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Adaptive leader-follower formation control of mobile robots following

arbitrary reference trajectories

Mohamed Maghenem Antonio Lorı́a Elena Panteley ∗†

Abstract— We address the problem of leader-follower
formation control of nonholonomic vehicles with parametric
uncertainty. The controller that we propose applies to diverse
kinds of reference trajectories, including set-point stabilisation,
persistently-exciting trajectories, and converging ones and
ensures uniform global asymptotic stability in closed loop. In
particular, for the first time in the literature, we establish
uniform convergence of the parameter estimation errors in
such context. Also, some original simulation results illustrate
our theoretical findings.

Index terms— Formation control, persistency of excitation,
Lyapunov design, nonholonomic systems

I. INTRODUCTION

Tracking and set-point stabilisation control of nonholo-

nomic vehicles is a topic that has not ceased to attract the

regard of the control community even if, in the interval of a

few decades, a tremendous bulk of literature on the subject

has already been produced —see, e.g., [1]–[4]. Contemporary

problems such as formation control of autonomous swarms

of vehicles, consensus control, and other scenarios of co-

operative systems communicating over networks maintain

the interest for the basic tracking and set-point stabilisation

control of nonholonomic systems .

From an academic viewpoint, these systems are attractive

because their analysis imposes considerable challenges de-

pending on the nature of the reference trajectories. Roughly

speaking, these may be rich in a persistency-of-excitation

([5]) sense, as e.g., in [6], [7], they can be “converging”, as

in [3] and [8]–[10] or, simply, correspond to a set-point [2].

Most often, the controllers designed for a type of reference

trajectory does not apply for another; designing a universal

controller that applies indistinctly to the case of persistent

or converging trajectories is a very challenging problem that

has been little addressed in the literature. In the case of one

leader and one follower it has been studied in [8] and in

[10]–[14].

In [8] several scenarios of tracking control (circular paths,

straight-line paths, vanishing trajectories) are covered. In [10]

it is assumed that the reference trajectory is either persis-

tently exciting or integrable —note that integrability imposes

certain speed of convergence. In both references, however,

it is assumed that the vehicles are velocity-controlled (that

† Research funded in part by ANR via project HANDY, number ANR-18-
CE40-0010 and by the Government of Russian Federation (grant 074-U01).

∗ M. Maghenem is with Univ of California, Santa Cruz, CA, USA.
E-mail: mmaghene@ucsc.edu. A. Loria and E. Panteley are with LSS-
CentraleSupelec, CNRS, 3 Rue Joliot Curie, 91192, France. E-mail: lo-
ria(panteley)@lss.supelec.fr. E. Panteley is also with ITMO University,
Kronverkskiy av. 49, Saint Petersburg, 197101, Russia.

is, only the kinematics model is considered). The frame-

work laid in [12] is very general as it applies to chain-

form systems, which is a class that includes the unicycle

model, most often used. “Full” models of torque-controlled

vehicles, that is, which include the Lagrangian dynamics, are

considered in [13] and [14]. In the former the convergence

of the error positions to a steady-state error, albeit under

parametric uncertainty, is established. The convergence to

zero of the same errors is guaranteed by the controller

reported in [14] provided that either the forward reference

velocity is separated from zero (whence persistently exciting)

or the angular reference velocity is separated from zero and

the forward velocity is integrable in norm. In [11] a robust

controller that guarantees the stronger properties of uniform

global asymptotic stability and integral input to state stability

for the kinematics closed-loop equation is proposed.

The simultaneous tracking and robust stabilisation control

problem for groups of robots (N > 2), has been addressed

in [15]–[17]. In [15] it is established that the formation-

errors converge to an arbitrarily small compact ball centred

at the origin; the controller is centralised hence, it is assumed

that the leader’s velocities are accessible to all the agents in

the network. In [16] and [17] it is established, for the first

time, uniform global asymptotic stability for the closed-loop

system. The main results in this paper, build upon the latter

two references to address the problem of adaptive control and

closed-loop identification. We consider vehicles modelled by

a unicycle kinematics and a Lagrangian-dynamics equation

and we suppose that the lumped parameters in the latter are

unknown. Under these conditions, we establish, for the first

time in the literature, uniform global asymptotic stability for

the closed-loop system of a swarm of nonholonomic vehicles

in closed loop with a unique controller that is capable of

stabilising both converging and exciting trajectories. From

a technical viewpoint, we also emphasise that the main

statement implies uniform parametric error convergence.

The rest of the paper is organised as follows. In the next

section we recall the equations of the unicycle model and

formulate the control problem. In Section III we present,

without proof, some statements that appear in [17]. In Section

IV we present our main results. Original simulation tests that

illustrate our theoretical findings are provided in Section V

and we conclude with some remarks in Section VI.

II. MODEL AND PROBLEM FORMULATION

Consider N nonholonomic vehicles moving on the plane,

with kinematics modelled by the unicycle equations

ẋi = vi cos(θi) (1a)



ẏi = vi sin(θi) (1b)

θ̇i = ωi i ∈ {1, . . . N} (1c)

where xi ∈ R and yi ∈ R correspond to the Cartesian

coordinates of a point on the ith vehicle with respect to

a fixed reference frame and θi ∈ R denotes the vehicle’s

orientation. In turn, the forward velocity vi = [ẋi+ẏi]
1/2 and

the angular velocity ωi result from the Lagrangian equations

Miη̇i + Ci(ηi)ηi = ui, (2a)

ηi := [vi ωi]
⊤, (2b)

where Mi and Ci are, respectively, the inertia and the

Coriolis-and-centrifugal-forces matrices, which are given by

Mi =

[

mi1 mi2

mi2 mi1

]

, Ci(ηi) =

[

0 ciωi

−ciωi 0

]

, (3)

and the control inputs are ui := Biτi where, in turn, Bi ∈
R

2×2 is a full rank constant matrix of known coefficients

and τi is the vector of input torques at the wheels —cf. [3].

Let such group of vehicles communicate in a leader-

follower fashion that is, assume that for each i ≤ N , the

ith robot receives the states of exactly one leader, labelled

(i−1); the N th vehicle having no follower and the leader to

the first vehicle being a fictitious unicycle with kinematics

ẋr = vr cos(θr) (4a)

ẏr = vr sin(θr) (4b)

θ̇r = ωr. (4c)

The leader-follower formation control problem consists in

the vehicles acquiring and maintaining a specified physical

formation relative to one another and following reference

trajectories generated by a fictitious robot. From a control-

theory viewpoint, this can be stated as a stabilisation problem

as follows.

Let vr, ωr be given piece-wise continuous functions

mapping R≥0 → R that represent the forward and angular

reference velocities respectively and let zr := [xr, yr, θr]
⊤

denote the position and orientation reference coordinates

which result from (4). A given relative formation may be

designed by imposing certain desired Cartesian distances dxi
and dyi > 0 between each leader-follower couple, that is,

pθi := θi−1 − θi,

pxi := xi−1 − xi − dxi,

pyi := yi−1 − yi − dyi.

Then, transforming the error coordinates (pθ, px, py) of the

leader vehicle from the global coordinate frame to local co-

ordinates fixed on the vehicle, we define ei := [eθi exi eyi]
⊤,





eθi
exi
eyi



 :=





1 0 0
0 cos(θi) sin(θi)
0 − sin(θi) cos(θi)









pθi
pxi
pyi



 , (5)

which satisfy

ėθi = ωi−1 − ωi (6a)

ėxi = ωieyi − vi + vi−1 cos(eθi) (6b)

ėyi = −ωiexi + vi−1 sin(eθi), (6c)

where vi−1 and ωi−1 are, respectively, the forward and

angular velocities of the leader vehicle. In (6) we set v0 := vr
and ω0 := ωr where vr and ωr.

Thus, the leader-follower formation control problem con-

sists in designing control inputs ui := [ui1 ui2]
⊤, with

i ∈ {1 . . . n}, such that

lim
t→∞

ei(t) = 0 ∀i ∈ {1 . . . N}. (7)

hold for the system (1)–(2a).

From a control-theory perspective, however, having (7) as

objective is somewhat under-challenging since it does not

comprise any stability nor uniformity properties. Instead,

we solve the following problem. Let Θ̂i be the estimate of

Θi := [mi1 mi2 ci]
⊤ and let Θ̃i := Θ̂i −Θi. Given a piece-

wise continuous function R≥0 → R
2, ηr := [vr ωr]

⊤ that

generates, through (4), feasible trajectories t 7→ zr, design

virtual control laws v∗i and ω∗
i and a control law ui such

that, defining,

ṽi := vi− v∗i , ω̃i := ωi−ω∗
i , and η̃i := [ṽi ω̃i]

⊤, (8)

the origin for the closed-loop system,
{

(ei, η̃i, Θ̃i) =
(0, 0, 0)

}

is uniformly globally asymptotically stable.

Such leader-follower formation control problem for arbi-

trary feasible reference trajectories is beyond reach, even in

the one-leader-one-follower scenario [18]. In this paper we

address it for a fairly general class of references that includes

set-points, vanishing trajectories (so-called robust stabilisa-

tion), and persistently-exciting trajectories. More precisely,

we assume that reference velocities satisfy either of the

following mutually exclusive conditions:
∫ t+T

t

|ηr(τ)|
2dτ ≥ µ ∀ t ≥ 0 (9a)

lim
t→∞

|ηr(t)| = 0. (9b)

The main contribution of this paper is a unique adaptive

controller that ensures uniform global asymptotic stability in

the space of the closed-loop system and, in the case that the

lumped parameters of M and C are unknown, the property

continues to hold, provided that the reference trajectories

satisfy (9a). Note that this includes the uniform convergence

of the parameter estimation errors.

III. LEADER-FOLLOWER FORMATION CONTROL

The rationale of the control scheme consists in applying

recursively an adaptive controller for the one-leader-one-

follower scenario that is, it relies on the premise that leader-

follower formation control may be regarded as a cascade

of successive master-slave couples. Then, for each robot

the controller is designed following a basic backstepping

procedure. First, virtual control laws v∗i and ω∗
i are defined

for the unicycle model in error coordinates, (6). Then, a

tracking controller at the dynamics-equations level, (2), is

designed so that ηi → ηi−1, even in the case of parametric

uncertainty. For each vehicle, the control ui depends on the

ith vehicle’s state-variables and its leader’s only. For clarity



of exposition, we present first the solution for one arbitrary

pair of robots, at the kinematic level —cf. [11].

A. One-leader-one-follower tracking control

Consider an arbitrary pair of leader-follower vehicles,

labelled i and i− 1, for which (7) must hold. We define

v∗i = vi−1 cos(eθi) + kxiexi (10a)

ω∗
i = ωi−1 + kθieθi + kyieyivi−1φ(eθi)

+ρi(t)kyipi(t)|exyi|, (10b)

where exyi := [exi eyi]
⊤, the function pi : R≥0 → R≥0

is assumed to be once continuously differentiable, bounded,

and with bounded derivative ṗi, φ : R≥0 → R≥0 is the so-

called sinc(·) function,

φ(x) =
sin(x)

x
,

and kxi, kyi, kθi are positive constants.

Roughly speaking, akin to [10], the controller is con-

structed as a combination of two control laws; one that en-

sures tracking of rich trajectories satisfying (9a) and another

one that ensures tracking of vanishing ones, satisfying (9b).

More precisely, the first three terms on the right-hand side

of (10b) guarantee the achievement of the tracking control

goal of persistently-exciting trajectories, while the fourth

one ensures tracking of converging trajectories. Then, the

function ρi is designed to smoothly “weigh” the effect of one

term or the others relatively to the trajectory to be tracked: ρi
is required to be approximately null (thereby enforcing the

action of the third term in (10b)) to track persistently exciting

trajectories and it is required to remain separated from zero

to favour the tracking control of vanishing trajectories. To

that end, we define ρi : R≥0 → R≥0 as the solution of

ρ̇i := −F
(

ηi−1(t))ρi (11)

where F : R2 → R≥0 is a piece-wise continuous function

defined as

F (η) :=

{

0 if η ∈ (0, µ
2T η̄ ]

α(|η|) otherwise
(12)

where η̄ ≥ |η|∞, |ϕ|∞ := ess supt≥0|ϕ(t)|, and α ∈ K. The

interest this definition is that F (ηr(·)) is persistently exciting,

i.e., there exist µ1 and T1 > 0 such that

∫ t+T1

t

F
(

ηr(s)
)2
ds ≥ µ1, ∀t ≥ 0 (13)

under (9a) and F (ηr(·)) is integrable, i.e.,

∫ ∞

0

F
(

ηr(s)
)

ds ≤ β, (14)

under (9b).

Under these conditions, we have the following statement

on the convergence of the tracking errors.

Proposition 1 Let i ≤ N be arbitrarily fixed and consider

the system (6) with state ei, exogenous signal ηi−1 =
[vi−1, ωi−1] such that

max {|ηi−1|∞ , |η̇i−1|∞} ≤ η̄i−1, (15)

and inputs ωi and vi. Consider the virtual control laws

(v∗i , ω
∗
i ) as given by (10), (11)–(14), with the functions pi

and ṗi being bounded and persistently exciting. Then, if

ṽi := vi − vi−1 and ω̃i := ωi − ωi−1 are bounded, the

trajectories exist on [t◦,∞). Furthermore,

1) if (9a) holds with ηr replaced by ηi−1, the system is

integral input-to-state stable with respect to the input η̃i.

Consequently, if η̃i tends to zero and is square integrable,

the limit in (7) holds.

2) If, alternatively, (9b) holds with ηr replaced by ηi−1 the

system is small input-to-state stable with respect to the input

η̃i and if η̃i converges to zero the limit in (7) holds. �

The proof is omitted here due to space constraints; interested

readers may see [16]. The statement in Proposition 1 is

significant for several reasons. Firstly, it establishes small and

integral input-to-state stability for the closed-loop system;

these are robustness properties that allow to consider the

kinematics and dynamics control loops separately, that is

as two systems in cascade —cf. [19]. In turn, it may be

established that if not only η̃i → 0, but {η̃i = 0} is UGAS,

then, the origin for the overall closed-loop system is also

UGAS —see Proposition 2 below. Finally, the robustness

statement of Proposition 1 allows to extend this result to the

case of successive pairs of leader-follower couples, that is,

to solve the leader-follower formation-and-tracking control

problem. This is presented in the following section.

Proposition 2 (UGAS of the full model) Consider the

system (1), (2) under the action of any controller ui

guaranteeing uniform global asymptotic stability of

{η̃i = 0} and that η̃i ∈ L2. Then, under the conditions

of Proposition 1, the origin (ẽi, η̃i) = (0, 0) is uniformly

globally asymptotically stable. �

The statement of Proposition 2 relies on a cascaded-systems

stability argument. Let ui be a given controller for the dy-

namics equations (2), depending on the leader and follower’s

states, as well as on the virtual control laws (10). Then, by

a suitable change of coordinates the closed-loop equations

take the generic form

˙̃ηi = Fηi(t, η̃i, ei). (16)

Next, we replace ei in (16) by complete trajectories ei(t) so

the overall closed-loop equations cover a cascaded form

ėi = Fei(t, ei) +Gei(t, ei)η̃i (17)

˙̃ηi = F̃ηi(t, η̃i) (18)

where F̃ηi(t, η̃i) := Fηi(t, η̃i, ei(t)) —cf. [19], [20, p. 627].

Equation (17) is a compact representation of Equations (6).

Now, after Proposition 1, if (9a) holds the system (17)

is integral-input-to-state stable while, if (9b) holds it is



small input-to-state stable. On the other hand, either of these

conditions implies the so-called 0-UGAS property, that is,

uniform global asymptotic stability for ėi = Fei(t, ei). On

the other hand, the origin for (18) is also UGAS. Thus, after

[21, Lemma 2], the origin (ei, η̃i) = (0, 0) is uniformly

globally asymptotically stable if the solutions of (17) are

uniformly globally bounded. The latter follows under con-

dition (9a), from the integral-input-to-state-stability property

and the assumption that η̃i ∈ L2 in the case of persistently-

exciting reference trajectories and under condition (9b) and

the property of small input-to-state stability (see Proposition

1) in the case of vanishing trajectories.

B. Leader-follower formation tracking control

We consider next a network of autonomous vehicles (N ≥
2) that communicate according to a spanning-tree graph and

which are required to follow a reference fictitious vehicle

following reference trajectories that satisfy either (9a) or

(9b). We have the following.

Proposition 3 Consider the system (1), (2). Let ηr =
[vr ωr]

⊤ be a given piece-wise continuous function satisfying

either (9a) or (9b) and assume that there exists η̄r > 0 such

that

max
{

|ηr|∞, |η̇r|∞
}

≤ η̄r. (19)

For each i ≤ N consider the expressions of v∗i and ω∗
i as in

(10) (with v0 := vr and ω0 := ωr) where:

(i) kxi, kyi, kθi are positive constants;

(ii) the functions pi and ṗi are bounded and persistently

exciting.

Then, for any given control laws ui1 and ui2 guaranteeing

that η̃i is square integrable and converges to zero, the control

objective (7) holds.

Furthermore, define η̃ := [η̃1 · · · η̃N ]⊤, η∗ :=
[η∗1 · · · η∗N ]⊤, and e := [e1 · · · eN ]⊤. If {η̃ = 0} for

(18) is uniformly globally asymptotically stable (UGAS)

and η̃ ∈ L2 then, for the closed-loop system (17)-(18),

{(e, η̃) = (0, 0)} is also UGAS. Consequently, if η̃ ≡ 0
then {e = 0} for (1) in closed loop with η∗ is UGAS. �

The proof of this statement consists in applying recursively

the statement of Proposition 1 for each i ≤ N that is, for

each pair of leader-follower vehicles. Indeed, Proposition

1 guarantees the asymptotic convergence of the formation

errors whether the leader velocities are persistently exciting

or converging. Therefore, the properties of (i− 1)th leader’s

velocities are propagated to the ith follower and, in turn, to

the (i+ 1)th vehicle down to the leaf nodes in the graph.

We use ωi = ω̃i + ω∗
i and vi = ṽi + v∗i in (6), together

with (10) to write the error-dynamics equations as

ėi =Avi−1
(t, ei)ei +B1i(t, ei)ρi(t) +B2i(ei)η̃i, (20)

where

Avi−1
:=





−kθi 0 −vi−1(t)kyiφ(eθi)
0 −kxi ϕi(t, ei)

vi−1(t)φ(eθi) −ϕi(t, ei) 0



 ,

B1i :=





−kyipi(t)|exyi|
kyipi(t)|exyi|eyi
−kyipi(t)|exyi|exi



 , B2i :=





0 −1
−1 eyi
0 −exi





and ϕi(t, ei) := ωi−1 + kθieθi + kyieyivi−1φ(eθi). We

stress that these closed-loop equations have the convenient

triangular structure

ėN = AvN−1
(t, eN )eN +B1N (t, eN )ρN +B2N (eN )η̃N

(21a)
...

ė2 = Av1
(t, e2)e2 +B12(t, e2)ρ2 +B22(e2)η̃2 (21b)

ė1 = Avr (t, e1)e1 +B11(t, e1)ρ1 +B21(e1)η̃1 (21c)

Note that for the ith vehicle the dynamics equations depend

on ei and, through ηi−1 = [vi−1 ωi−1]
⊤, on the states of

the vehicles above in the graph, up to the reference vehicle.

However, in view of forward completeness (which can be

established as in the proof of Proposition 1), for the purpose

of analysis the velocities ηi−1 may be regarded as exogenous

signals. This allows us to consider the system as a multi-

cascaded time-varying one —see [19]. Then, we may invoke

Proposition 1 recursively.

IV. MAIN RESULTS

The previous propositions, whose proofs may be found

in [16], establish uniform global asymptotic stability for

the unicycle kinematics and set the basis for the following

statements, which is the first of its kind in the literature.

Proposition 4 Consider the the system (1), (2) in closed

loop with (10) and

ui = Miη̇
∗
i + Ci(ηi)η

∗
i − kdiη̃i, kdi > 0. (22)

Let condition (19) as well as items (i) and (ii) of Proposition

3 hold. Then, the origin in the state space of the closed-loop

system is uniformly globally asymptotically stable. �

Proof: The closed-loop dynamics (16) is

Mi
˙̃ηi + Ci(η̃i + η∗i (t, ei))η̃i + kdiη̃i = 0, i ≤ N (23)

which may be rewritten along complete solutions ei(t) in the

form (18). Then, after the skew-symmetry of Ci(·), we have

V (η̃i) := η̃⊤i Mη̃i =⇒ V̇ (η̃i) = −2kdi|η̃i|
2,

so {η̃ = 0} is a uniformly (in the initial times t◦ and in the

trajectories ei(t)) globally exponentially stable equilibrium

of (23). The result follows from Proposition 3.

Let us now assume that the constant lumped parameters

in Mi and Ci(ηi), denoted Θi ∈ R
m, are unknown and let

M̂i and Ĉi denote the estimates of the inertia and Coriolis

matrices respectively. Let Θ̂i correspond to an estimate of

Θi and consider the controller

ui = M̂iη̇
∗
i + Ĉi(ηi)η

∗
i − kdiη̃i, kdi > 0 (24a)

˙̂
Θi = −γΦi(t, η̇

∗
i , η

∗
i , η̃i)

⊤η̃i, γ > 0 (24b)

where, for any i ≤ N , Φi is a smooth function implicitly

defined by the expression

Φi(t, η̇
∗
i , η

∗
i , η̃i)Θ̃i := [Ĉi − Ci]η

∗
i + [M̂i −Mi]η̇

∗
i , (25)






