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Abstract : The last decade has seen the development in France of a significant body of 
research into the teaching and learning of mathematics in CAS environments. As part of 
this, French researchers have reflected on issues of ‘instrumentation’, and the dialectics 
between conceptual and technical work in mathematics. The reflection presented here is 
more than a personal one — it is based on the collaboration and dialogues that I have 
been involved in during the Nineties. After a short introduction, I briefly present the main 
theoretical frameworks which we have used and developed in the French research: the 
anthropological approach in didactics initiated by Chevallard, and the theory of 
instrumentation developed in cognitive ergonomics. Turning to the CAS research, I show 
how these frameworks have allowed us to approach important issues as regards the 
educational use of CAS technology, focusing on the following points: the unexpected 
complexity of instrumental genesis, the mathematical needs of instrumentation, the status 
of instrumented techniques, the problems arising from their connection with paper/pencil 
techniques, and their institutional management. 

 

I. Introduction 
The development of mathematics has always been dependent upon the material and 
symbolic tools available for mathematical computations. Nobody would deny the role 
played by the introduction of the decimal system, the construction of logarithmic tables, 
the tabulation of elementary functions, or the development of mechanical and graphical 
computational tools. Today, advances in computations are linked to the development of 
numerical and symbolic mathematical software, among which Computer Algebra 
Systems (CAS in the following) play an increasing role. Professional mathematicians and 
engineers know that these sophisticated new tools don’t become immediately efficient 
mathematical instruments for the user: their complexity does not make it easy to master, 

                                                
1 This paper is based on a plenary lecture given at the Second CAME (Computer Algebra in Mathematics 
Education) Symposium that took place at the Freudenthal Institute in July 2001. 
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and fully benefit from, their potential. Professionals accept that there is a cost to learning 
how to effectively use such software. They also know that these tools have progressively 
changed their mathematical practices and, for some of them, even the “problématique” of 
their mathematical work. The necessity of research linked to the development of software 
packages, is today completely recognised as a specific area of mathematical research. 
In the educational world, except for advanced university courses and professional 
training, the dominant vision contrasts with that of the professionals. What is aimed at by 
mathematics education, and especially by general mathematics education in school and 
university, is not an efficient mathematical practice, assisted by the currently available 
computational tools; rather, it is concerned with the transmission of the bases of 
‘mathematical culture’. The values of such a culture are social values and, like any social 
values, they have a stable core which tends to shape our relationships with and 
interpretation of the surrounding world (Abric, 1987). These values were established, 
through history, in environments poor in technology, and they have only slowly come to 
terms with the evolution of mathematical practices linked to technological evolution. 
What is firstly asked of software and computational tools is to be pedagogical 
instruments for the learning of mathematical knowledge and values which were defined 
in the past, mostly before these tools existed. The tools are also put forward to help in the 
fight against “inadequate” teaching practices: practices too much orientated towards pure 
lecturing or the procedural learning of mathematical skills (if not to tackle the difficulties 
in schools induced by more general social problems). Under these conditions, it is 
especially difficult for mathematics educators to avoid ideological traps, and to deal with 
the issues of computational instrumentation, of relationships between technical and 
conceptual learning, and between paper/pencil and “instrumented”2 techniques, in a 
sensible way. 
In this paper, I want to contribute to the mathematics education community’s reflection 
on these issues. I will do so by relying on the results of different research projects which, 
in my opinion, constitute a coherent set focusing on these issues. I will firstly present the 
theoretical frameworks they have used and contributed to. I will then try to present what I 
see as the major contributions of these research projects. Of course, this research work 
doesn’t pretend to cover all the issues linked to the educational use of CAS but, in my 
opinion, it has the merit of attracting our attention to important issues the educational 
literature on CAS has not been very sensitive to, up to now, and to provide some 
conceptual tools in order to tackle these. 
The research work which I will refer to here is mainly French research carried out by 
different teams in Paris, Rennes and Montpellier, since 1993 (Artigue, 1997; Artigue & 
al., 1997; Guin & Delgoulet, 1997; Guin & Trouche, 1999, 2002; Lagrange, 1999, 2001; 
Trouche, 1997, 2000; Defouad, 2000). These projects cannot be considered as 
independent, and I have been personally involved in some of them. It has been through 
such mutual interaction, more and more active as time has passed, that our reflection on 
instrumental issues has developed and matured. For that reason, I will often speak of 
“we” in the following. But I would like to emphasise that the vision I have of this genesis 

                                                
2 Of course, any mathematical technique is in some way an instrumented technique but here I reserve this 
term to techniques instrumented by computer tools, especially CAS.  
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is certainly a personal one, and that the interpretations presented here are my sole 
responsibility.  

II. A theoretical framework for thinking about learning 
issues in CAS environments 
Our conviction that the theoretical frameworks structuring research on CAS technology 
(see for instance (Kutzler, 1994)) were not necessarily the most adequate, emerged from 
a first research work carried out as part of a national project on CAS integration at 
secondary level and in CPGE classes3, which began in the early Nineties (Hirlimann & 
al., 1996), (Artigue, 1997). In the mid nineties, we thus became increasingly aware of the 
fact that we needed other frameworks in order to overcome some research traps that we 
were more and more sensitive to, the first one being what we called the ‘technical-
conceptual cut’4. Indeed, theoretical approaches used at that time in CAS research, 
according to the authors, were of a constructivist nature5 but, in our opinion, tended to 
use this reference to constructivism in order to caution in some sense the technical-
conceptual cut, and we felt the need to take some distance from these. Anthropological 
and socio-cultural approaches seemed to us more sensitive to the role played by 
instruments in mathematical work and to be able to take proper account of the role of 
“technical work”6. This is the reason why we turned our attention towards the 
anthropological approach developed by Chevallard (Chevallard, 1992; Bosch & 
Chevallard, 1999), which has become very influential in French educational research. 
This approach, with its institutional basis, also allowed us to give proper place to 
institutional issues which, more and more, we recognised as essential. As it is obviously 
impossible to summarise in a few lines the anthropological approach, I will only point out 
the main elements necessary for understanding the following discussion. 

                                                
3 CPGE classes are, in France, special classes where selected students prepare for the difficult competitions 
which allow entrance to the most famous engineering and business schools. This is a two-year program 
after senior high school. 
4 By this expression, we labelled a common epistemological position (at that time) that, in mathematical 
activity, opposed what was considered, on the one hand as conceptual activity and, on the other hand as 
technical activity. Technical activity was there understood in a narrow sense as something mechanical, 
deprived from intelligence. Traditional teaching practices were accused to focus only on this technical 
dimension (through the development of procedures and skills), while meaningful learning was associated to 
the conceptual dimension. As CAS technology could take in charge most of the taught techniques, a 
common hypothesis in CAS research was that the use of CAS could allow students to work directly at a 
conceptual level (for more details, see for instance the analysis of 175 publications around the educational 
use of CAS in the meta-study (Lagrange & al., 2000), and also (Lagrange, 2001)). 
5 As shown in (Lagrange & al., 2000), in most articles, constructivism had more or less the status of normal 
paradigm (Kuhn, ) underlying educational research work. It was simply evoked through some few 
references, and some principles such as active learning, without more discussion. 
6 Technical work has here the wider sense it has in socio-cultural and anthropological approaches and is 
seen in a dialectic relationship with conceptualisation (see below, the presentation of the Chevallard’s 
anthropological approach for more details). 
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II.1 The anthropological approach 
The anthropological approach shares with ‘socio-cultural’ approaches in the educational 
field (Sierpinska & Lerman, 1996) the vision that mathematics is seen as the product of a 
human activity. Mathematical productions and thinking modes are thus seen as dependent 
on the social and cultural contexts where they develop. As a consequence, mathematical 
objects are not absolute objects, but are entities which arise from the practices of given 
institutions. The word “institution” has to be understood in this theory in a very broad 
sense: family is an institution for instance. Any social or cultural practice takes place 
within an institution. Didactic institutions are those devoted to the intentional 
apprenticeship of specific contents of knowledge. As regards the objects of knowledge it 
takes in charge, any didactic institution develops specific practices, and this results in 
specific norms and visions as regards the meaning of knowing or understanding such or 
such object7. To analyse the life of a mathematical object in an institution, to understand 
the meaning in the institution of “knowing/understanding this object”, one thus needs to 
identify and analyse the practices which bring it into play.  
These practices, or ‘praxeologies’, as they are called in the Chevallard’s approach, are 
described by four components: a type of task in which the object is embedded, the 
techniques used to solve this type of task, the ‘technology’, that is to say the discourse 
which is used in order to both explain and justify these techniques, and the ‘theory’. 
which provides a structural basis for the technological discourse itself and can be seen as 
a technology of the technology. Since I have already assigned a meaning to the word 
‘technology’ in this article, to avoid misunderstanding, in the following I will combine 
the technological and theoretical components into a single ‘theoretical’ component. The 
word ‘theoretical’ has thus to be given a wider interpretation than is usual in the 
anthropological approach.  
Note that, here, the term ‘technique’ has to be given a wider meaning than is usual in 
educational discourse. A technique is a manner of solving a task and, as soon as one goes 
beyond the body of routine tasks for a given institution, each technique is a complex 
assembly of reasoning and routine work. I would like to stress that techniques are most 
often perceived and evaluated in terms of pragmatic value, that is to say by focusing on 
their productive potential (efficiency, cost, field of validity). But they have also an 
epistemic value, as they contribute to the understanding of the objects they involve, and 
thus techniques are a source of questions about mathematical knowledge. I will come 
back to this point later. 
For obvious reasons of efficiency, the advance of knowledge in any institution requires 
the routinisation of some techniques. This routinisation is accompanied by a weakening 
of the associated theoretical discourse and by a “naturalisation” or “internalisation” of 
                                                
7 One of the seminal works of Chevallard in this direction showed that “knowing fractions” does not have 
the same meaning for the French and the British middle school institutions. This results, at least partially, 
from the very different cultural relationships the two countries have with the metric system, which shapes 
the respective importance and role given to decimal numbers and rational numbers in the curriculum. More 
recently, B. Grugeon, in her doctoral thesis (Grugeon, 1995), showed that general and vocational high 
school develops very different institutional relationships to elementary algebra, and used this analysis in 
order to understand the failure of bright vocational high schools students entering general high schools, and 
to find ways of overcoming this failure. 
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associated knowledge which tends to become transparent, to be considered as “natural”8. 
A technique which has become routine in an institution tends thus to become “de-
mathematicised” for the members of that institution. This naturalisation process is 
important to be aware of, because through this process, techniques lose their 
mathematical “nobility” and become simple acts. Thus, in mathematical work, what is 
finally considered as mathematical is reduced to being the tip of the iceberg of actual 
mathematical activity, and this dramatic reduction strongly influences our vision of 
mathematics and mathematics learning and the values attached to these9.  
The anthropological approach opens up a complex world whose ‘economy’ obeys subtle 
laws that play an essential role in the actual production of mathematics knowledge as 
well as in the learning of mathematics. A traditional constructivist approach does not help 
us to perceive this complexity, much less to study it. Nevertheless, this study is essential 
because, as pointed out by Lagrange (2000), it is through practices where technical work 
plays a decisive role that one constructs the mathematical objects and the connections 
between these that are part of conceptual understanding.  
Technological evolution has upset this economy and the traditional equilibrium which 
existed between conceptual and technical work, and the dialectic interplay between the 
“ostensive” and “non-ostensive” objects10 of mathematical activity (Chevallard & Bosch, 
1999). The great reduction in the cost of execution that technology offers, for instance, 
reduces the need for routinisation work mentioned above. Techniques that are 
instrumented by computer technology are changed, and this changes both their pragmatic 
and epistemic values. The mathematical needs of the techniques change also: new needs 
emerge, linked to the computer implementation of mathematical knowledge and the 
representation systems involved (Balacheff, 1994). These needs are not easily identifiable 
if the mathematical activity is only attached to its “noble” part (the tip of the iceberg), 
and the mathematical needs of the technical work are not seriously taken into account. It 
seems to us that the anthropological approach furnishes an effective framework for 
questioning these changes and their possible effects on mathematics teaching and 
learning. 

                                                
8 For instance, when students learn to solve first order equations, the different transformations they perform 
on equations (adding a number, multiplying by a non-zero number…) are carefully justified as 
transformations preserving equivalence. When solving such equations has become routine, this theoretical 
discourse tends to vanish, gestures such as passing one term from one member of the equation to the other 
one are naturalised and, for many students, tend to loose their mathematical meaning. At a more advanced 
level, all of us have routinised the passage from cartesian coordinates to polar coordinates in the 
computation of double integrals, but for many of us, this passage functions now as a natural gesture, and 
reconstructing the underlying theoretical discourse would be a non trivial task. 
9 We became more sensitive to this phenomenon when listening to the vehement discussions generated by 
the appearance of the Texas TI92 symbolic calculator in 1995, where the feeling expressed then by many 
teachers was that anybody, if given a TI92, could for instance succeed at the mathematics examination 
ending senior high school, because the TI92 performed all the necessary ‘mathematical work’. 
10 The anthropological approach emphasises the fact that mathematical objects are not directly accessible to 
our senses: they are “non-ostensive” objects; we work with them through ostensive representations which 
can be of very diverse nature: discourse in natural language, schemas, drawings, symbolic representations, 
gestures, manipulatives. Work with ostensive objects both shapes the development of the associated non-
ostensive objects, and is shaped by the state of development of these. 
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II.2 The ergonomic approach 
The anthropological approach in didactics has not so far developed tools adequate enough 
for thinking about instrumentation processes, since it has developed with reference only 
traditional classroom environments. It was in the research field of cognitive ergonomics 
(which also adopts an anthropological perspective) that we found an approach for 
supporting our views about instrumentation (Vérillon & Rabardel, 1995). Researchers in 
this domain are used to working on professional learning processes which take place in 
technologically complex environments, for example the training of aeroplane pilots, and 
they have developed conceptual tools adapted to the study of such types of learning 
processes. 
For us, the first contribution this approach makes is the conception of ‘instrument’ itself. 
The instrument is differentiated from the object, material or symbolic, on which it is 
based and for which is used the term “artefact”. Thus an instrument is a mixed entity, part 
artefact, part cognitive schemes which make it an instrument. For a given individual, the 
artefact at the outset does not have an instrumental value. It becomes an instrument 
through a process, called instrumental genesis, involving the construction of personal 
schemes or, more generally, the appropriation of social pre-existing schemes. 
Instrumental genesis works in two directions. Firstly, it is directed towards the artefact, 
loading it progressively with potentialities, and eventually transforming it for specific 
uses; this is called the instrumentalisation of the artefact. Secondly, instrumental genesis 
is directed towards the subject, leading to the development or appropriation of schemes of 
instrumented action which progressively take shape as techniques that permit an effective 
response to given tasks. The latter direction is properly called instrumentation. In order to 
understand and promote instrumental genesis for learners, it is necessary to identify the 
constraints induced by the instrument; and, especially for the type of instrument with 
which we are concerned here, there are two kinds of constraints: “command constraints” 
and “organisational constraints”11. These result from “internal” and “interface” 
constraints (Balacheff, 1994). It is also necessary, of course, to identify the new 
potentials offered by instrumented work. 

II.3 One particular example: the case of “framing schemes” 
Let us give one example. When students use function graphs in a computer environment 
(or a graphic calculator), they are faced with the fact that a function graph is “window-
dependent” and they have to develop specific “framing schemes” in order to cope 
efficiently with this phenomenon. This is far from being a spontaneous and immediate 
process as many experiments have shown. For instance, in the research we developed 
with grade 11 science students (Artigue et al., 1998), in the first interview task students 
were asked to consider the function defined by f(x) = x(x+7)+ , use their TI92 to obtain 

an accurate representation of the function, make conjectures on its properties on the basis 

                                                
11 Command constraints are those generated by the commands available, their range of uses, etc. 
Organisational constraints are linked to the fact that working with a specific instrument influences the way 
someone plans and organises his/her mathematical work, taking into account its specific ergonomy and 
ways of functioning. 

x
9
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of this representation, and then test and prove these conjectures, and eventually explain 
why some of these were false. The function had been chosen with the following 
considerations : 

• the function expression should be rather simple but the function itself of a type not 
familiar to the students (at that point, they were familiar with polynomial functions 
essentially); 

• the graph obtained in the standard window, [-10,10]x[-10,10], should be far from 
being accurate (figure 1); 

 

Figure 1: Graph in the standard window 

• it should not be difficult technically to obtain an accurate graph, based on the 
different options offered by the calculator. For instance, one application of the 
command ‘ZoomOut’ is enough to obtain graph 2 (figure 2) and the command 
‘ZoomFit’ gives graph 3. Students can also explore the values taken by the function 
through the ‘Table’ application and (without changing the default stepsize) by 
looking at the values of the function from x=-10 to x=10 can find an accurate 
window. 

  

Figure 2 : Graphs 2 (left) and 3 (right) 
All these students had their own graphic calculator and had used it, in and out of class, 
for a year. So one could expect that they would have developed framing schemes 
allowing them to cope with this situation.  
What was observed? Among the nine students interviewed, chosen to reflect the different 
mathematics abilities of the students engaged in the experiment, as well as the different 
relationships they had developed with technology, only two succeeded, one using manual 
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changes of the window, one through a manual change plus the use of ZoomOut and then 
ZoomBox (Defouad, 2000). Only two students only obtained an accurate graph for 
negative x, and the remaining five, in spite of many different manipulations, could not get 
something better than the graph in the standard window. No student used the Table 
application, or the HOME application (the calculator’s main application for exact and 
approximate calculations) for exploring the values of the function, even though seven had 
already used HOME in order to define the function before asking for its graph. All of the 
students were clearly conscious that the graph drawn in the standard window was not 
accurate: a priori, they did not expect something monotonic, neither something which 
appeared just in the negative part of the x-axis, but they generally lacked any clear 
strategy to change the window, and gave up after a few trials. 
I would like to stress that one should not see in this example the manifestation of some 
kind of cognitive inability. The results we observed are certainly due to the fact that, 
through the tasks these students had been introduced to graphing technology during their 
10th grade mathematics courses on functions, they simply had not been faced with the 
necessity of developing such framing schemes.   
In what follows, I shall try to show how the research we have carried out from the 
perspectives of the anthropological and instrumentation approaches has allowed us to 
progress in our reflections on the educational use of CAS, and I will focus on several 
specific points: 

• the unexpected complexity of instrumental genesis, 

• the mathematical needs of instrumentation, 

• the status of instrumented techniques, the problems arising from their connection with 
paper/pencil techniques, and their institutional management.  

These are not, of course, independent points even I separate them here in order to clarify 
the presentation. 

III. The unexpected complexity of instrumental genesis 
During the last two years, as part of a national research project, we have carried out an 
extensive survey of technology in mathematics teaching (Lagrange et al, 2000, 2001). Its 
aim was to study the issues of the integration of technology into mathematics teaching 
and to better understand the difficulties of integration, and to review  the potential and 
limitations of research and existing innovative work on TICE12. These difficulties are 
indeed persistent in France in spite of the continuous governmental support given to 
integration for more than 20 years now. The survey took into account more than 600 
publications and reports, published between 1995 and 1998, of which 175 dealt with 
CAS. The results clearly show that the complexity of instrumental genesis has been 
widely under-estimated in research and innovation on TICE, until quite recently. The 
predominant role of pedagogical tool given to technology that I pointed out in the 
introduction has certainly contributed to such an under-estimation. Suggesting that 
instrumentation may be a complex and costly process does not fit visions that consider 
                                                
12 TICE: Technologies de l’Information et de la Communication appliquées à l’Enseignement. 
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technology mainly as an easy tool for introducing students to mathematical contents and 
norms defined independently from it. In our research teams in Paris and Montpellier, two 
recent doctoral theses by Trouche (1997) and Defouad (2000), have allowed us to make 
some advances in the awareness and understanding of this complexity.  

III.1 Trouche’s thesis : student profiles and instrumented schemes  
Trouche’s thesis mainly concerns the conceptualisation of the notion of limit, in two 
different environments, graphic calculators and symbolic calculators. The author 
especially focuses his attention on limits in the neighbourhood of infinity. Students’ 
conceptions and their evolution through an engineering design project which covers the 
teaching of calculus and elementary analysis for the whole of grade 12, in the ‘scientific 
track’ of the senior high school programme13 are investigated. 
Trouche’s research firstly evidences the diversity of instrumental relationships that the 
students develop in the institutional context of the high school. This diversity led Trouche 
to introduce five extreme profiles, which he calls “theorist”, “rationalist”, “scholastic”14, 
“tinkerer”, and “experimentalist”. These are characterised by the kind of resources 
favoured by the student, the meta-knowledge she tends to activate, and the modes of 
validation she privileges (Trouche, 2000). The “tinkerer” for instance is characterised 
along these three axes by the triplet (calculator, investigation, accumulation), while the 
“rationalist” is characterised by (paper/pencil, inference, proof) and the “theorist” by 
(references, interpretation, analogy).  
According to their profile characteristics, students develop different relationships with 
their graphic and symbolic calculators. Trouche (2000) illustrates this point first by 
analysing students’ behaviour when, rather early in the academic year, they are asked to 
study with their graphic calculator the limit in +µ of a polynomial function of degree 4 
whose x4 coefficient is 0.03. The small size of this coefficient makes the graphical 
representation of the function in the default calculator windows incoherent with the 
“algebraic” study these students are theoretically able to produce at that time of the 
academic year. Trouche shows that, for this task, students develop a wide range of 
solving strategies, associated with different use of the graphic calculator, and that these 
differences can be interpreted in terms of profile characteristics. Then, through regular 
observations of the same students (once a week they are proposed an open problem to 
solve in a two-hours session) he shows that differences in the students’ profiles have 
significant effects on the instrumental genesis of graphic calculators (and also on the 

                                                
13 In the Baccalaureate system, high school students specialise into different tracks. General high school 
offers three tracks : L (literature, philosophy and languages), ES (economy and social sciences) and S 
(sciences). Tracking begins at grade 11. 
14 We translate by “scholastic” the French word «scolaire» which has the following meaning: a student is 
said to be “scolaire” if (s)he mainly tries to adapt to the institutional constraints and succeed through this 
adaptation, if (s)he mainly functions by taking into account the didactic contract. Guin & Trouche (1999) 
used the following English translations in their account of this research: “theoretical”, “rational”, 
“random”, “mechanical”, “resourceful”. Note that these profiles have to be considered as prototypes, used 
for categorising and analysing observed students’ behaviour, not the students themselves who, even if they 
look closer to one profile than to another one, cannot generally be reduced to such prototypes. 
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instrumental genesis of symbolic calculators which were introduced later in the 
experiment). 
Trouche’s research allows him to identify the different schemes of instrumented action 
which are likely to appear in work on limits at this level of schooling. These schemes rest 
on various “theorems in action” (according to the terminology introduced by Vergnaud in 
the theory of conceptual fields — Vergnaud, 1990), and dominant schemes evolved 
during the year for each type of student profile. For every profile except the “scholastic”, 
instrumented action, initiated in the environment of the graphic calculator, does not tend 
to reduce to the mere use of the symbolic calculator command “limit” with its specific 
syntax; when symbolic caculators become avalaible: the schemes that the students 
developed are more subtle than that (and of course, the activities which are proposed to 
students and their didactic management certainly play an essential role).  
The research also shows that the local schemes that develop for dealing with specific 
tasks, for example: the determination of limits in +µ, interact with more global schemes, 
for instance the one called by Trouche “scheme of approximate detour”. This scheme 
corresponds to the act of using a specific command available on the TI92 and TI89 
calculators (“diamond + ENTER”) to get an approximate value for a given number, 
whilst working in the calculator’s “exact” mode. This scheme can be used in diverse 
situations where the calculator cannot give an exact answer15 or when one wants to find 
out more about a result whose exact expression is not informative enough (at least as 
regards the magnitude of the number). But Trouche also finds that this scheme can take 
different meanings, according to the student and the situation: it can be part of a process 
of anticipation or verification (DA1); it can be considered as a substitute for intended 
result and used as such (DA2), it can be seen as a stratagem in which the peculiarities of 
the approximate value which is obtained are used for guessing the exact value (DA3). It 
seems that uses of type DA1 are more likely to appear with “rationalist”, “theorist” and 
“experimentalist” profiles, DA2 with “tinkerer” and “scholastic”, and DA3 with 
“tinkerer”.  

III.2 Defouad’s thesis: The genesis of students’ TI92 instrumentation for 
the study of function variations16 
The thesis by Defouad is concerned with the instrumental genesis of the TI92 calculator, 
and focuses on just one task, which can be considered as emblematic of students’ entry 
into the field of elementary analysis: the study of function variations. This research was 
situated in a larger experimental context which covered the entire mathematics 
curriculum for scientific tracks at grade 11, with the students in an experimental class 

                                                
15 For instance, when the calculator is not able to give the exact solutions of an equation, to compute the 
exact value of a limit or a definite integral… 
16 The study of function variations is a fundamental type of task regarding functions in the French high 
school curriculum. For instance, students are proposed some geometrical object where some magnitudes 
(lengths, areas, volumes) depend on the choice of one variable magnitude (generally a length x), and asked 
to study how these magnitudes vary when x varies, to find extremum values… When they are asked to 
study the variations of a function, with or without any particular context, French students know that they 
have to find the intervals where the function is increasing (respectively decreasing), the local and global 
extreme values and, when they have been introduced to the notion of limit, to compute limits if necessary. 
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being given a TI92 calculator for one academic year. Grade 11 is the point where, in 
France, elementary analysis and calculus begin to be officially taught. The methodology 
of the experiment combined regular classroom observations, questionnaires and tests, and 
the specific observation throughout the academic year of nine selected students in the 
experimental class (according to their sex, academic level in mathematics and their 
personal relationship to technology).  
The task we consider here is no longer a local task and this fact, of course, influences the 
vision it gives of the instrumental genesis. This research, like the preceding, showed the 
complexity of instrumentation processes. Instrumental genesis develops over time in 
ways that do not reflect the temporal organisation of the formal teaching devoted to the 
topic of function variation. The genesis combined a succession of cycles (“explosion – 
reduction”), and even at the end of the academic year it remained fragile. There was also 
a tendency among the students towards a different relationship to mathematical proof, in 
that they gave more importance to the search for coherence between information coming 
from different sources (symbolic computations, graphical representations and the 
approximate values obtainable through the commands available within the graphical 
application, tables of numerical values) than to the search for a decisive argument. 
More precisely, by relying on the data collected in the regular interviews of the selected 
students17, Defouad identified several phases in the instrumentation of variation. During 
the first phase, the students remained strongly attached to the culture of the study of 
functions that they already had been introduced to at grade 10, with graphic calculators. 
This culture is of a numerical-graphical-algebraic nature, the variation of a function is 
essentially inferred from the reading of its graphical representation and, to a lesser extent, 
from tables of numerical values. Adapting this culture to their new situation, in the first 
phase, the students considered the graphs of a function and its derivative as their main 
tools for conjecturing and justifying its variations. The use of formal calculus in the 
‘HOME’ application of the symbolic calculator, in spite of its potential usefulness, 
remained marginal. HOME was nearly always used just for defining functions, and 
calculating or checking the value of their derivatives. In the classroom observed sessions, 
the pressure of the didactic contract made such strategies soon enough disappear, as an 
evident clause of the didactic contract is that students are supposed to use the new 
mathematical concepts and techniques18 they have been introduced to, when asked to 
solve a particular task. In the interviews, the lower pressure of the didactic contract 
associated with the fact that students were faced with less familiar functional objects, 
provoked behaviours that evidenced the strength of this first enculturation. 
Let us give a particular example: that of Frederic, a student with a rather good level in 
mathematics and a positive relationship with technology. At the first interview, about two 
months after the introduction of the derivative, he was asked to study the variations of the 

                                                
17 During each interview students were asked to study the variations of a function given by its algeraic 
expression. One important characteristic is that this function was deliberately choosen beyond their area of 
familiarity, in order to analyse the ways they adapted to non routine situations. 
18 That is to say, in this particular context, use paper and pencil or the Home application in order to 
calculate the derivative, determine its zeros and sign, and rely on the ‘variation theorem’ in order to link the 
positive (resp. negative) sign of the derivative on intervals to the increasing (resp. decreasing) nature of the 
variations of the function on the same intervals.  
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function: f(x)=x(x+7)+9/x (cf. section II.3). He firstly defined the function in the HOME 
application, then went to the ‘Y=’ application and asked for the graph in the standard 
window. As we have seen, this strategy leads to a very partial picture and he was not 
satisfied, but, after one more trial, his interpretation was that the graph is included in the 
half plane corresponding to negative x. Without checking this interpretation by looking at 
the algebraic expression, he decided to reduce the window to negative x and then to 
adjust the vertical interval in order to make visible at least one extremum point19. This 
was done by trial-and-error, guided by some idea of reasonable form but without any 
connection with the algebraic expression of the function. The graph he finally obtained is 
reproduced in figure 4.  

 

Figure 4 : Frederic’s final graph 
Then Frederic jumped to HOME, asked for the derivative, and then its factorisation, but 
was apparently unable to make use of it. Clearly, he was puzzled by the complexity of the 
expression he obtained and did not understand that the factorisation could give him the 
sign of the derivative20. So he came back quickly to the graph application, graphed the 
derivative and used jointly the information given by the two graphs, and the table 
application, in order to make conclusions about the variation of the function (figure 5). 
The function looked first decreasing, then rather flat, then decreasing, but the derivative 
was first negative, then positive, then negative. Thus he conjectured that the flat part was 
certainly in fact an increasing part, between a minimum and a maximum. 

                                                
19 In his opinion, this expression was certainly too much complex for corresponding to a monotonic 
function. 
20 For the students at that stage of the course, the calculation of the derivative would normally result in a 
second degree polynomial, or possibly a fractional expression whose denominator is a square and 
numerator a first or second degree polynomial. For second degree polynomials, they knew the specific rule 
for the sign of P(x) according to the position of x with respect to the roots of the equation P(x)=0. They had 
been taught in their grade 10 algebra course how to deduce the sign of any algebraic expression from its 
factorised form in first degree expressions, but they had not internalised this technique as an operational 
tool in functional contexts because the set of available functions and functional tasks was too narrow at that 
time. All this context contributes to explain Frederic’s unexpected reaction. 
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Figure 5 : Frederic studying the variations of the function 
He then checked his conjecture by using the ‘math menu’ of the graph application for 
finding the extremum, then by using the Table application and, finally, by zooming on 
the apparently flat part of the graph (see figures 5 and 6). At that point, he looked 
satisfied but he had failed to notice the part of the graph of the derivative corresponding 
to positive x and needed the help of the interviewer to interpret it when his attention was 
drawn to it.  

 

 

 

 

 

Figure 6 : Frederic checking his work on variations 
At the second interview, two months later, there was an evident development but Frederic 
was still in what Defouad calls the “intermediate phase”: the graphic application still 
plays an essential role but HOME is beginning to emerge as a real solving tool and the 
connections between the different applications are developing. Frederic had not mastered 
the graphical phenomena associated with vertical asymptotes, and obtained an evident 
discrepancy between the reading of variations from the graph of the function and the 
reading he makes from the graph of the derivative. Nevertheless, he was eventually able 
to solve this contradiction for himself. At the specific assessment21 we organised in June, 
he was clearly in what Defouad calls the “calculus phase”, having developed specific and 
efficient instrumented schemes for framing and variation analysis, by connecting the 
symbolic and graphical applications of the calculator. But, soon after, at the third 
interview, he was faced with a new type of function, mixing square roots and 
trigonometric functions, generating new phenomena linked to the discretisation processes 
                                                
21 All the grade 11 classes of the scientific track, in the high school, had regular common assessments, and 
the students of the experimental class were allowed to use their calculator for these common assessments. 
But in June, we organised a specific assessment for the experimental class, with questions asking sudents to 
interpret data provided by the calculator, both in the Home application and in the Graphic application, to 
explain the errors made in a false reasoning using the calculator presented to them, and to solve a problem 
on functions they could not solve without using the calculator (Artigue 1 al., 1998). 
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used by the calculator, and this perturbation was a bit too much for him. He spent a lot of 
time trying to produce a graph that exactly touched the x-axis (see figure 7), doubted 
about the periodicity of the function, and when he got the formal expression for the 
derivative, he was completely stuck. He asked for particular values of the derivative but 
needed help in order to prove the conjecture he had made about its sign from the graph. 
 

  

  

Figure 7 : Excerpts from Frederic’s work in the third interview 
The case of Frederic is representative of all the students in the experiment. During the 
first year of the experiment, students came to use the HOME application for dealing with 
variation issues very slowly, with clear differences according to their personal profile. 
The development of their mathematical knowledge played an important role in this 
progressive appropriation. In the first phase, we noticed that, even if the students were 
able to use the HOME application for computing with the derivative (eg. finding its 
zeros), they came back to the graphical window as soon as the situation or the results 
provided by the calculator became more complex. For instance, they were not aware of 
the fact that, once an algebraic expression depending on one variable is factored, one is 
able to easily find its sign for any value of the variable, and that it does not depend on the 
number of factors. The economic strategies of use for the TI92 that we imagined before 
each interview were rarely the strategies the students chose. They preferred “zapping22” 
between applications and “over-verification” strategies. The efficient connection between 
the algebraic and graphic registers needed more time to develop than we expected.  
Instrumental genesis involves an evolution in the roles of the different applications of the 
calculator. As I mentioned above, during the first phase of this genesis, the graphical 
                                                
22 This expression was chosen by analogy with a very common behaviour of TV viewers where one moves 
rapidly from one channel to one another.  
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application plays a predominant role both in exploration and solving; the Table 
application plays a control role; the symbolic application HOME plays a marginal role 
(computation of the derivative essentially). In a second phase, even if the graphical 
application still predominates, HOME becomes more involved in the computation of 
exact values for the function and its derivative, for calculating limits, or checking some 
graphical results, with a role of support to the graphical work. In the third phase: the so-
called calculus phase, an inversion takes place: the symbolic application becomes the 
predominant tool in the solving process, jointly with paper/pencil work, while the 
graphical application becomes mainly an heuristic tool, for anticipation and control. 
During the first year of experimentation, our attention was attracted by the slowness and 
circuitousness of this instrumental genesis. This led us to question the status of 
instrumented techniques in the experimental class and the ways this status could have 
influenced the observed genesis. I would like to come now to this second aspect of 
instrumentation.  

IV. Instrumented techniques: a problematic status, even 
in experimental environments  
In a CAS environment, teaching combines two types of techniques: paper/pencil 
techniques and instrumented techniques. Every technique has, as we pointed out above, a 
pragmatic and an epistemic value. The institutional status of techniques depends on the 
values attributed to them. It is certainly easy to recognise the pragmatic value of 
instrumented techniques, but it may be less easy to grasp their epistemic value. To a great 
extent, the problem lies in the immediateness of results, compared with our familiarity 
with the idea that the epistemic value of a paper/pencil technique becomes evident 
through the details of its technical gestures. Let us take a very simple example: the 
technique of Euclidian division. The epistemic value of this is evident: it plays a 
fundamental role in the proof of various arithmetic theorems, and it helps to explain their 
necessity and the connections between them. At a more elementary level, through the 
iteration of the division gesture, pupils can understand very early why the decimal 
expansion of a rational number is necessarily periodic. The use of a calculator, which 
gives the beginning of the decimal expansion of any rational number instantaneously, and 
in most simple cases allows the student to conjecture about both the periodicity and the 
actual period, no longer has the epistemic value of the paper/pencil gesture.  
In general, the epistemic value of instrumented gestures is something that must be 
thought about and reconstructed. In the teaching process, it has to be developed through 
an adequate set of situations and tasks. The experiments that we have carried out, and 
also those undertaken by other researchers (see for example Schneider, 2000; Kendal & 
Stacey, 2001) show that this is not trivial, even when a detailed analysis of “spontaneous 
evolutions” of teachers working in CAS environments show that some of these can be 
interpreted retrospectively as attempts in that direction. I will come back to this point 
later on as it requires deeper analysis. What I simply want to stress here are the 
difficulties that, even in special experimental settings, teachers encounter in giving an 
adequate status to instrumented techniques and in managing these from an institutional 
viewpoint. The observations we made during the first year (as analysed by Defouad) 
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illustrate this, by revealing the very different lives that paper/pencil and instrumented 
techniques had in the experimental class. 
In a French classroom, today, work on a new mathematical theme begins with a first 
phase of exploratory work, after which certain paper / pencil techniques are identified and 
become “official”. Students are then trained to use these techniques in different contexts 
and some routinisation work takes place. A discourse of a more theoretical nature goes 
along with this institutionalisation of official techniques, having explicative and 
justificative aims, even if crucial theorems (such as the theorem linking the sign of the 
derivative and the variation of the function (see note 18)) are not formally proved at this 
level of schooling. The institutional life of instrumented techniques, such as those called 
up in the study of the variation of functions (techniques for adequately framing graphical 
representations, for finding the sign of the derivative, for checking the equivalence of 
algebraic expressions, etc) is quite different. The symbolic calculator leads to an 
explosion of possible techniques which can be used for solving each of these tasks: think 
for instance about the number of different zoom commands offered in the calculator’s 
graphical application, the different schemes one can use in order to get the sign of an 
expression, or to check an algebraic equivalence. Faced with such a situation, teachers 
encounter difficulties and don’t dare to make the necessary choices, which they certainly 
would make (often unconsciously) in a more traditional environment. There is a 
temptation to allow students to discover up to what point the calculator can enrich their 
solving strategies, and this can result in a non-productive technical overload. When the 
educational institution does not give teachers any rule for selection, they are less sensitive 
to the necessity of making choices, and not equipped to make these in a rational way. 
This leads to an explosion of techniques which remain relatively ad hoc, and pose a 
didactic obstacle to the progressive building of mathematical activity instrumented in an 
efficient way. 
Another difference may be added to the preceding ones. Any technique, if it has to 
become more than a mechanically learnt gesture, requires some accompanying theoretical 
discourse (see for instance note 3). The kinds of discourse which can be developed are 
well-known for official paper/pencil techniques, and moreover these are framed by the 
syllabus, textbooks and other educational resources. A discourse has to be constructed for 
instrumented techniques. Once more, difficulties are obvious because this discourse will 
call up knowledge which goes beyond the standard mathematics culture. It will 
necessarily intertwine standard mathematics knowledge and knowledge about the artefact 
and the “computational transposition”23 of mathematical knowledge that the use of this 
artefact involves. For instance, knowledge underlying the mastery of framing techniques 
in the graphical application includes mathematical knowledge about discretisation 
processes and their possible effects, and also more specific knowledge about the way the 
artefact implements these discretisation processes. Knowledge underlying the mastery of 
                                                
23 In the sense of Balacheff (1994): Referring globally to the concept of didactic transposition (Chevallard, 
1985), Balacheff points out that the implementation of mathematical knowledge in computer software 
makes the transpositive process more complex by adding a new layer to it: the computational transposition. 
This computational transposition affects the mathematical functioning of knowledge through processes 
internal to the computer (the implementation of data and algorithms) but it also affects the way we access 
to knowledge through the characteristics of the interface. The first analysis of such computational 
transposition was developed by Balacheff about the software Cabri-géomètre. 
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algebraic equivalence includes knowledge about the principles which govern the 
representation of algebraic and numerical expressions in CAS software, about problems 
such as the existence of canonical or normal forms (Kovacs,1999), and about the 
differentiation between semantic and syntactic equivalence. As stressed by Defouad, 
knowledge related to the peculiarities of the artefact is often difficult, if not impossible to 
access. This fact led him to refine the typologies of constraints previously introduced by 
Balacheff and Trouche, by taking into account four different levels of information 
accessibility, ranging from information immediately accessible at the interface of the 
artefact to information completely inaccessible to the user24. Moreover he shows that, 
very often, the theoretical discourse necessary for a reasonable control of instrumented 
techniques developed by the students requires information situated at least at the third 
level. 
Under these conditions, it is reasonable to believe that building a theoretical discourse 
relevant to some given instrumented techniques and well adapted to the students’ 
cognitive state is not a trivial task. The a posteriori analysis of the classroom observations 
made at the end of the first experimental year confirms this conjecture: the theoretical 
discourse developed about instrumented techniques had been rather poor, episodic and 
lacked a clear structure. It was not clearly incorporated into the institutionalisation 
process25 which essentially dealt with knowledge relevant to mathematical work in the 
paper/pencil environment. These characteristics did not help instrumented techniques to 
gain mathematical status and tended to reduce their epistemic value. Even when fully 
legitimated, they remained at a sort of intermediate status in the classroom culture, for 
which Defouad introduced the notion of “locally official techniques”. 
We were not sensitive to all of these differences at the beginning. Our attention was first 
attracted by the “explosion-reduction” dynamics mentioned above, by the time necessary 
for reaching a reasonable state of stabilisation, and the great diversity of stable personal 
strategies. The analysis of the data collected during the classroom observations allowed 
us to identify the differences in status and management we have mentioned and to build 
the interpretation I have articulated above. These were incorporated into the engineering 
design for the second experimental year. The teacher, now sensitive to the difficulties, 
tried to face them, and, we helped her to develop the explanation, justification and 
institutionalisation for the instrumented techniques she chose to favour and give an 
official status to in the class. Also in the design, we paid more attention to the necessary 
evolution of the didactic contract about instrumented techniques, through the academic 
                                                
24 The four level are the following ones : level 1: the information is directly accessible at the interface (for 
instance the mode of computation : exact, automatic, approximate, is coded in the status line at the bottom 
of the screen) ; level 2: the information is not directly accessible at the interface but is easily accessible (for 
instance the fact that, even if the calculator is in exact mode, all the computations made outside the HOME 
application are approximate computations, or the kind of transformation corresponding to a command such 
ZoomIn) ; level 3: the information is accessible but not so easily. One cannot find necessarily it in the 
documentation given with the calculator, but has to go to specific documents or websites (steps used in 
numerical integration…) ; level 4: information non accessible to the user (the choices made in the coding of 
objects, in the implementation of  algorithms…). 
25 The institutionalisation process is, according to the theory of didactic situations (Brousseau, 1996), the 
process by which knowledge built by students in the classroom in the solving of problems is linked to the 
institutional forms of knowledge that the teaching aims at. This process is a fundamental process under the 
responsibility of the teacher who is the warrant in the classroom of this institutional knowledge. 
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year, taking into account both the evolution of instrumentation and mathematical 
knowledge.  
This strategy had evident results. For instance, in the first interview of the second year, 
many students were no longer trapped by the most simple graphic phenomena linked to 
the choice of windows or to discretisation. Moreover, to some degree they were able to 
articulate reasons for these phenomena which linked mathematical and instrumental 
knowledge. We also had the feeling that the gap observed between classroom behaviour 
and interview behaviour the year before had decreased and that, even if the global 
dynamics were the same, we observed in the first interview competencies that we only 
had observed in the second, during the year before. Nevertheless, the students’ 
instrumental knowledge remained fragile as did the mathematical knowledge they begin 
to built in the field of analysis. If we compare what we achieved with, for instance, what 
was achieved by Trouche with his 12 grade students (Trouche et al, 1998) during the 
second year of his experimentation, there is an significant qualitative difference.  

V. The mathematical needs of instrumentation and the 
epistemic value of instrumented techniques  
I introduced earlier a distinction between the pragmatic and epistemic values of 
techniques. I also pointed out the mathematical needs required for an efficient 
instrumentation. These include some things that do not have a significant role in 
traditional mathematics teaching, designed for learning in standard environments. In 
order to make this point clear, I will come back to two questions already considered: the 
question of window framing and the question of algebraic equivalence. 

V.1. Framing, discretisation processes and associated mathematical 
needs 
Mastering the techniques of graphical representation associated with the study of real 
functions, in a paper/pencil environment, does not oblige learners to understand the 
possible effects of discretisation processes in dealing with computer representations of 
functions. In order to check this assertion, it is enough to propose to advanced students in 
mathematics, or to teachers unfamiliar with computer graphics, situations such as those 
which have been developed at the Montpellier IREM26 (Trouche, 1994). For instance the 
following: students are given different graphical representations of the real function f 
defined by f(x)= sin x/x for positive x and f(0)=1. Some representations have a lot of 
oscillations of decreasing amplitude (as expected, but the number of oscillations can be 
very different), two are strictly monotonic (either increasing or decreasing), with the x-
axis as an horizontal asymptote, and one is horizontal on the x-axis. Figure 8 shows two 
of these representations 

 

 
                                                
26 IREM: Institute of Research in Mathematics Education. 
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Figure 8 : Two graphs associated with the function sin x/x 
As shown in figure 9, zooming on a monotonic part of the graph can result in a graph 
with very strong oscillations. 

 

 

 

 

 

 

Figure 9 : Zoombox applied to a monotonic graph 
Students were asked to explain why so many different graphs are possible and to find 
ways to reproduce analogous behaviour on their personal calculator, and more generally 
on any kind of graphic calculator27. This was not a trivial task at all for them, since 
mastering it requires a clear understanding of the properties of the function, of 
discretisation processes, and of the particular characteristics of the machine they are 
using.  

V.2. Equivalence between expressions 
The question of equivalence between expressions is a more complex question which is 
linked to crucial theoretical problems. As stressed by Kovacs (1999) in a recent survey on 
computer algebra: 

In order to represent objects in a computer algebra system, one has to make choices on both 
the form and the data structure level. The problem of “how to represent an object?” becomes 
even more difficult when one notices that some criteria (memory space, computation time 
readibility) may also play an important role in  the representation. (…) It is now clear that it 
can be very hard to find a good strategy to represent objects in a unique way satisfying 
several criteria. Therefore, in practice, one object may have several different representations. 
This, however, gives rise to the problem of detecting equality when different representations 

                                                
27 In order to reproduce the same phenomena on a given graphic calculator, one has to know the number of 
pixels of the screen for this calculator and adapt the window to these characteristics. For instance, choosing 
the window so that pixels correspond to numbers close to p/2+2kp, gives a decreasing curve. 
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of the same object are encountered. This in turn leads to the notions of canonical and normal 
representations and to simplification. 

As Kovacs points out, many objects manipulated in formal calculus do not have a 
canonical representation, nor even a normal one. Equalities which are very easy to prove 

(by hand) such as = +1, are difficult to detect formally in systems working 
with algebraic numbers represented through polynomials28. Indeed, the solution of 
problems arising from the simultaneous manipulation of several algebraic numbers is at 
the core of current research in formal calculus. 
Even when the context is more elementary, the use of a CAS obliges the students to face 
equivalence and simplification issues (all the experiments agree on this point). On the one 
hand, when entering an expression into (say) a TI92, the student is faced with the result 
of an evaluation automatically performed by the calculator. This result can look very 
different from the initial expression, and the student is in quite a different situation from 
paper/pencil work where, simplifying step by step, she knows the different intermediate 
expressions she has produced. On the other hand, algorithms implemented in the software 
lead to a greater diversity in the representations of mathematical objects than is usual in 
the classroom work with paper/pencil, where the representational forms are carefully 
chosen and the transformations between them are carefully codified, this codification 
remaining partly implicit as part of the didactic contract. CAS breaks these institutional 
norms by frequently producing very unexpected results. Equivalence problems arise 
which go far beyond what is usual for the classroom. 
In the different experiments which we have carried out at high school level, we have paid 
specific attention to this point and used it as a lever to promote a work on the syntax of 
algebraic expressions, which is something very difficult to motivate in standard 
environments, where students often see it only as a matter of didactic contract; but in 
CAS environments, it appears as something necessary for efficient communication with 
the machine (for more details, see (Guin &Delgoulet, 1997), (Artigue, 2002). It was also 
a way of making the students sensitive to the fact that, even if the CAS is a very powerful 
tool, some work remains the responsibility of the students, for instance because the 
software does not give the range of validity of the transformations it uses, as clearly 
appears on the last line of the screen in figure 1029. 

                                                
28 Note: The TI92 automatically transforms the first expression given above into the second one and thus 
recognises the equivalence, but it does not recognise for instance the equivalence between  and 2-

Ö3. 
29 If students for instance are asked to study a rational function given by the first expression, arising from 
some particular context, they cannot forget that the origin is a non regular point which requires some 
specific study. This is no longer visible on the simplified expression. The same occured for instance in the 
experimentation when using the TI92 for solving equations with radicals (Artigue & al., 1998). 
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Figure 10 : Automatic simplification of an algebraic expression in the TI92 
The mathematical needs we have just referred to are, at secondary level, needs linked 
with instrumented practices. One should add to the set of mathematical needs an 
understanding of the distinction between exact and approximate computations, as 
research carried out with CAS at secondary level shows the importance of this for the 
controlled use of these environments. Biribent has shown in his recent doctoral thesis 
(Biribent, 2001) that, for more than fifty years, French secondary teaching has been 
unable to cope adequately with these two facets of mathematical computations and that 
the introduction of digital technologies through scientific and graphic calculators has not 
improved the situation. The educational use of these technologies has not questioned the 
abusive hierarchy existing in the secondary educational culture between exact and 
approximate computations: approximate computation being what one does when exact 
computation is out of range, and having less mathematical value (for more details, see 
also (Artigue, 2002)). With CAS, the situation becomes rather different as the same 
instrument allows the students to perform both exact and approximate computations30, 
and in our experiment, we have used this opportunity as a lever to develop a fruitful 
mathematical work about the distinction between these two forms of computations and 
their respective roles, and thus develop new relationships between these.  
We have only evoked here some of the mathematical needs that secondary students 
necessarily meet when working with CAS. At more advanced levels, new needs will 
necessarily emerge, especially those linked to the complexity and effectiveness of 
computations.  

V.3. Coming back to the epistemic value of instrumented techniques 
Up to now, I have expressed myself in terms of mathematical needs, but a change in 
viewpoint will allow us to come back to the question of the epistemic value of 
instrumented techniques, and through that to the question of the relationships between 
technical work and conceptualisation which is at the core of our reflection. Indeed, in our 
research projects, we first identified what we had perceived as the mathematical needs for 
efficient and controlled instrumented work. These needs went beyond the ambitions of 
current teaching and we asked ourselves how they could be negotiated and fulfilled, in an 
educational culture whose values were defined essentially independently of technology. 
We were thus specially sensitive to the conflicts between values that this situation could 
generate. A change in viewpoint was necessary in order to analyse these needs in terms of 
the epistemic value of instrumented techniques. 
                                                
30 More than that, scientific and graphic calculators can reinforce the existing dichotomy between exact and 
approximate computation by adding it an instrumental dichotomy: exact computations being performed by 
hand and approximate computations with the calculator.  
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Earlier, I pointed out that the epistemic value of instrumented techniques — that is, the 
way they contribute to the understanding of the objects they involve — was not 
immediately accessible to students. Looking back with hindsight on our research work, I 
have the feeling that the situations we have elaborated, tested, and progressively refined 
through the different experiments, and the results that they have allowed us to obtain, are 
very valuable in order to think about this issue. 
Our experience and reflection leads me to identify two complementary sources from 
which mathematical work instrumented by CAS can aid conceptualisation and, more 
generally, to the progression of mathematical knowledge: 

• the first source lies in the mastering of instrumented techniques, which at the 
beginning we considered rather negatively, as a constraint added by the 
environment;  

• a second source lies in the new possibilities offered by instrumented work; this is 
a source easier to identify and, for that reason, more recognised in the literature 
about CAS.  

The example of algebraic equivalence and simplification already mentioned is for me 
paradigmatic of the first point. For the grade 9 to 12 students in the experiments, it 
appeared as a useful tool for building didactic situations that allowed teachers to work 
with their students on issues linked to the exact-approximate duality, the syntax of 
algebraic expressions, the relations between semantics and syntax, and the status of 
numbers. Issues like this are difficult to address properly in standard environments, 
including those where graphical calculators, rather than CAS, are used (Artigue et al, 
1995), (Guin & Delgoulet, 1997). The situations that we developed for that purpose do 
not have an immediate counterparts in paper/pencil or graphic calculator environments. 
They involve, generally, simple constructions and the experiments proved their 
effectiveness and easy management by teachers. Through these, we were able to partially 
compensate for the reduction in epistemic value resulting from the immediateness of the 
results in a CAS environment, mentioned above.  
The example of access to generalisation through symbolic computation integrating the 
use of parameters31 seems to me a paradigmatic example of the second source mentioned 
above, at secondary level at least. Secondary teaching in France works with particular 
mathematics objects (equations, functions…). Situations including parameters can be 
seen as a first step towards generalisation, accessible at a time when working with objects 
defined by generic conditions does not make sense. But these situations have 
progressively disappeared from teaching and textbooks in France, because algebraic 
computations involving parameters are considered to be more and more out of the range 
of students in the mass education which now predominates. Graphic calculators have 
allowed the introduction of families of functional objects, but the mathematical work 
involved tends to be situated at a graphical level. CAS allows the connection of such 

                                                
31 Two examples of this generalisation process are analysed in (Artigue, 2002) in very details. The first one, 
for instance, is an optimisation problem in a geometrical context. The numerical value of the result 
obtained for the initial case suggest a relationship with some particular data and independence from the 
other ones. Introducing a parameter for this particular data instead of the initial numerical value allows the 
students to test this conjecture and solve thus a more general problem than the initial one. 
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graphical work with symbolic work, so that regularities graphically observed can be 
proved in a symbolic way. This lever has been used throughout the ‘didactic engineering’ 
designs we have built for grades 11 and 12 (Lagrange, 2000), (Trouche, 1996). Its role 
has also been stressed in research work carried out at the Freudenthal Institute (Drijvers, 
2000), and it is interesting to notice such a convergence in approaches between 
independent research projects. 
We are clearly here in a different register: what counts is the potential that CAS offer for 
obtaining very quickly results, for reconsidering a previous computation and substitute a 
parameter to a numerical value in it, and the help CAS can offer as assistants to 
computation and symbolic proofs for students with limited technical background.  
Understanding the potential of CAS for learning and teaching mathematics requires, in 
my opinion, a deep reflection on the possible epistemic value of instrumented techniques, 
taking into account the two facets we have just mentioned. Epistemic value, of course, is 
not something that can be defined in an absolute way; it depends on contexts, both 
cognitive and institutional. From the contextual analysis of this potential to its effective 
realisation there is a long way, with situations to build, viability tests, taking into account 
the connection and competition between paper/pencil and instrumented techniques. And 
not forgetting the institutional negotiation of the specific mathematical needs required by 
instrumentation, a negotiation which, today, is not an easy one.  

VI. Conclusion 
In this text, by looking back at different research projects, I have tried to tell a story of a 
developing consciousness and understanding for the researchers involved. It concerns the 
complexity of relationships between technical work and conceptualisation, and the 
crucial role of instrumentation issues. It also concerns the fact that these problems cannot 
be properly addressed without taking into account the institutional contexts, the 
constraints that institutions impose, but at the same time the potential they offer to 
mathematics teaching and learning, especially through the norms and values they define. 
Today, we have the feeling that we are able to set up our research questions in more 
adequate terms, and we have also the feeling that the research carried out up to now, 
allows us to better understand: 

• the difficulties of the effective integration of CAS into mathematics teaching; 

• some of the possible reasons for the success of some of our experiments and the 
failure of others; 

• the ways in which the understandings we have developed could be transmitted to 
others. 

But, we are certainly very far from having definitive answers to the multiplicity of 
questions which have arisen from these research projects. 
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