of state trajectories, lead to shorter proofs [START_REF] Loría | Uniform exponential stability of linear time-varying systems:revisited[END_REF]. Notably such methods may also be used to compute explicit convergence rates, both in the linear [START_REF] Loría | Explicit convergence rates for MRACtype systems[END_REF] and nonlinear cases [START_REF] Loría | Persistency-ofexcitation based explicit convergence rates for MRACtype systems[END_REF]. See also [START_REF] Brockett | The rate of descent for degenrate gradient flows[END_REF] for the case of gradient systems. Without doubt, the most direct method of analysis is that of Lyapunov's. Indeed, converse Lyapunov theorems and stability proofs established in the previous and many other references, guarantee the existence of Lyapunov functions for adaptive-control systems. Yet, their complexity is such that constructing a strict Lyapunov function for such systems has eluded the research community, at least until Mazenc et al. [2009a] where, to the best of our knowledge, the first strict Lyapunov function for nonlinear systems reminiscent of model-reference-adaptive control was proposed. The neat Mazenc construction method used therein was originally introduced in [START_REF] Mazenc | Strict Lyapunov functions for timevarying systems[END_REF] and is described in great detail in [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF]. See also Loríaet al. [2019].

In this paper we focus on systems that appear in modelreference-adaptive control of linear plants and feedback linearizable systems. This is a more particular class of systems than the one considered in Mazenc et al. [2009a;b] and Loríaet al. [2019], but, for the same reason, the Lyapunov functions that result from the Mazenc construction method are fairly simple: firstly, for linear time-varying systems, reminiscent of those studied in [START_REF] Anderson | Exponential stability of linear equations arising in adaptive identification[END_REF]; [START_REF] Anderson | Stability of adaptive systems[END_REF]; [START_REF] Ioannou | Robust adaptive control[END_REF]; [START_REF] Loría | Uniform exponential stability of linear time-varying systems:revisited[END_REF], we provide a simple quadratic Lyapunov function with which exponential stability is established. Then, in the more realistic case, that of nonlinear timevarying systems, we provide an "almost" quadratic strict Lyapunov function. More precisely, it has a quadratic lower-bound, and a polynomial upperbound that is related to the degree of the nonlinearities in the system. Furthermore, the total derivative has a negative quadratic upperbound. The interest of having such simple Lyapunov functions may not be overestimated; for instance, they are fundamental in the analysis of robustness, computation of input-output L p gains, and for the purpose of Lyapunov redesign in contexts of disturbance compensation or dynamic output feedback designs. We stress that in this note we focus on the "classical" method of direct model-reference adaptive control, as described, for instance, in [START_REF] Narendra | Stable adaptive systems[END_REF]; [START_REF] Khalil | Adaptive output feedback control of nonlinear systems represented by input-output models[END_REF]. Hence, numerous more "modern" MRAC controllers, such as for instance that proposed in [START_REF] Guzman | A new finitetime convergent and robust direct model reference adaptive control for siso linear time invariant systems[END_REF] which guarantees finite-time convergence, are beyond scope. The remainder of this paper is organized as follows.

For the sake of motivation and clarity of exposition, in Section 2 we revise the well-known direct-adaptivecontrol problem, which is otherwise well documented in many textbooks, such as [START_REF] Sastry | Adaptive control: Stability, convergence and robustness[END_REF]; [START_REF] Narendra | Stable adaptive systems[END_REF]; [START_REF] Ioannou | Robust adaptive control[END_REF].

In Section 3 we present our main results and we conclude with some remarks in Section 4.

MOTIVATION

Consider an innocuous single-input-single-output linear autonomous system, ẋ = Ax + Bu (1a)

y = Cx (1b)
where x ∈ R n , u, y ∈ R, and the pair (A,B) is controllable. For simplicity, let A and B be in the controllability canonical form

A =     0 1 0 • • • . . . 1 . . . 1 -a 1 • • • -a n     , B =     0 . . . 1     .
Suppose it is desired for the system (1) to behave as the reference model ẋ * = A * x * (2) where A * is designed to be Hurwitz and its poles are chosen according to some desired performance. This problem may also be posed as that of stabilization of the trajectory t → x * , which is solution of (2). To that end, we define the tracking errors e := x -x * and we define a new matrix A cl with its poles carefully chosen to be stable. This determines the target closed-loop dynamics ė = A cl e (3) which determines the transient performance in closed loop while the reference model (2) describes the dynamics of the system in "steady" state. Now, to achieve the target closed-loop dynamics (3) we subtract (2) from (1a) to find ė = Ax -A * x * + Bu from which it is clear that the control input Bu := A * x * -Ax + A cl e (4) leads to our objective. Since the system is in canonical controllable form, ( 4) is equivalent to

u = [a * 1 • • • a * n ]x * + [a 1 • • • a n ]x + [a cl1 • • • a cln ]e where a i , a *
i , and a cli correspond, respectively, to the coefficients of the last row of A, A * , and A cl . Now, this control law may also be written as

u = θ * x * -θ x + Ke (5)
where

θ * :=    a * 1 . . . a * n    , θ :=    a 1 . . . a n    , K :=    a cl1 . . . a cln    . (6)
Clearly, the implementation of (5) relies on the knowledge of θ. In the case that the latter is unknown, it is common to use adaptive control and to invoke the certaintyequivalence principle. Namely, one replaces θ x with θ x in the controller and uses an adaptation law to update θ in function of the measured output C x. That is, we redefine u = θ * x * -θ x + Ke -θ x, where θ := θ -θ, in (1a). We see that the closed-loop dynamics now is ė = A cl e -Bx θ.

(7) At this point, we introduce the function V 1 (e) := e P e, P = P > 0 (8) where P is solution to the Lyapunov equation A cl P + P A cl = -Q, for any given Q = Q > 0. Such P exists (and may be easily computed) because A cl has been designed to be Hurwitz. Then, we consider the function

V 2 (e, θ) = V 1 (e) + 1 γ | θ| 2 , γ > 0. (9) 
A direct computation shows that, by setting θ := γxB P e, (10) the derivative of V 2 along the trajectories of the closedloop system, ė = A cl e -Bx θ (11a) θ = γxB P e, (11b) yields V2 ≤ -q m |e| 2 , q m := λ min (Q).

(12) Standard arguments, based on Barbalȃt's lemma, may now be invoked to conclude that e → 0 hence, that x → x * . Furthermore, to ensure that θ → 0 it is also well known that the regressor φ := xB must be persistently exciting that is, that there must exist µ and T > 0 such that

t+T t φ(τ )φ(τ ) ≥ µ ∀ t ≥ 0. ( 13 
)
Sufficiency may be established if, in addition, there exists

φ M > 0 such that max |φ| ∞ , | φ| ∞ ≤ φ M (14) where |φ| ∞ := sup t≥0 |φ(t)|.
More precisely, the following well-known statement, which may be found in several texts on adaptive control, such as [START_REF] Narendra | Stable adaptive systems[END_REF]; [START_REF] Sastry | Adaptive control: Stability, convergence and robustness[END_REF]; [START_REF] Anderson | Stability of adaptive systems[END_REF]; [START_REF] Ioannou | Robust adaptive control[END_REF], is often invoked in the literature: Lemma 1. Consider the linear time-varying system

ė θ = A Bφ(t) -φ(t)C 0 e θ . ( 15 
)
Assume that the triple (A, B, C) is strictly positive real, φ is absolutely continuous bounded, and φ is bounded almost everywhere. Then, the origin is globally exponentially stable if and only if (13) holds.

Unfortunately, in spite of the clear explanations found, e.g., in [START_REF] Narendra | Stable adaptive systems[END_REF]; [START_REF] Khalil | Adaptive output feedback control of nonlinear systems represented by input-output models[END_REF], it is often overlooked in the literature that the system (11) is not linear autonomous anymore and, consequently, Lemma 1 cannot be invoked "off-the-shelf" to analyze the stability of the origin for (11). Indeed, if we compare ( 11) with ( 15), we see that A = A cl , B = -B, C = -γB P , and φ = x. For the purpose of stability analysis this poses an important technical problem since x is the state of the original plant and φ in Lemma 1 is (meant to be) a function of time.

In order to carry on with a qualitative analysis of the solutions of ( 15), there are two possibilities: the first is to define φ(t) := x(t) and the second is φ(t, e) := [e + x * (t)], but in either case the function φ does not depend on time only, as required in Lemma 1. In the first case φ is a functional of the original plant's trajectories x(t, t • , x • ), which depend on the initial conditions (t • , x • ) -see [Khalil, 1996, p. 626]. In the second case, φ is defined as function that depends both on time and (generally nonlinearly) on the state -see [START_REF] Narendra | Stable adaptive systems[END_REF]. These facts have several crucial consequences. Firstly, if for the purpose of analysis we choose to use φ(t) := x(t), unless persistency of excitation is imposed to hold with the same µ and T for all initial conditions, uniform convergence may not be guaranteed for the nonlinear system (11) -see [START_REF] Loría | Uniform exponential stability of linear time-varying systems:revisited[END_REF]. Furthermore, even if uniform global asymptotic stability is possible -see [START_REF] Morgan | On the uniform asymptotic stability of certain linear nonautonomous differential equations[END_REF]; [START_REF] Narendra | Stable adaptive systems[END_REF], global exponential stability is out of reach -see [START_REF] Gibson | Adaptive control and the definition of exponential stability[END_REF]. Yet, uniform exponential stability on any compact may still be be obtained [START_REF] Loría | Explicit convergence rates for MRACtype systems[END_REF]; [START_REF] Loría | Persistency-ofexcitation based explicit convergence rates for MRACtype systems[END_REF].

If neither uniformity nor rate of convergence are of the essence, one can be content with establishing (nonuniform) convergence by invoking standard arguments that rely on Barbalȃt lemma and output injection analysis, as it is common in adaptive-control literature - [START_REF] Ioannou | Robust adaptive control[END_REF]. Roughly speaking, the outputinjection argument is the following: since x = e + x * (t), the closed-loop system (11) may be written as ė = A cl e -Bx * (t) θ -Be θ (16a) θ = γx * (t)B P e + γeB P e (16b) and, since e → 0, it is expected that the output-injection terms K(t, e) := -Be θ γeB P e also vanish. On the other hand, the system (16) with K ≡ 0, is exactly of the form (15) and Lemma 1 may be invoked by imposing a condition of persistency of excitation on the reference trajectory x * (t). Hence, if the speed of convergence of K(t, e(t)) is "high enough", it may also be concluded that θ(t) and e(t) → 0. A rigorous, but lengthy proof, relying on the concept of uniform complete observability and integration of solutions, is provided for linear systems in [START_REF] Anderson | Stability of adaptive systems[END_REF], see also [START_REF] Ioannou | Robust adaptive control[END_REF]. The necessary and sufficient conditions for uniform convergence are also emphasized in [START_REF] Loría | Uniform exponential stability of linear time-varying systems:revisited[END_REF] via shorter proofs. An alternative, and intuitive, argument relies on the fact that a function φ does not loose its property of persistency of excitation when a (sufficiently fast) decaying signal t → is added to it. More precisely, φ(t) = φ(t) + (t) is persistently exciting if so is φ, while → 0 and ∈ L 2 -Narendra and Annaswamy [1989]; [START_REF] Ioannou | Robust adaptive control[END_REF]. Based on this fact, one may be tempted to use Lemma 1 for the nonlinear system (11) by arguing that x(t) is persistently exciting because x(t) = x * (t) + e(t). While such reasoning has been extensively used in the literature, and may lead to establish convergence of both, e(t) and θ(t), there is no guarantee that such convergence is uniform in the initial conditions.

MAIN RESULTS

Our first main result is a proof of Lemma 1 alternative to that found in some of the previous references. Secondly, we provide a direct proof of uniform global asymptotic stability for strictly-passive systems ė = Ae + B(t, e) θ (17a) θ = -γB(t, e) P e (17b)

where P = P is such that A P + P A = -Q where Q = Q ≥ q m I. These systems cover, in particular, (16).

Our contributions lie in providing strict Lyapunov functions for both cases that is, Lyapunov functions that are positive definite radially unbounded and with negative definite derivative. As expected, only for the system (15) global exponential stability is concluded.

Linear systems

Lemma 2. Let B • (t) := B(t, 0) and consider the system

ė = Ae + B • (t) θ (18a) θ = -γB • (t) P e, γ > 0 (18b)
Assume that there exist a M , b M , µ, and

T > 0 such that |A| ≤ a M , B • (t) satisfies max |B • | ∞ , | Ḃ• | ∞ ≤ b M a.e. ( 19 
) and t+T t B • (τ ) B • (τ )dτ ≥ µI ∀ t ≥ 0. ( 20 
)
Then, for sufficiently large values of c > 0, the function

V (t, e, θ) = c e P e + 1 γ | θ| 2 -e B • (t) θ - 1 4 θ ∞ t e t-τ B • (τ ) B • (τ )dτ θ
is positive definite, radially unbounded, and satisfies

σ 1 |z| 2 ≤ V (t, e, θ) ≤ σ 2 |z| 2 (21) V (t, e, θ) ≤ -σ 3 |z| 2 (22)
where z := e θ and σ i > 0. Proof. For the sake of clarity, we start by rewriting the function V as

V (t, e, θ) = cV 2 (e, θ) + W 1 (t, e, θ) + 1 4 W 2 (t, θ) (23) W 1 (t, e, θ) := -e B • (t) θ (24) W 2 (t, θ) := -θ ∞ t e t-τ B • (τ ) B • (τ )dτ θ ( 25 
)
where we recall that V 2 is defined in (9). For further development, we underline some useful bounds on these functions. Firstly, in view of ( 19), for any λ 1 > 0, we have

|W 1 (t, e, θ)| ≤ b M |e|| θ| ≤ λ 1 b 2 M 2 |e| 2 + 1 2λ 1 | θ| 2 .
Secondly, in view of (20),

-b 2 M | θ| 2 ≤ W 2 (t, θ) ≤ -µe -T | θ| 2 .
(26) Finally, we point out that P is positive definite so there exist p m and p M > 0 such that

p m I ≤ P ≤ p M I. Therefore, c 2 p m |e| 2 + 1 γ | θ| 2 ≤ V 2 (e, θ) ≤ c 2 p M |e| 2 + 1 γ | θ| 2
and, for sufficiently high values of c > 0, that is, such that

c > max λ 1 b 2 M p m , 1 λ 1 + 2b 2 M , 2µe -T , (27) 
we conclude that there exist σ 1 , σ 2 > 0, such that V satisfies ( 21).

Next, we compute the total derivative of V along the trajectories of ( 18). We have, on one hand,

Ẇ1 (t, e, θ) = Y 1 (t, e, θ) Y 1 (t, e, θ) := -e A B • (t) θ -θ B • (t) B • (t) θ -e Ḃ• (t) θ + γe B • (t)B • (t) P e. (28) 
Therefore, defining ξ := B • (t) θ, for any λ 2 > 0, we obtain

Ẇ1 (t, e, θ) ≤ c 1 2 |e| 2 - 1 2 |ξ| 2 + 1 2λ 2 | θ| 2 (29) 
where

c 1 := a 2 M + (λ 2 + 2γp M )b 2 M (30) On the other hand, Ẇ2 (t, θ) = Y 2 (t, e, θ)
where

Y 2 (t, e, θ) := 2γ θM (t)B • (t) P e + W 2 (t, θ) + |ξ| 2 , M (t) := ∞ t e t-τ B • (τ ) B • (τ )dτ. That is, in view of (26), Ẇ2 (t, θ) ≤ |ξ| 2 -µe -T | θ| 2 + 1 λ 3 | θ| 2 + λ 3 γ 2 b 6 M p 2 M |e| 2 .
(31) Thus, using ( 12), ( 29), (31), and setting c > 0 such that

c q m ≥ λ 3 2 γ 2 b 6 M p 2 M + λ 1 b 2 M + c 1 , and λ 2 , λ 3 such that λ 2 λ 3 λ 2 + 2λ 3 ≥ 2 µe -T , we see that V (t, e, θ) ≤ - 1 4 |ξ| 2 - c q m 2 |e| 2 - µe -T 8 | θ| 2 (32) 
Hence, (22) holds with

σ 3 := min cq m 2 , µe -T 8 .

Feedback linearizable systems

Lemma 2 provides a direct proof of an otherwise wellknown statement that appears in numerous textbooks. As we stressed in the previous section, however, it is inefficacious in the analysis of model-reference adaptive control systems, even when dealing with linear time-invariant plants since, in closed loop, they are of the form (17).

To the best of our knowledge, the most direct statement on uniform global asymptotic stability for systems of the form (17) hence, which stands as a nonlinear counterpart of Lemma 2, is [Loría et al., 2000, Theorem 3]. Below we provide an alternative statement for such systems, which provides a polynomial strict Lyapunov function.

For the purpose of motivation, let us consider a fully feedback-linearizable system, in canonical form, ẋ1 = x 2 (33a) . . .

ẋn-1 = x n (33b) ẋn = Φ(x) θ + g(x)u (33c) where Φ :∈ R n → R m
is a regressor function and θ ∈ R m is a vector of unknown lumped parameters. Assume that the control goal is to design u such that this system behaves as the reference model

ẋ * 1 = x * 2 (34a) . . . ẋ * n-1 = x * n (34b) ẋ * n = f (x * )
(34c) or, in other words, to steer x(t) → x * (t) where x * (t) is solution of (34). The feedback-linearizing control input that achieves this goal is u :

= g(x) -1 f (x * ) -Φ(x) θ - Ke with K := κ 1 • • • κ n .
In case the the parameters θ are unknown, we use the certainty-equivalence adaptive controller u = g(x) -1 f (x * ) -Φ(x) θ -Ke (35a) θ = γΦ(x)B P e (35b) where P satisfies A P + P A = -Q, given an arbitrary positive-definite symmetric matrix Q, and

A :=     0 1 0 • • • . . . 1 . . . 1 -κ 1 • • • -κ n     ,
which is Hurwitz by design. Then, defining the error coordinates e := x -x * , we see that the closed-loop system takes the form (17) with A as above and B(t, e) := -BΦ(e + x * (t)) . Lemma 3. Consider the system (17) under the following assumptions:

(1) the matrix A is Hurwitz, P is positive definite symmetric and A P + P A = -Q = -Q ; (2) there exist p and ρ i > 0 with i ≤ p such that,

|B(t, e) -B • (t)| ≤ p j=1 ρ j |e| j ; (36) 
(3) the function B • defined in Lemma 2 satisfies ( 19) and (20). Let α be also a polynomial function with positive coefficients and of order q = p/2 + 1, where p/2 denotes the smallest integer larger than, or equal to, p/2. Then, the function V defined as

V(t, e, θ) = α • e P e + 1 γ | θ| 2 -e B • (t) θ + W 1 (t, e, θ) + W 2 (t, θ), ( 37 
)
where W 1 and W 2 are defined in ( 24) and ( 25) respectively, is a strict Lyapunov function for the system (17).

Proof. The Lyapunov function candidate V may be rewritten as V(t, e, θ) = α V 2 (e, θ) + W 1 (t, e, θ) + W 2 (t, θ). ( 38) By definition, α(V 2 ) is a polynomial function of order q and with positive coefficients then, let k i > 0 so

α(V 2 ) = q i=1 k i V i 2 . ( 39 
)
Therefore, by setting k 1 ≥ c where c is defined in ( 27), we see that V(t, e, θ) ≥ V (t, e, θ) where the latter is defined in (23). Hence V(t, e, θ) ≥ V (t, e, θ) is positive definite and radially unbounded. Actually, it satisfies

σ 2 |z| 2 + α (V 2 ) ≥ V(t, e, θ) ≥ V 2 (t, e, θ) ≥ σ 1 |z| 2 where α (V 2
) is a polynomial of degree q. Next, we proceed to compute the total derivative of V. With that purpose in mind we start by stressing that

∂α ∂V 2 = q i=1 i k i V i-1 2 . ( 40 
)
which, in expanded form, corresponds to

∂α ∂V 2 = k 1 + 2k 2 V 1 (e) + 1 γ | θ| 2 + 3k 3 V 1 (e) + 1 γ | θ| 2 2 + • • •
On the other hand, by virtue of Newton's Binomial Theorem,

V 1 (e) + 1 γ | θ| 2 j ≥ V 1 (e) j + jV 1 (e) j-1 1 γ | θ| 2 hence, ∂α ∂V 2 ≥ q-1 j=0 (j + 1)k j+1 V 1 (e) j + q-2 j=0 (j + 1)(j + 2)k j+2 V 1 (e) j 1 γ | θ| 2 or, in more compact form, ∂α ∂V 2 ≥ q-1 j=0 β j V 1 (e) j + q-2 j=0 β j |e| 2j | θ| 2 (41) 
where

β j := 1 γ (j + 1)(j + 2)k j+2 p m (42) 
β j := (j + 1)k j+1 . (43) 
Let us now compute the total derivative of V along the trajectories of ( 17). Firstly, we remark that V2 satisfies (12) hence, in view of (41), the total derivative of α(V 2 ) along the trajectories of (17

) satisfies ˙ α(V 2 ) = -q m ∂α ∂V 2 |e| 2 hence ˙ α(V 2 ) ≤ -q m q-2 j=0 β j |e| 2j+2 | θ| 2 -q m q-1 j=0 β j |e| 2j+2 . (44)
Next, to compute the derivatives of W 1 and W 2 along the trajectories of (17), it is useful to write the dynamics in the output-injection form

ė θ = Ae + B • (t) θ -γB • (t) P e + B(t, e) -B • θ B(t, e) -B • P e (45)
and we use the computations from the proof of Lemma 2.

On one hand, from (28), we obtain

Ẇ1 = Y 1 (t, e, θ) + γe B • (t) B(t, e) -B • (t) P e -θ B(t, e) -B • (t) B • (t) θ. ( 46 
)
where Y 1 is defined in (28) and, on the other hand, the total derivative of W 2 yields Ẇ2 (t, θ) = Y 2 (t, e, θ) + 2γ θM (t) B(t, e) -B • (t) P e.

(47) We proceed now to bound the "output-injection" terms, that is, those containing B(t, e) -B • (t) . To that end, let us consider the inequality (36); we remark that, for each j ≥ 3 odd, we have

ρ j |e| j ≤ ρ j 2 |e| j-1 + |e| j+1 .
while, for any λ 5 > 0,

ρ 1 |e| ≤ ρ 1 2 1 λ 5 + λ 5 |e| 2 .
Therefore,

B(t, e) -B • (t) ≤ p/2 j=0 δ j |e| 2j
where

δ 0 := ρ 1 2λ 5 , δ 1 := ρ 1 λ 5 + 2ρ 2 + ρ 3 2 , δ j := ρ 2j-1 + 2ρ 2j + ρ 2j+1 2 , ∀j ≥ 2
Using the latter and the definition q := p/2 + 1, we see that, on one hand, we have for which we also used (31). On the other hand, after (29), we obtain Ẇ1 (t, e, θ) ≤

  c 1 2 + γb M p M q-1 j=0 δ j |e| 2j   |e| 2 +   b M q-1 j=0 δ j |e| 2j + 1 2λ 2   | θ| 2 - 1 2 |ξ| 2 (48)
Now, consider (44) and let

β 0 ≥ c 1 + ρ 1 γb M p M + λ 3 2 γ 2 b 6 M p 2 M , (49) 
β j ≥ γ 2 b 4 M p M λ 4 /4 + γb M p M δ j q m
, ∀j ∈ [1, q -1](50)

β j ≥ b M δ j+1 q m , ∀j ∈ [0, q -2] (51)
Thus, provided that λ 2 , λ 3 , and λ 5 are such that

µe -T 8 ≥ ρ 1 b M λ 5 + 1 λ 2 + 1 4λ 3 , V(t, e, θ) ≤ -β 0 |e| 2 - µe -T 8 | θ| 2 - 1 4 |ξ| 2 .
Remark 1. It is important to remark that even though V satisfies a strict quadratic negative upperbound, one should not haste to conclude uniform global exponential stability of the origin, even for the system (11). Indeed, note that for this system the inequality (36) holds with p = 1, since B(t, e) has linear growth. Hence, α(V 2 ) in ( 37) is of second order and, consequently, V satisfies a quadratic lower-bound but not a quadratic upper-bound, as required to conclude uniform global exponential stability.

CONCLUSIONS

We have presented two Lyapunov functions for linear and nonlinear systems appearing in direct adaptive control.

Although our results are restrictive in regards to the class of systems they may be considered as a building block in the analysis of more complex nonlinear time-varying systems. That is, in control problems where, otherwise, one needs to rely on converse Lyapunov theorems. For instance, they may be useful in the analysis of perturbed systems or in control redesign, notably in the context of dynamic output feedback control.
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