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Abstract—Many emerging applications based on robotics or
augmented reality (e.g. for museums, BIM. . . ) require accurate
indoor positioning, that obviously can not be achieved by global
positioning systems or traditional radio systems using received
signal strength indicators. Ultra-wideband radio is a promising
technology to enhance this accuracy, but its robustness still suffers
in noisy environment and most of localization algorithms keep
a prohibitive complexity to be embedded on target nodes. The
Newton-Gauss algorithm represents a good trade-off between
positioning performance and processing needs at the node level.
As some recent wireless body area networks embed inertial
measurement unit, the target direction can be used to further
enhance the accuracy while keeping an acceptable complexity.
In fact, the direction allows to narrow the research area of
the mobile position. Thanks to this additional information, our
direction-aided Newton-Gauss algorithm allows a gain of more
than 14% in terms of accuracy over classical Newton-Gauss
algorithm.

I. INTRODUCTION

Location-based service is one of the newly emerging tech-
nologies having potential for numerous applications in the
commercial and public safety fields. For example, museum
needs a visitor tracking (e.g. his position and the artistic
work he is watching for) to achieve a virtual and/or aug-
mented experience. In indoor context, the traditional global
positioning system is not suitable for various reasons such
as cost, accuracy, and mostly its unavailability. Thus, Local
Positioning System (LPS) must use others technologies like
video tracking or radio-electrical waves. As we target accurate
low power system and low complexity algorithms, Ultra-
Wideband (UWB) radio is a good candidate [1].

To boost the LPS accuracy for such applications, several
strategies can be considered: (a) a specific setting of anchors
in the room, and (b) the measurement that will be traduced into
distance, e.g. Time Of Arrival (TOA) or Time Of Flight (TOF),
Time Difference Of Arrival (TDOA), Angle Of Arrival (AOA)
[2], and (c) the choice of the most adapted algorithm to obtain
the target position from several distance estimations. For the
latter, there are numerous solutions in the literature. The reader
may refer to [3], wherein a classification of the different
methods or algorithms for indoor positioning has been carried
out. Some of these methods are adapted to the deployed LPS.
For instance, trilateration is used when the measurements of
the receive signal strength indicator [4], the TOA or the TDOA
are available [5], and triangulation when the measurements of
the AOA are available [6]. More generally, the mathematical
solutions for indoor localization may be grouped into two

categories: the probabilistic methods based on the Bayesian
filtering process [7], [8], and the deterministic methods based
on the optimization of a cost function. The work presented
in this paper will focus on the latter due to their efficiency
in terms of numerical complexity. These methods exploit the
distances between the anchor nodes and the mobile in order
to localize this one through solving an optimization problem.
We include the absolute mobile moving direction provided by
the LPS system, as an additional information about the mobile
location. Therefore, these methods may be reformulated as a
constrained optimization problem, and this constraint (mobile
moving direction) will allow to narrow the search area of the
mobile location in order to increase the accuracy, particularly
for the one based on the Newton-Gauss algorithm [9], [10].

The rest of this paper is organized as follows. In Section II,
the relative works of UWB LPS technologies and mathemat-
ical solutions are both discussed, with the side information
on mobile direction. The Section III presents the proposed
approach while in Section IV and V performance analysis and
conclusion will be addressed, respectively.

II. RELATED WORK

A. UWB-based local positioning system
Since 2014 Microsoft has organized an indoor localization

challenge at the IPSN conference [11]. For 3-D localization,
UWB is the most used technology before sound and optical
based solutions. A light weight (mobiles and anchors) and
easy to set-up LPS system was recently developed for hu-
man tracking in [12]. Distances measurements between nodes
are based on UWB technology using TOF with DecaWave
DW1000 chip. Moreover, absolute orientation is given by a 9-
axis InvenSense inertial module unit coupled with embedded
data fusion algorithm. Thanks to this information we can
derive the mobile direction from its previous position, which is
very helpful to enhance the accuracy of positioning algorithms
as will be shown in Section III.

B. Existing algorithms for indoor localization
At each instant tn = nT , with T the sampling time, the mo-

bile receives a set of signals from the P anchors {A1, . . . ,AP}
located at known positions in the environment. These signals
allow the measurements of a set of distances {d1,n, . . . ,dP,n}
that is linked to the unknown position Mn (2-D position)
through the following relationship

di,n = dist(Ai,Mn)+ηdi,n , (1)



where dist(X ,Y ) represents the distance between X and Y ,
ηdi,n the measurement noise that can be supposed Gaussian.
Localization algorithms can be grouped into the two following
main families.

1) Bayesian methods: Recently, the Bayesian filtering pro-
cess became a popular tool for indoor positioning [7]. The
problem of interest in these methods is how estimating the
current position of the mobile using both current and previous
measurements. In other words, the estimation of the current
position is achieved by considering the entire trajectory. For
this purpose, a state equation that models the evolution in time
of the mobile position as a discrete-time stochastic function is
required and can be generally expressed as

Mn = fn−1(Mn−1,un), (2)

where fn−1(.) is a known function and un represents the
noise due to any mismodeling of the state equation. In
the indoor localization context, a linear constant accelera-
tion model has been generally used [13]. In Bayesian based
methods, the information about the position of the mobile at
time n is modelled as the conditional probability distribution
p(Mn|d1, . . . ,dn), where dl = {d1,l , . . . ,dP,l} is the set of mea-
surements at time 1≤ l ≤ n. Once this probability distribution
is available, the position of the mobile can be considered as
the Minimum Mean Square Error (MMSE) estimator

M̂n = E[φ(Mn)|d1, . . . ,dn], (3)

for any measurable function φ(.). The filtering equation in-
volved in Bayesian estimation can be analytically solved only
in few cases, e.g. in case of linear Gaussian dynamic model
systems where the Kalman filtering is an optimal solution. In
other cases, a sub-optimal solution thanks to particle filtering
or other alternatives of the Kalman filtering [7], [13], [14] is
used. Although these solutions provide an interesting result
in terms of accuracy, they require high numerical complexity,
and then are not suitable for LPS with low energy resources.

2) Deterministic methods: These methods are based on the
optimization of a cost function. The latter may be defined in
order to solve a geometric problem [4], or from the relationship
between the provided measurements, the anchors and the
unknown mobile coordinates [10].
The trilateration is one of the first methods in mobile position-
ing problem. This method makes use of the point or surface
of intersection formed by three circles of anchor nodes to
determine the exact position, that leads to solve the following
system of equations

(xn− xAi)
2 +(yn− yAi)

2 = di,n

(xn− xA j)
2 +(yn− yA j)

2 = d j,n

(xn− xAk)
2 +(yn− yAk)

2 = dk,n

, (4)

where
(xAi

yAi

)
and

(xn
yn

)
means the 2-D coordinates of the anchor

node Ai and the unknown position of Mn, respectively. The
anchor nodes Ai, A j and Ak are supposed to be not aligned.
Several strategies are proposed in order to efficiently solve (4).
In [3], [15] the authors formulate the trilateration as a least

square problem, while others strategies consist in finding the
best anchor nodes [16]. Although these methods are very
promising for low-energy resource applications, they remain
very sensitive to the noise affecting the provided measurements
dn. Note that when many anchors are available, it is possible to
perform trilateration on all non-aligned anchor triplets. How-
ever, this method called as multilateration is very complex,
thus, it is not suitable for LPS with low complexity algorithms.

To take advantage of all available data in order to im-
prove the performance without increasing the complexity,
one method seems to stand out among all ones based on
minimization of a cost function. The latter, is based on the
Newton-Gauss algorithm for non linear function [9], and as
in [10], consists in finding the minimum of the following cost
function

F(xn,yn) =
P

∑
i=1

(
√
(xn− xAi)

2 +(yn− yAi)
2−di,n)

2. (5)

In [10], in order to improve the localization accuracy, a
modified Newton-Gauss method has been developed. Com-
pared to the classical method [9], the authors developed a
geometric intersection model to narrow the targeted search
area, and also allow a self-correction of bad measurements
data. This method outperforms the classical one in terms of
localization accuracy, but leads to a significant increase of
numerical complexity. As in [10], the solution presented in
this article proposes to narrow the targeted search area in the
Newton-Gauss method. For this purpose, the estimation of the
mobile moving direction provided by the LPS will be used
as a constraint in the considered optimization problem. This
direction allows to narrow the targeted area directly without
additional computing steps. Therefore, this novel strategy will
allow to increase the localization accuracy without increasing
significantly the numerical complexity.

III. PROPOSED SOLUTION

At each instant tn = nT , let en be the estimation of the
unit moving vector

−−−−−→
Mn−1Mn

‖−−−−−→Mn−1Mn‖
of the mobile from its previous

position Mn−1. In this paper, we propose to use both the set
of measurements dn and en in order to estimate the position
of the mobile unlike classical deterministic methods, wherein
only the set dn is exploited. The choice of the method based on
the Newton-Gauss algorithm [9] with the cost function defined
by (5) is motivated by the fact that this method allows a better
deal between localization accuracy and numerical complexity
among the deterministic methods. As it is briefly mentioned in
Section II, this method, as the one presented in [10], consists
in finding the minimum of (5), i.e.

M̂n = argmin
M

(
P

∑
i=1

(dist(Ai,M)−di,n)
2). (6)

It is important to highlight that when the measured distances
dn are misestimated, the performance of this method decreases
significantly. The reasons for this behavior can be various:

1) the cost function is not a quadratic linear form, therefore
the convergence toward the optimal solution is not



guaranteed and can highly depend on the initial point
used by Newton-Gauss descent algorithm [9].

2) many local optimum solutions can exist and the stopping
criterion did not allow us to choose one of them.

A simple strategy to overcome these drawbacks may consist
in including a constraint in an optimization problem to nar-
row the useful search area. For this purpose, thanks to the
additional information about the location of Mn, a Direction-
Aided Newton-Gauss (DA-NG) based method is proposed.
This method proposes to minimize the same cost function
subject to the unit moving direction en of the mobile, that
leads to the following optimization problem

M̂n =

{
argmin

M
(∑P

i=1(dist(Ai,M)−di,n)
2)

s.t.
−−−−→
M̂n−1M ∝ en

. (7)

The interest of the constraint is to allow a better accuracy
of the Newton-Gauss algorithm by compelling the algorithm
to seek the optimal solution in a restricted domain. However,
when the data dn are more reliable than the provided direction
measurement, the algorithm will produce the opposite effect,
i.e. a worse accuracy. In practice, we have the estimated posi-
tion M̂n−1 and not the true position Mn, which implies that the
direction considered may be more noisy than the one provided
by the system. Therefore, to prevent the inconvenience that
may arise from this fact, we propose to ”smooth” the constraint
in the optimization problem (7). For this purpose, let S[ω,en]

be the angular surface defined as follow,

S[ω,en] =

M,

−−−−−→
‖M̂n−1M−

〈−−−−→
M̂n−1M,en

〉
en‖

‖
〈−−−−→

M̂n−1M,en

〉
en‖

≤ |tan(ω)|

 ,

(8)
where ω ≥ 0 is fixed; for instance ω, which denotes the
maximum tolerated angular derivation w.r.t. the vector en, may
be chosen in [0,π/4]. In Fig. 1, an illustration of the influence
of the choice of ω w.r.t. S[ω,en] is shown. Intuitively, if M̂n−1
is accurately estimated, then it can be easily noticed that the
best ω is equal to

(
ê∗n,en

)
with e∗n the true direction and en

the estimated one. Indeed, this choice leads to use the smallest
area containing the real mobile moving direction, i.e. e∗n.

So, the proposed DA-NG method consists in minimizing

M̂n = arg min
M∈S[C,en ]

(
P

∑
i=1

(dist(Ai,M)−di,n)
2). (9)

It can be noticed that (7) is equivalent to (9) when ω = 0. The
numerical solution of (9) is described in Algorithm 1.

Fig. 1. Illustration of the narrowed useful search area.

Algorithm 1 DA-NG algorithm

Require: {d1,n, . . . ,dP,n}, C = |tan(ω)|, ε≥ 0, N1
max,N2

max, en

1: M̄(0)
n ← M̂n−1 and k1← 0

2: while TRUE do
3: M̂(0)

n ← M̄(k2)
n and k2← 0

4: while TRUE do
5: Compute:

−−→
grad j(M̂

(k2)
n ) and Hk2

*** Gradient/Hessian of (5) at M̂(k2)
n ***

6: M̄(k2+1)
n ← M̂(k2)

n − (Hk2)
−1−−→grad j(M̂

(k2)
n )

7: if {‖−−→grad j(M̂
(k2)
n )‖ ≤ ε} or {(k2)≥ N2

max} then
8: Break.
9: end if

10: k2← k2 +1
11: end while
12: M̄(k1+1)

n ← arg min
M∈S[ω,en ]

‖M̂(k2+1)
n −M‖, see (10)

13: if {‖M̄(k1+1)
n − M̄(k1)

n ‖ ≤ ε} or {k1 ≥ N1
max} then

14: Break.
15: end if
16: k1← k1 +1
17: end while
18: M̂n← M̄(k1)

n

Let α and β be the scalar product
〈−−−−−−−−→

M̂(k2+1)
n M̂n−1,en

〉
and

〈−−−−−−−−→
M̂(k2+1)

n M̂n−1,e⊥n

〉
, respectively. Therefore, after some

derivation we have

M̄(k1+1)
n = ᾱen + β̄e⊥n + M̂n−1, (10)

where (ᾱ, β̄) is given as follows

(ᾱ, β̄) =

{
(α,β) if |α

β
| ≤ | tan(ω)|

(α+sα|β tan(ω)|
1+tan2(ω)

,sβ| tan(ω)|ᾱ)
,

(11)

where sx means the sign of x. From Algorithm 1 it can
be noticed that the constraint is applied once the classical
Newton-Gauss method converges i.e. satisfies the stopping
criteria. This choice allows to entirely take advantage of



the classical Newton-Gauss method [9], [10]. Indeed, when
the constraint is applied after each iteration of the classical
method, i.e. when N2

max = 1, the proposed method may be
unstable and therefore becomes less robust than the one
proposed in [10]. The second important point to highlight
is the influence of the constraint choice ω. To do this, let
consider the simulation model (serpentine in a square room
of size 15× 25) depicted in Fig. 2 where the green line
denotes the real trajectory and the circle (blue) the position
of the anchors in the room. To illustrate the movement of the
mobile along the trajectory, we will randomly sample the latter
such that ‖Mn−Mn−1‖ ∼U([dmin,dmax]) where dmin = 0.2m
and dmax = 0.5m. We assume that di,n = d∗i,n + ηdi,n where
d∗i,n = dist(Ai,Mn) is the real distance and ηdi,n ∼ N (0,σd),
and en =

(cos(θ∗n+ηθn )

sin(θ∗n+ηθn )

)
where ηθn ∼N (0,σθ) and e∗n =

(cos(θ∗n)
sin(θ∗n)

)
means the real direction. Note that σd and σθ represent stan-
dard deviation of the noise on distances and mobile moving
direction, respectively.

Fig. 3 and Fig. 4 compare the DA-NG versus ω with the
one proposed in [10] in terms of localization accuracy

∆ = arg min
δ>=0
{Prob[ε≥ δ]≤ 10−3}, (12)

where ε means the relative error square between the real
position of the mobile and the one after localization.

As it is expected, the simulation results depicted in Fig. 3
and Fig. 4 show that the choice of the constraint is both crucial
and delicate. It can be noticed that:
• each ω allows to improve the performance of the classical

Newton-Gauss method except when tan(ω) is close to
zero or high. That is trivial because in these cases, the
constraint becomes inactive.

• the performance of the DA-NG method in terms of
localization accuracy versus ω is not monotone, which
means that the choice of the best constraint ω is not
intuitive.

• the more the noise is affecting the measurements, the
higher gain over classical methods is achieved by DA-
NG.

It is also important to note that the performance of the DA-
NG method does not depend significantly on σθ. That is pre-
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Fig. 2. Simulation model.
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Fig. 4. Localization accuracy w.r.t. ω when σθ = 10 degrees.

dictable, since in practice the point Mn−1 is not known, thus,
an additional noise is added to the one from the measurement
of the direction en.

IV. PERFORMANCE ANALYSIS

In this section, both DA-NG and classical methods are
compared in terms of numerical complexity and localization
accuracy. For the latter, the relative accuracy defined by (12) is
used as performance criterion. The choice of relative accuracy
allows to ignore the considered domain in our simulation
results.

A. Numerical complexity analysis

Without loss of generality, the numerical complexity will
be evaluated in terms of number of float additions (ad),
multiplications or divisions (md) and square roots (sr). Let
C1 be the numerical complexity of the Newton-Gauss method
after each iteration. Thus, from Algorithm 1 we have

C1 = 11(P+1)md+(12P+5)ad+Psr. (13)
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Therefore, the numerical complexity of the classical Newton-
Gauss method and the DA-NG method are given by (14)
and (15), respectively.

CNG = N̄maxC1, (14)

CDA−NG = N̄1
max

N̄2
maxC1 +(8ad+13md)︸ ︷︷ ︸

C2

 , (15)

where N̄max is the mean of iterations performed by the classical
Newton-Gauss method, N̄1

max and N̄2
max represent the mean of

iterations performed by the DA-NG method in the first and
second loop, respectively. The second terms in (15) represents
the numerical complexity required to apply the constraint after
each iteration in the first loop, see (11). For all presented
simulation results in this section and in next ones, we have
Nmax = N2

max = 20 and N1
max = 5. The choice of a high Nmax

allows to guarantee that each solution of the classical Newton-
Gauss method (or the output point after the second loop in
Algorithm 1 satisfies the necessary condition for optimality.
However, in practice, a low number of iterations is generally
required as it is depicted in Fig. 5, wherein E[Nmax] = N̄max,
E[N1

max] = N̄1
max and E[N2

max] = N̄2
max are computed over 105

trials.
From the simulation results depicted in Fig. 5, it can be

noticed that the DA-NG method and the classical method have
a very low numerical complexity. Indeed, from the results
depicted in Fig. 5 and (15), we note that the proposed solution
is at most twice more complex than the classical method, since
C2� C1.

B. Accuracy performance

In this section, we analyze the performance of the DA-
NG method compared to the classical method. In Fig. 6 and
Fig. 7 we can see the influence of the quality of the provided
measurements dn. The simulation model is the one used in
Section III, see Fig. 2. For statistical reason, the accuracy has
been computed with 105 trials.
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Fig. 6. Localization accuracy w.r.t. σd when σθ = 1 degree.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (
d
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
e

la
ti
v
e

 a
c
c
u

ra
c
y
 (

)

Newton-Gauss

DA-NG,  = 0

DA-NG,  = 2.5

DA-NG,  = 5

DA-NG,  = 20

0.5 0.6 0.7 0.8 0.9

0.06

0.08

0.1

0.12

Fig. 7. Localization accuracy w.r.t. σd when σθ = 10 degrees.

The results in Fig. 6 and Fig. 7 show that the DA-
NG outperforms the classical method when the data dn are
misestimated. However, when the measurements data are ac-
curately estimated, the DA-NG becomes less accurate than
the classical, and more especially when the provided direction
is misestimated, as illustrated by Fig. 7. As it is remarked
in Section III, the simulation results confirm that the choice
of the constraint ω to be applied is very important, and can
allow a high improvement of the accuracy. Indeed, we remark
when the used constraint ω is close to zero or very large,
the accuracy of the DA-NG method decreases. Indeed, in the
case of the provided measurements are misestimated (both
anchors-Mobile distances and moving direction), for instance
0.5 ≤ σd ≤ 1 and σθ = 10 degrees, the proposed method
allows to achieve a gain (on average) in term of accuracy over
classical method of about 6.1%, 12.7%, 14.1% and 10.3%
when the applied constraint is ω = 0, 2.5, 5 and 20 degrees,
respectively. Thus, it can be concluded that the DA-NG method
allows a gain of more than 14% when an adequate constraint
is applied. Furthermore, we remark that a good choice of the
constraint allows to reduce the influence of a misestimation
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of the direction, this can be confirmed by the simulation
results depicted in Fig. 8, where the performance of the DA-
NG method is evaluated versus the accuracy of the provided
moving direction i.e. vs σθ.

These results show that the DA-NG method is robust against
the noise affecting the measured direction. In fact, we remark
from Fig. 8 that the performance of the proposed DA-NG
method decreases slowly when ω increases, and they remain
better than the one of the classical method.

V. CONCLUSION

We have proposed in this paper a direction-aided Newton-
Gauss method for indoor positioning. This method proposes to
use the mobile moving direction to narrow the search area in
order to increase the accuracy of the classical Newton-Gauss
method. The simulation results presented in this paper showed
that this strategy allows to achieve a gain higher than 14% in
accuracy over the classical method, and with only a slight
increase of the numerical complexity. As a further work, the
seeking area can be adapted at each point to increase accuracy
and performance efficiency. In this case, this area will depend
on the difference between successive measured directions.
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