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Decentralized synchronization of time-varying oscillators under
time-varying bidirectional graphs

Mohamed Maghenem Hermann Lekefouet Antonio Lorı́a Elena Panteley

Abstract— We study the synchronization problem for a
network of planar harmonic oscillators with time-varying
frequency. The oscillators are interconnected using a time-
varying bidirectional graph. That is, the interconnections may
be interrupted over some intervals of time, but a certain
persistent connectivity prevails. We provide tight sufficient
conditions on the graph’s connectivity to guarantee uniform
exponential synchronization of the network. Our main results
are based on original statements of stability for linear time-
varying systems under persistency-of-excitation conditions and
Lyapunov’s direct method.

I. INTRODUCTION

Decentralized coordination control for networked systems
consists in designing a control law for each system in order
to achieve a coordinated task or, more concretely, to make
certain quantities of interest in each system reach a common
value [1]. For instance, it may be required for these systems
to reach a certain geometric pattern [2], [3], follow a target
or a leader [4], [5], or also describe a common steady-state
behavior [6], [7], [8]. When the control law is decentralized,
the input of each system is designed using only local infor-
mation provided by a set of agents called neighbors. That is,
the overall interconnectivity of the network is characterized
by a graph [9].

In this context, an interesting challenge arises when the
communication is constrained. For instance, when the com-
munication is intermitent or when the graph topology is
time-varying, or even when both happen simultaneously
[10]. Such a problems have received a considerable at-
tention in the literature starting with [6], [11], where a
network of single-integrator systems is considered and the
interconnection graph is assumed to be piece-wise constant
and to switch between a finite number of undirected and
directed graphs, respectively. Extensions of these works to
the case of harmonic oscillators with a constant frequency
are presented in [12] and [13] under directed and undirected
graphs, respectively. See also [14], [15] and [16], [17], where
a network of single integrators under generic time-varying
directed and bidirectional graphs are considered, respectively.
Furthermore, in [18] and among many other references,
networks of linear time-invariant systems are considered
under general time varying communication graphs.
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In this paper, we study the decentralized synchronization
problem for a network planar identical harmonic oscillators,
the oscillators are assumed to have an identical but time-
varying frequency. and they are interconnected according to
a general time-varying bidirectional graph. We assume that
the communication is not perennial, but it may be inter-
rupted over intervals of time of minimal length (persistent
connectivity). More precisely, we suppose that there exists
a spanning tree in the graph topology whose edge weights
verify a certain form of persistency of excitation relatively
to the natural frequency of the oscillators. To the best of our
knowledge, this is the first result on synchronization of linear
time-varying systems using a general time-varying graph.
The sufficient conditions to guarantee uniform exponential
synchronization with an explicit estimate of the convergence
rate are interpreted in terms of graph connectivity. The
relevance of our main results to control applications is
illustrated by a simple network of nonholonomic systems.
From a technical viewpoint, our analysis method relies on
stability statements for gradient systems in the context of
consensus — see [16]; it consists in finding adequate error
coordinates such that uniform global exponential stability
(UGES) in those coordinates is equivalent to uniform syn-
chronization in the original coordinates. Interestingly, as we
will show, the resulting linear time-varying system in the
error coordinates has a particular structure that extends the
class of systems typically encountred in the literature of
model reference adaptive control [19], [20], [21]. Therefore,
from a technical viewpoint, our main statements may serve
as basics to address the general case of nonlinear networks
where the oscillators’ frequency is replaced by a general
nonlinear function.

The core of the paper lies in the next section, where we
state and motivate the synchronization problem, we present
some technical well-known facts about graph theory, and our
main results. In Section III, we present illustrative simulation
results and we conclude with some remarks in Section IV.

Due to space limitations, some proofs are omitted and will
be published elsewhere.

II. SYNCHRONIZATION OF HARMONIC OSCILLATORS

A. Problem statement and motivation

Let us consider a set of n identical controlled planar
harmonic oscillators with time-varying frequency of the form[
ẋi
żi

]
=

[
0 −b(t)
b(t) 0

] [
xi
zi

]
+

[
1
0

]
ui i ∈ {1, . . . , n} . (1)



The frequency of oscillation, denoted above by b is assumed
to be piece-wise continuous with respect to time. It is also
assumed that the oscillators are interconnected according to a
bidirectional time-varying graph. More precisely, the control
input for each node is given by

ui(t) :=

n∑
j=1

aij(t) (xj − xi) , (2)

where aij(t) ≥ 0 corresponds to the coupling between
the i-th and the j-th nodes. Hence, it is assumed that
the interconnections are time-varying and may be lost over
intervals of time, but they verify a certain form of persistency
of excitation [19].

The problem of interest is to establish sufficient conditions
in order to synchronize the considered network uniformly
and exponentially according to the following definition.

Definition 1: The network of time-varying systems in (1)
is said to be uniformly exponentially synchronized if there
exists a linear change of coordinates e := T [x z]> ∈ Rn−1,
with x := [x1 · · · xn] and z := [z1 · · · zn], such that

[x1 z1] = [x2 z2] = . . . = [xn zn]⇐⇒ e = 0,

and the origin {e = 0} is uniformly globally exponentially
stable.

To the best of our knowledge, this problem is unsolved
and yet, it has clear motivations in the field of control of
cooperative systems, as we illustrate through the following
concrete example of a network of nonholonomic systems
required to perform a synchronized motion on the plane.

Example 1: Consider a group of n mobile robots modeled
by the kinematics equations

ẋi = ui cos(θ)i (3a)
ẏi = ui sin(θ)i (3b)
θ̇i = bi i ∈ {1, . . . , n} , (3c)

where ui and bi are the forward and angular velocities,
respectively. The first two elements of [xi yi θi]

> correspond
to the Cartesian coordinates of a point on the robot with
respect to a fixed reference frame, and θi denotes the robot’s
orientation with respect to the same frame. Consider the
problem of position synchronization for the network in (3).
We assume, without loss of generality, that the robots initially
have the same orientation and that b1 = b2 = ... = bn := b 1.
To this end, we first transform the coordinates of each robot
from the global to a local coordinate frame related to each
robot, that is, we define[

xli
yli

]
:=

[
cos θi sin θi
− sin θi cos θi

] [
xi
yi

]
. (4)

In these new coordinates, the kinematics equations become

θ̇i = b(t) (5a)
ẋli = b(t)yli − ui (5b)
ẏli = −b(t)xli; (5c)

1Otherwise, a decentralized feedback control can be used to synchronize
the orientations independently of the positions.

note that the transnational equations (5b)-(5c) correspond
exactly to the equations (1).

B. Preliminaries on algebraic graph theory

Before stating our main result, some general concepts
and notations on algebraic graph theory for time-varying
graphs need to be recalled for the sake of clarity and self-
containedness. The material in this subsection is written after
[16], but a more detailed and extensive treatment is given,
e.g. in [9].

An undirected graph G is a pair (V, E), where V =
{v1, v2, · · · , vn} is a finite non-empty set of nodes (agents)
and E ⊆ V × V is a set of ordered pairs of nodes forming
edges (communication links) denoted {e1, e2, · · · , em}, m ≥
n − 1. The pair {vi, vj} ∈ E denotes an undirected edge
if the agents vi and vj communicate with each other both
ways, that is, there exists k ≤ m such that ek denotes
the corresponding undirected edge. A path in an undirected
graph is a finite or infinite sequence of edges that connects
a sequence of vertices denoted by

{
vi0 , vi1 , · · · , vip

}
, where

p ≤ n, which are distinct from each other. A simple cycle
is defined as a closed path. A bidirectional graph is said to
be connected if for every pair of vertices in V (G) there is
a path relating them. A tree is defined as a connected sub-
graph without any cycle. A spanning tree for a connected
graph G is a tree containing all the vertices of G. For further
development, we also recall that the so-called incidence
matrix D(G) ∈ Rn×m of an arbitrarily bidirectional graph
G is defined after an arbitrary orientation of the edges ek as
D(G) = [dik] where

[dik] = −1 if, vi is the tail of ek
[dik] = 1 if, vi is the head of ek
[dik] = 0 otherwise.

The graph Laplacian matrix LG(t) ∈ Rn×n for an arbitrarily
time-varying weighted graph G is defined as

LG = D(G)W (t)D(G)> (6)

where W (t) ∈ Rm×m is a diagonal matrix with the edge
weights wk(t), for all k ∈ {1, 2, ....m}, on the diagonal entry.
For any arbitrary orientation of a same undirected graph,
Eq. (6) gives the same Laplacian matrix, which is symmetric.
Likewise, the edge Laplacian Le(G) ∈ Rm×m matrix (with
W (t) = Im) is defined as,

Le(G) = D(G)>D(G). (7)

Note that the graph edge Laplacian matrix is positive semi-
definite; hence, its eigenvalues may be ordered as

0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G).

C. Main result

Let us consider the n oscillators defined in (1). In view
of the inputs, which are defined in (2), the oscillators



are interconnected forming a network according to a time-
varying bidirectional graph defined by the Laplacian LG
whose ij-th entry is given by

[LG ]ij =

{
−
∑

k 6=i aik(t) if j = i

aij(t) if j 6= i.

and which satisfies (6).
Now, in a compact form, we see that the dynamical

equations corresponding to the network’s model are[
ẋ
ż

]
=

[
−LG(t) −b(t)In
b(t)In 0

] [
x
z

]
. (8)

We give mild, but tight, conditions on the frequency b(t) and
the Laplacian matrix LG(t) such that the closed-loop network
in (8) synchronizes. Our first hypothesis is simply that both
the interconnections and the frequencies of oscillation are
bounded.

Assumption 1 (Boundedness): There exists ā > 0 such
that 2

max
{
|LG |∞ , |b|∞

}
≤ ā. (9)

The second standing hypothesis is that the interconnections
are persistent relatively to the frequency of oscillations. To
state this assumption formally, let us recall the identity
(6) and let the weight matrix be partitioned as W (t) :=
blockdiag {Wt(t),Wc(t)} where Wt(t) ∈ R(n−1)×(n−1) cor-
responds to the edge weights of a spanning tree and Wc(t) ∈
R(m−n+1)×(m−n+1) corresponds to the edge weights of the
remaining links (cycles).

Assumption 2 (PE on a Dwell Interval): Given a diago-
nal matrix function Ω : R≥0 → R(n−1)×(n−1), there exist
reals T > 0, T0i > 0, W > 0, and µ > 0 such that, for
every t ≥ t0 and i ≤ n− 1, there exists t∗i ∈ [t, t+ T ], such
that each diagonal element of Ω(t), denoted Ωi(t), satisfies

Ωi(s) ≥ W ∀ s ∈ [t∗i , t
∗
i + T0i], (10)∣∣∣∣∣

∫ t∗i +T0i

t∗i

Ωi(s)b(s)ds

∣∣∣∣∣ ≥ µ. (11)

Roughly speaking, the condition (10) states that there
must be a minimal dwell-time interval, starting at any time,
during which the interconnections are active; for instance,
the interconnections cannot vanish for increasing amounts of
time. Furthermore, the condition imposed by (11) is the one
relating the persistency of excitation of the interconnections
to the frequency of oscillation. Under Assumptions 1-2, we
will be to conclude uniform exponential synchronization for
(8) using the following lemma.

Lemma 1: Consider the linear time-varying system

ẋ1 = −A(t)x1 − b(t)Inx2 (12a)
ẋ2 = b(t)Inx1, (12b)

2For a piece-wise continuous function φ : R≥0 → Rn×m, we define
|φ|∞ := supt≥0 |φ(t)| where | · | denotes the Euclidean norm of vectors
or the induced norm of matrices, depending on the context.

where x1, x2 ∈ Rn, A : R≥0 → Rn×n, and b : R≥0 → R,
and for this system the following statement holds.

The origin for the system (12) is uniformly globally
exponentially stable if:
(H1) there exists ā > 0 such that

max { |A|∞ , |b|∞ } ≤ ā, (13)

(H2) there exist a constant orthogonal matrix V ∈ Rn×n and
a time-varying diagonal matrix Ω(t) ∈ Rn×n such that

A(t)− V >Ω(t)V ≥ 0, (14)

and Assumption 2 holds. �

Lemma 1 is an original statement of interest in its own
right. Indeed, in the following, we provide an example that
shows that condition (10) is tight, even in the case of a lower-
dimensional system.

Example 2: Consider the system (12) with n = 1, i.e., let

ẋ1 = −a(t)x1 − b(t)x2 (15a)
ẋ2 = b(t)x1 (15b)

where a, b : R≥0 → R are piece-wise continuous functions
defined as follows. Let b(t) := 1 for all t ≥ 0 and, for an
arbitrary but fixed constant T > 0 and for each n ≥ 1, let
us introduce the function an : R≥0 → {0, 1} defined as

an(t) :=

{
1 ∀ t ∈

[
2i
n T,

2i+1
n T

]
i ∈ [0, n2 − 1]

0 ∀ t ∈
[
2i+1
n T, 2i+2

n T
]
.

(16)
That is, an(t) is a square train pulse with a 50% duty cycle;
it is a periodic function of period 2T/n.

A simple computation shows that, for any n ≥ 1,∣∣∣∣∣
∫ t+2T

t

b(s)an(s)ds

∣∣∣∣∣ =

∫ t+2T

t

|b(s)an(s)|ds = T (17)

for all t ≥ 0. In particular, an is persistently exciting.
Moreover, the same condition holds for the function

a(t) := an(t) ∀ t ∈ [(n− 1)T, nT ], n ≥ 0. (18)

Furthermore, the condition (10) with Ωi = an(t) holds
for any fixed n, but it fails as n increases since the lengths
of the intervals over which a(t) = 1 diminish arithmetically.
In other words, a(t) is a train of square pulses of 50% duty
cycle but of linearly increasing frequency.

More precisely, there exist strictly positive constants
T, T0, µ, and, for any t ≥ 0, there exists t∗ ∈ [t, t + T ],
such that ∣∣∣∣∣

∫ t∗+T0

t∗
a(s)b(s)ds

∣∣∣∣∣ ≥ µ. (19)

but there does not exist a > 0 such that

a(s) ≥ a ∀s ∈ [t∗, t∗ + T0]. (20)

As a consequence, we are able to show that for this choice
of a and b the origin of (15) is not uniformly exponentially
stable.



We have thus established that (20) is a tight condition to
ensure uniformity of the convergence; indeed, without this
condition the origin may still be attractive but not uniformly
exponentially, as we illustrate in the coming section. See
also [24]. Furthermore, if a(t) ≥ 0 and a(t)b(t) = 0 the
trajectories for some initial conditions will not converge, see
[25]. This shows that the conditions for stability imposed in
Lemma 1 are weak and, consequently, so are those imposed
in Assumptions 1 and 2 in the following main result for
synchronization. We further illustrate these facts with some
concrete simulation tests.

Theorem 1 (Main statement): Consider the linear time-
varying closed-loop system (8). Under Assumption 1 and
Assumption 2 with Ω therein replaced by Wt, the network
(1) is uniformly exponentially synchronized, that is, for all
i, j ≤ n, xi(t) → xj(t) and zi(t) → zj(t) with a uniform
(in t) exponential convergence rate. �

Stketch of proof. After [22], since the graph G is bidi-
rectional, one can explicitly compute a constant orthogonal
matrix TG ∈ R(n−1)×(n) of rank n− 1, such that, using the
following transformation[

x̃
z̃

]
:=

[
TG 0
0 TG

] [
x
z

]
, (21)

the system (8) is equivalent to[
˙̃x
˙̃z

]
=

[
−λGV >G W (t)VG −b(t)In−1

b(t)In−1 0

] [
x̃
z̃

]
(22)

where λG ∈ R(n−1)×(n−1) is diagonal positive definite, VG ∈
R(n−1)×m is an orthogonal matrix, and both λG and VG are
determined explicitly. Then, after decomposing the matrix
W (t) as W (t) = blockdiag {Wt(t),Wc(t)}, where Wt(t) ∈
R(n−1)×(n−1) corresponds to the edge weights of a spanning
tree whose entries Wti(t) satisfy Assumption 2, we obtain

V >G W (t)VG =
[
V 1
G
>

V 2
G
>
] [
Wt(t) 0

0 Wc(t)

] [
V 1
G
V 2
G

]
= V 1

G
>
Wt(t)V

1
G + V 2

G
>
Wc(t)V

2
G

≥ V 1
G
>
Wt(t)V

1
G . (23)

Furthermore, using the change of variable

Z :=

[
λ
− 1

2

G 0

0 λ
− 1

2

G

] [
x̃
z̃

]
, (24)

we obtain in the new coordinates

Ż = −

[
λ

1
2

GV
>
G W (t)VGλ

1
2

G −b(t)In−1
b(t)In−1 0

]
Z. (25)

The interest of this system is that it is of reduced dimen-
sion and Lyapunov’s first method can be used to ascertain the
stability of the origin. More precisely, uniform exponential
synchronization of (8) follows if for the system (25) the
origin is uniformly globally exponentially stable. To establish
the latter, we observe that the system (25) is of the form
(12); hence, Lemma 1 applies to system (25) with A(t) :=

λ
1
2

GV
>
G W (t)VGλ

1
2

G , V := V 1
G λ

1
2

G and Ω := Wt; note that the
condition (14) holds under (23), so

λ
1
2

GV
>
G W (t)VGλ

1
2

G −
(
λ

1
2

GV
1
G
>
)
Wt(t)

(
V 1
G λ

1
2

G

)
≥ 0, (26)

while condition (H1) holds under Assumption 1. �

Remark 1: Consider the system (12) under the conditions
in Lemma 1. After applying the change of coordinate

z := e−Roq(t)

[
x1
x2

]
(27)

where Ro :=

[
0 −In
In 0

]
and q(t) :=

∫ t

0
b(s)ds, the

system’s dynamics becomes

ż = e−Roq(t)

[
−A(t) 0

0 0

]
eRoq(t)z,

or, equivalently,

ż = −g(t)g(t)>z, (28)

g(t)g(t)> :=

[
A(t) sin2 (t) −A(t) sin (t) cos (t)

−A(t) sin (t) cos (t) A(t) cos2 (t)

]
.

The origin for (28) is uniformly exponentially stable if and
only if g(t)g(t)> is persistently exciting, that is, if there
exists µo > 0 and To > 0 such that∫ t+To

t

g(s)g(s)>ds ≥ µoIN ∀t ≥ 0. (29)

Furthermore, we are able to deduce explicit estimates of
the excitation parameters (To, µo) for the resulting matrix
g(t)g(t)> such that (29) holds. Hence, after [16], one can
explicitly estimate the convergence rate for the system (28)
using the following strict Lyapunov function:

V (t, z) :=
1

2
z>
[
α+Q(t)

]
z, α := 1 +

2T 3
o

∣∣g(t)g(t)>
∣∣3
∞

µo
,

Q(t) := To

∣∣∣g(t)g(t)
>
∣∣∣
∞

+
2

To

∫ t+To

t

∫ t

m

g(s)g(s)>dsdm.

Indeed, it can be verified that, along the trajectories of (28),

V̇ (t, z) ≤ − µo

2To
|z|2.

•

III. SIMULATION RESULTS

In order to illustrate our results we have performed simu-
lation tests under SimulinkTM of MatlabTM .

In a first simulations test we consider the network (1)
composed by only two oscillators interconnected via the
control law (2). The weight of the links are set to a12(t) =
a21(t) =: w1(t), which is designed to be persistently exciting
—see Figure 1. In addition, as shown in the latter figure, the
product w1(t)b(t) is also persistently exciting and both (19)
and (20) hold.

As expected, after Theorem 1, the oscillators trajectories
synchronize —see Figure 2; the phase portraits are shown in
Figure 3.
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Next, in order to illustrate the importance of condition
(20) we simulate the trajectories of the system (15) and we
compare the convergence rates of the error coordinates e =
(x1−x2, z1−z2), when the weight function w1 is constructed
according to (18); see the illustration in Figure 4. Note from
the latter that w1(t) is bounded with with bounded derivative
almost everywhere and it satisfies (19), but it does not verify
the condition (20) since the length of the intervals over which
w1 = 1 shrinks as t→∞. As a result, the convergence of the
error coordinates e = (x1−x2, z1−z2) to the origin depends
on the choice of the initial time and becomes slower when the
initial time increase. This fact, which may be appreciated in
Figure 5 confirms the loss of uniformity in the convergence
rate, as established above.

Finally, in a third simulations test, we consider the network
(1) composed of four planar time-varying oscillators with
time varying interconnections, as illustrated in Figure 6.

The consensus control law (2) is used and the sequence
of edge weights w1(t), w2(t), w3(t) forming a spanning tree
are illustrated in Figure 7 and shown in Figure 8, so the
conditions of Theorem 1 hold.
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The full synchronization among the components of the
network in steady state may be appreciated from Figure 9.
This can be seen also from the phase portraits in Figure 10.

IV. CONCLUSION

We presented a decentralized controller that guarantees
uniform exponential synchronization for networks of planar
harmonic oscillators with time-varying frequency, intercon-
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nected over a bidirectional graph with time-varying topology.
Our conditions are stated in terms of persistency of the
connectivity and we show that this is intrinsically related
to the oscillators frequency.
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