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Abstract

We introduce and study a class of models of free fermions hopping between neighbour-
ing sites with random Brownian amplitudes. These simple models describe stochastic,
diffusive, quantum, unitary dynamics. We focus on periodic boundary conditions and de-
rive the complete stationary distribution of the system. It is proven that the generating
function of the latter is provided by an integral with respect to the unitary Haar measure,
known as the Harish-Chandra-Itzykson-Zuber integral in random matrix theory, which
allows us to access all fluctuations of the system state. The steady state is characterized
by non trivial correlations which have a topological nature. Diagrammatic tools ap-
propriate for the study of these correlations are presented. In the thermodynamic large
system size limit, the system approaches a non random, self averaging, equilibrium state
plus occupancy and coherence fluctuations of magnitude scaling proportionally with the
inverse of the square root of the volume. The large deviation function for those fluc-
tuations is determined. Although decoherence is effective on the mean steady state,
we observe that sub-leading fluctuating coherences are dynamically produced from the
inhomogeneities of the initial occupancy profile.
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1 Introduction

Stochastic processes enter Quantum Mechanics from different corners : from a measurement
perspective since, upon monitoring, quantum systems evolve randomly due to information
readout and random back-action [1, 2], and from a statistical physics perspective, since the
evolution of open quantum systems acquires some randomness through their interaction with
external environments or reservoirs [3, 4]. The former lead to the notion of quantum trajec-
tories [5–11] and its applications to quantum control [12–14]. The later may be modeled by
coupling the quantum systems to series of noises, as exemplified by the Caldeira-Leggett or
spin-boson models [15–17].

Putting aside the quantum nature of the environments leads to consider model systems
interacting with classical reservoirs or noisy external fields. In the context of quantum many
body systems, and especially quantum spin chains, the study of such models has recently been
revitalized [18–20, 22–24] as a way to get a better understanding say of diffusive quantum
transport, of entanglement production or of information spreading. They differ from quenched
disordered dynamics because the noise is time-dependent and stochastic, but they share sim-
ilarities with random quantum circuits recently considered [25–31]. Their dynamics are gov-
erned by unitary, but random, evolution operators Ut . Assuming the couplings to those reser-
voirs or external fields to be Markovian, the infinitesimal Hamiltonian generators dHt between
time t and t + d t, such that Ut+d t U

†
t = e−idHt , can be written as dHt = H0 d t +

∑

α Lα dBαt ,
where H0 is some bare Hamiltonian and Lα a set of Hermitian operators to which the Brownian
external fields Bαt are coupled.

For the class of models we shall consider, the noisy contribution
∑

α Lα dBαt is maximally
noisy in a sense to be made precise below which encodes for the ergodicity of the noisy flows, a
property which can be mathematically formulated in terms of the Hörmander’s theorem [32].

An iconic example of such models is the stochastic variant of the XX model describing
fermions hopping from site to site on a 1D chain but with Brownian hopping amplitudes. We
shall call this model the quantum diffusive XX model. Its dynamics is governed by the following
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Hamiltonian generator, first introduced in [20],

dHt =
p

D
∑

j

�

c†
j+1c j dW j

t + c†
j c j+1 dW

j
t

�

, (1)

where c j and c†
j are canonical fermionic operators, one pair for each site of the chain, with

{c j , c†
k}= δ j;k, and W j

t and W
j
t are pairs of complex conjugated Brownian motions, one pair for

each edge along the chain, with quadratic variations dW j
t dW

k
t = δ

j;k d t. It was shown that this
model arises as the strong noise limit of the Heisenberg XX spin chain with dephasing noise, see
Section 3.6 of [20]. If we start from a density matrix diagonal in the occupation number basis,
the mean dynamics generated by this Hamiltonian can be mapped to the symmetric simple
exclusion process [21]. It codes for a diffusive evolution of the number operators n̂ j = c†

j c j ,

dn̂ j = D (∆disn̂) j d t + [Qu− noise],

with ∆dis the discrete Laplacian (∆disn̂) j = n̂ j+1 − 2n̂ j + n̂ j−1 and [Qu− noise] some operator
valued quantum noise. The parameter D plays the role of the diffusion constant. The Hamil-
tonian generator (1) specifies stochastic flows on the fermion Fock space and we are going
to show that the induced dynamics on the one-particle sector is maximally noisy in the sense
alluded to above. This model is therefore (one of) the simplest model of quantum, stochastic,
diffusion.

While most studies of open quantum systems [3,4], in contact with environments, focus on
their mean behaviors by integrating the reservoir degrees of freedom, stochastic models such
as the quantum diffusive XX model or its extensions allow to have access to the fluctuations of
the system states or of quantum expectation values of series of observables. These fluctuations,
which originate from the stochastic noise acting on the system, should not be confused with
those arising from the quantum nature of the system, for which large deviation functions can
be computed from the master equation alone [33,34].

The aim of the following is to present an exact description of the steady statistics, reached
at large time, of the quantum states of the quantum diffusive XX model (1). Assuming the
systems to be interacting with the noise but not driven out of equilibrium via contacts with
external leads, we shall prove that such steady equilibrium statistics is universally described by
a generating function simply represented in terms of the so-called Harish-Chandra-Itzykson-
Zuber integral [36, 37] known in random matrix theory, as explained in the Proposition 1.
This universality is an echo of the maximality of the noise in the one-particle sector and thus
a consequence of the ergodicity of the flows the noise generates.

Furthermore, for infinitely large system size, the steady state is expected to be a non ran-
dom, self averaging, state ρeq which is at equilibrium under the conditions we assumed. The
results of Proposition 1 give access to the finite volume fluctuations δρ which, as we shall
explain, scale proportionally to the inverse of the square root of the volume of the system, as
expected. While all coherences are absent from the mean equilibrium state ρeq – because of
the proliferation of incoherent interferences mediated by the environmental noise – they are
present in the subleading fluctuations δρ. Remarkably, these fluctuating, subleading, coher-
ences manifest themselves in the large time asymptotic fluctuating state δρ, even though they
were absent from the initial system state. They are generated by the stochastic dynamics, a
statement which may sound paradoxical – as noise is usually believed to break coherences –
but which we shall make explicit in the following.

This article is organized as follows. In Section 2 we give a first hint on equilibrium proper-
ties of the model we are considering by deriving correlations functions to first few orders. In
section 3, we derive the full stationary distribution non-pertubatively. In section 4, we present
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two possible large systems size scalings of our stationary distribution and show that one of
them is described by a large deviation function. In section 5, we explain in details the rules
of the diagrammatic representation introduced in section 2. Finally, section 6 is devoted to
a brief discussion on possible generalizations and possible future directions are pointed out.
Some technical results are given in the appendices.

2 Low order correlations in the quantum diffusive XX model

We consider the quantum diffusive XX model on a ring with L sites, with periodic boundary
conditions – i.e. no open boundary conditions and no contact with external leads. We expect
that, at large time, the system reaches an equilibrium steady state plus fluctuations. The aim
of the two following Sections is to make this statement precise and to get a handle on these
fluctuations.

Because the Hamiltonian generator (1) is quadratic in the fermion operators, the quan-
tum diffusive XX dynamics can be solved with density matrices ρt which are exponentials of
quadratic forms in the fermion operators. We take ρt = Z−1

t exp(c†Mt c)with Mt a time depen-
dent L × L Hermitian matrix and Zt the normalization partition function
Zt = Tr(ec†Mt c) = det(1+ eMt ). This density matrix is parameterized either by the quadratic
form matrix Mt or by the two point function matrix Gt , with entries (Gt)i j = Tr(ρt c

†
j ci). All

higher order quantum expectations can be derived from G via the Wick’s theorem. The sys-
tem dynamics is then reduced from the fermionic Fock space, of dimension 2L , down to the
one-particle Hilbert space, of dimension L, with Gt+d t = e−idht Gt eidht , or equivalently 1

dGt = −
1
2
[dht[dht , Gt]]− i[dht , Gt],

with one-particle Hamiltonian generator dht given by,

dht =
p

D
∑

j

�

E j+1; j dW j
t + E j; j+1 dW

j
t

�

, (2)

where E j;k := | j〉〈k|, j, k ∈ [1, L] is the elementary L × L matrices, so (E j;k)i;i′ = δi; jδk;i′ .
It is worth writing explicitly the stochastic equations of motion, which are SDE’s, satisfied

by the matrix of two-point function Gt , with j 6= i,

dGii = D(∆disG)iid t + i
p

D
�

Gi;i−1dW
i−1
+ Gi;i+1dW i − Gi−1;idW i−1 − Gi+1;idW

i�
, (3)

dGi j = −2D Gi jd t + i
p

D
�

Gi; j−1dW
j−1
+ Gi; j+1dW j − Gi−1; jdW i−1 − Gi+1; jdW

i�
, (4)

with (∆disG)ii = Gi+1;i+1 − 2Gi;i + Gi−1;i−1. Recall that Gii = Tr(ρt n̂i) are the quantum mean
occupation numbers. Let us denote them ni (i.e. ni = Gii). The first equation (3) codes for
stochastic diffusion. In particular the mean occupation numbers E[ni] diffuse according the
heat equation, dE[ni] = DE[(∆disn)i] d t, and they attain a uniform profile at large time for
periodic boundary conditions. The second equation (4) codes for decoherence and the mean
off-diagonal elements E[Gi j] die off exponentially fast at large time.

We shall argue later that the distribution of the two point matrix reaches a stationary value
at large time, so that the limit limt→∞E[F(Gt)] exists for any (sufficiently regular) function F
and this defines an invariant measure E∞ of the flows (2) on the one-particle sector. Because
G parameterizes the fermion density matrix this specifies an invariant measure of the flows
(1) on the Fock space. The aim of the following is to determine it.

1We use the Itô convention to write stochastic differential equations (SDE).
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The flows (2) are unitary flows and as such they preserve the spectrum of G, which is
therefore completely specified by the spectrum of the initial condition G0. In particular, all
traces of powers of G are non random constants of motion for the flows (2). Let Nk = tr Gk.
The invariant measure E∞ is parameterized by these conserved quantities.2

For E∞ to be invariant means that E∞[F(Gt)] is time independent for any function F ,
which for instance can be chosen to be polynomial in G of the form tr A1G · · · tr ApG of arbi-
trary degree p and with A1, · · · , Ap generic L × L matrices. Demanding time independence
of E∞[F(Gt)] yields constrains on those expectation values, which can be solved degree by
degree because the evolution equations (3,4) are linear in G.

For degree one, we have to consider E∞[Gi j]. As discussed above, we know that
E∞[Gi j] = 0 for i 6= j and that E∞[ni] is solution of E∞[(∆disn)i] = 0. Imposing peri-
odic boundary conditions, as we assume, this implies that E∞[ni] is uniform. The conserved
quantity N1 = tr(G) then imposes that E∞[ni] = N1/L, so that the mean steady state describes
a uniform density as expected for such closed system.

For degree two, we have to consider E[Gi jGkl]. Using the dynamical equations (3,4)
one can show that the only cases for which there is no exponential decay towards zero are
{i = j, k = l} and {i = l, j = k}. The former corresponds to E[nin j] while the later to E[ fi j]
where we introduced the notation fi j = Gi jG ji . They satisfy a closed set of equations valid in
the steady state:

E∞[(∆disn)i n j + ni (∆
disn) j − 2((δi; j−1 −δi; j) fi;i+1 + (δi, j+1 −δi, j) fi;i−1)] = 0, (5)

E∞[ f∆disk;k′ + fk;∆disk′ − 2(δk′;k+1nknk+1 +δk′;k−1nk−1nk)] = 0, for k 6= k′, (6)

where we adopted the notation f∆disk;k′ ≡ fk−1;k′ − 2 fk;k′ + fk+1;k′ . As can be seen by evaluat-
ing (5,6) for positions where the Kronecker’s symbols are zero, the diffusive nature of these
equations imposes that the expectations E∞[nin j] (resp. E∞[ fi j]) are all equal for i 6= j. The
remaining terms are of the form E∞[n2

i ] which, by translational invariance, should also be
site independent.

There is a useful graphical representation based on the analogy between the matrix G and
a propagator: each Gi j is represented by an oriented arrow from site i to site j. The sys-
tematics of such a representation is explained in 5, but it shouldn’t be surprising to represent
E∞[ni] = E∞[Gii] by

� �

, E∞[nin j] = E∞[GiiG j j] for i 6= j by
� �

, E∞[ fi j] = E∞[Gi jG ji]
for i 6= j by

� �

and E∞[n2
i ] = E∞[G

2
ii] by [ ]. The diagrammatic representation makes

use of the site independence to exempt us with the explicit labeling of vertices, being under-
stood that different vertices correspond to different indices. For the time being, the reader
may view [· · · ] as a simple delimiter, needed because

� �

6=
� �2

. The contact terms in (5,6)
impose all the same relation :

[ ] =
� �

+
� �

. (7)

The two conserved quantities tr G2 ≡ N2 and (tr G)2 = N2
1 yield two extra relations: N2

1 =
L [ ] + L(L − 1)

� �

and N2 = L [ ] + L(L − 1)
� �

. We have thus three independent
equations (5,6,7) that fix the three unknowns :

[ ] =
N2

1 + N2

L(L + 1)
,
� �

=
LN2

1 − N2

L(L2 − 1)
,
� �

=
LN2 − N2

1

L(L2 − 1)
. (8)

It is worth noticing that the initial information encoded in the off-diagonal terms fi j(t = 0) =
Gi j(t = 0)G ji(t = 0), with i 6= j is not dismissed in the steady state, since it has an impact on

2Throughout the paper, Tr denotes trace over the Fock quantum space, while tr denotes the trace over the
one-particle sector.
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the final values of [ ],
� �

,
� �

via the N2 dependence. Notice also that these correlation
functions do not depend on the positions except whether the latter are in contact or not. This
is what we mean by stating that the correlation functions are topological.

Similar derivations where carried out explicitly for correlations of order 3 and 4. Details
for order 3 are given in the Appendix A.

3 Non perturbative stationary generating function

All polynomial correlation functions of the two point function matrix can be computed order by
order following the strategy developed in the previous Section (even though the computations
become more and more cumbersome). The aim of this section is to describe those correlation
functions at all orders and to show that they have a universal character.

The derivation of this universal statistics relies on the observation that it is U(L) invariant,
as can indeed be checked on the first few orders using the formula derived above. For degree
one, having a uniform mean density implies that E∞[tr AG] = n tr A with n= N1/L the density.
For degree two, the topological nature of the expectations yields (cf. Appendix A)

E∞[(tr AG)2] =
�

[ ]−
� �

−
� ��

tr A2
d +

� �

(tr A)2 +
� �

tr A2

=
� �

(tr A)2 +
� �

tr A2,

with Ad the diagonal matrix with entries diag(Aii). We use the relation (7) for stationarity to go
from the first to the second line and to cancel the term proportional to tr A2

d which is not U(L)
invariant. Thus the steady state condition (7) imposes the U(L) invariance of the expectations
E∞[(tr AG)q], at least for low values of the order q. See Appendix A for a check at order 3. We
claim, and shall prove, that this holds at any order so that the invariant measure only depends
on the spectrum of the initial condition G0. Let us introduce the generating function

Z(A) := E∞
�

etr AG
�

=
∑

q≥0

1
q!
E∞ [(tr AG)q] , (9)

depending on a generic L×L matrix A. It is the generating function of the correlation functions
of G: Taking multiple derivatives of Z(A) with respect to A yields the multiple correlation
functions of the matrix elements of G. Since G is Hermitian we may restrict ourselves in the
following to A Hermitian (or anti-Hermitian to ensure convergence of the expectation (9)).
We have the following

Proposition 1
Let Vt , t ≥ 0, be the diffusion on SU(L) defined by Vt+d t = e−idht Vt with

dht =
p

D
∑

j

(E j+1; j dW j
t + E j; j+1 dW

j
t).

For any deterministic initial condition G0, let Gt be the process defined by Gt := Vt G0V−1
t .

(i) The law of this process converges at t →∞ to the invariant measure E∞ which satisfies the
following properties :
(ii) It is U(L) invariant, in the sense that Z(A) = Z(VAV †) for any V ∈ U(L).
(iii) Its generating function Z(A) can be represented in terms of the so-called Harish-Chandra-
Itzykson-Zuber integral on the special unitary group SU(L) with respect to the invariant Haar
measure (normalized to unit volume), namely

Z(A) =

∫

U(L)
dη(V ) etr AV †G0V = (

L−1
∏

k=1

k!)
det
�

eai g j
�L

i, j=1

∆(a)∆(g)
, (10)
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where η is the Haar measure, (ai)Li=1 and (gi)Li=1 are the spectrum of A and G0 respectively and
∆(a) (resp. ∆(g)) are the Vandermonde determinants of A (resp. G0), ∆(a) =

∏

i< j(ai − a j).

We can translate this proposition as a statement about the fermionic density matrix:

Corollary 1
The ensemble of fermionic density matrices ρ = Z−1 exp(c†Mc) with M random L × L ma-

trices and Z = det(1 + eM ), have a distribution stationary with respect to the dynamics of the
quantum diffusive XX model (1) if M is picked such that G = (1 + e−M )−1 is distributed with
measure E∞.

Any U(L) invariant measure is an invariant measure for unitary flows and in particular
for the flows generated by (2). Thus proving the proposition amounts to show that the flow
converges at infinite time to the U(L) invariant measure which is unique and given by (10).
Once the U(L) invariance is established, the formula (10) follows from simple manipulation.
The integral

∫

dη(V )etr AV †G0V is the Harish-Chandra-Itzykson-Zuber integal [36,37].
The key point in proving that the invariant measure E∞ is U(L) invariant relies on the

fact that, because they form a system of simple root generators, the matrices E j; j+1 and E j+1; j
generate the Lie algebra su(L) so that iterated products of the form

e−idht1 e−idht2 · · · e−idhtn ,

for any collection of time increments d tk, cover densely the group SU(L). This is in the spirit
of Hörmander’s theorem for hypo-ellipiticity of Fokker-Planck operators [32]. It means that
the dynamics generated by successive iterations of the infinitesimal group elements e−idht is
ergodic enough to cover the group SU(L). This is what it means to be maximally noisy.

Notice however that the noise as specified in the original model (1) is not ergodic on the
unitary group of the fermionic Fock space (of dimension 2L) but only in the unitary group of
the one-particle subspace (of dimension L). In other word, if one wants to be more precise,
the noise in (1) is one-particle maximally noisy.

The detail of the proof is given in the Appendix B.
The irreducible representations of the group SU(L) can be indexed by Young tableaux

Y . The generating function Z(A) can be expanded in characters of the unitary group in the
form [37]:

Z(A) =
∑

Y

1
m(Y )!

σY

dY
χY (A)χY (G0), (11)

where m(Y ) is the number of boxes in Y , σY the dimension of the representation of the per-
mutation group Sm(Y ) associated to Y and dY , χY (A) are respectively the dimension and the
character of the representation of SU(L) indexed by Y . This sum is graded because the char-
acter χY (A) are polynomials in A of degree m(Y ). The first few terms are :

Z(A) = 1+
1
L
(A) (G0) +

1
2
(

2
L(L + 1)

(A) (G0) +
2

L(L − 1)
(A) (G0)) + ... . (12)

Explicitly,

Z(A) = 1+
N1

L
tr A+

N2
1 + N2

4L(L + 1)
((tr A)2 + tr A2) +

N2
1 − N2

4L(L − 1)
((tr A)2 − tr A2) + · · ·

= 1+
N1

L
tr A+

1
2
((tr A)2

LN2
1 − N2

L(L2 − 1)
+ tr A2 N2 L − N2

1

L(L2 − 1)
) + · · ·

= 1+
� �

tr A+
1
2
((tr A)2

� �

+ tr A2
� �

) + · · · ,
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which coincides with the result obtained by the perturbative treatment. The third order terms
are computed in Appendix A.

Though the Harish-Chandra-Itzykson-Zuber formula is compact and elegant, the presence
of Vandermonde determinants in the denominator, which must cancel out, makes explicit com-
putations difficult. For instance, taking for A a diagonal matrix with a single non zero element
requires a limiting procedure because the spectrum such an A is highly degenerate. On the
other hand, this describes the one site statistics of the mean particle number, which is a very
basic observable. It turns out that this can be computed explicitly to all orders. Though the
character expansion could surely be used to attack this question, we used a completely differ-
ent approach based on invariant theory. We only quote the result here, relegating details to
Appendix C: for n= 0, 1, · · · , we have

E∞[Gn
ii] =

n!(L − 1)!
(L + n− 1)!

∑

nk ,
∑

k≥1 knk=n

∏

k

1
nk!

�

Nk

k

�nk

.

As the random variable Gn
ii takes its value in [0,1], its moments characterize the distribution

completely. Thus we have obtained an explicit description of the statistical fluctuations of the
particle number at one site at infinite time but finite L. Note the close connection between
this formula and the cumulant expansion.

4 Large size systems

We investigate here two interesting large system size limits which one may consider depending
on how the conserved quantities Nk = tr Gk scale with the system size L. The motivation to
consider these two regimes is explained in Appendix E.

The first case corresponds to conserved quantities extensive in the system size, so that
Nk/L = ρk with the densities ρk finite as L→∞. An initial state corresponding to this scaling
is for instance a factorized, diagonal, state with density matrix ρ = ⊗ j r j with r j diagonal in

the fermion number basis. In particular, ρ1 =
1
L

∑

j n j =: n̄ and ρ2 =
1
L

∑

j n2
j =: n2 are the

initial spatial mean occupancies and square occupancies, and from (8) we have

E∞[n2
i ] = n2 +O(1/L), E∞[nin j] = n2 +O(1/L),

E∞[|Gi j|2] =
(∆n̄)2

L +O(1/L2), i 6= j,

with (∆n̄)2 the variance of the initial occupancies (∆n̄)2 := n2 − n̄2. In particular, it entails
for fluctuating non trivial coherences since, although vanishing in mean, the off-diagonal el-
ements of G have non zero variance: say E∞[|Gi j|2] does not vanishes if the initial state is
not factorized and uniform. We hence observe the interesting phenomena that fluctuating co-
herences are dynamically produced by the dynamics from the inhomogeneities in the density
profile.

Within this scaling, the connected moments of order q scale like 1/Lq−1 to leading order.
The generating function W (A) = log Z(A) is (Recall that Nk/L = ρk)

W (A) = ρ1 tr A+
1

2L
(ρ2 −ρ2

1) tr A2 +
1

2L2
(ρ2

1 −ρ2)(tr A)2 (13)

+
1

3L2
(ρ3 − 3ρ2ρ1 + 2ρ3

1) tr A3 +O(1/L3).

This corresponds to the following correlation functions (recall that ni = Gii and fi j = |Gi j|2,
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i 6= j):

E∞[n
a1
1 · · ·n

aL
L ] = ρ

||a||
1 +

1
L

�

∑

k

ak(ak − 1)
2

�

ρ
||a||−2
1 (ρ2 −ρ2

1) +O(1/L2),

E∞[ fi j na1
1 · · ·n

aL
L ] =

1
L
ρ
||a||
1 (ρ2 −ρ2

1) +O(1/L2), ∀i 6= j,

with ||a|| =
∑

k ak. Hence, to order O(1/L2), the only non-trivial variables are the occupan-
cies ni = Gii and the coherences fi j = |Gi j|2. All other products of G are sub-leading in 1/L.
These formula have a simple interpretation: up to order O(1/L2) we can decompose the oc-
cupancies as n j = ρ1 + δn j where the δn j ’s are i.i.d. variables with zero mean and variance
E∞[(δn j)2] =

1
L (ρ2 −ρ2

1).
The interpretation is clear. To leading order in the system size, the two point function

matrix G converges to the non random, uniform, matrix Geq = ρ1I, proportional to the iden-
tity, reflecting convergence toward equilibrium. There are sub-leading fluctuations, scaling
proportionally with the inverse of the system size, so that we write

G ' Geq +
1
p

L
δG +O(1/L).

The first term Geq is the non random equilibrium matrix. The second one δG fluctuates, ac-
cording to (13).

We can better describe these fluctuations in terms of a large deviation function. Notice
that w(A) = limL→∞

1
L W (LA) is finite, order by order in power of A, with

w(A) = ρ1 tr A+
1
2
(ρ2 −ρ2

1) tr A2 +
1
3
(ρ3 − 3ρ2ρ1 + 2ρ3

1) tr A3 +O(||A||4). (14)

The first orders in the expansion (up to order 4) suggest that w(A) =
∑

k
1
k fk tr Ak, where fk

stands for the large L scaling limit of Lk−1E∞[Gi1 i2 Gi2 i3 · · ·Gik i1]with i1, · · · , ik all distinct. This
can be understood intuitively as a consequence of the emergence, in the large L scaling limit,
of a thermodynamic (extensive) limit where correlation functions factorize over connected
components (in the sense of the graphical representation). Note that this formula is also
closely related to the outcome of the second scaling limit, to be introduced below.

Hence,
E∞

�

eL trAG
�

�L→∞ eL w(A).

This equivalently means that the probability distribution for G satisfies the large deviation
principle. Namely, for g any given L × L Hermitian matrix, we have

Prob∞(G = g)�L→∞ e−L I(g), (15)

with rate function I(g) the Legendre transform of w(A). Indeed, assuming (15) we compute
E∞

�

eLtrAG
�

�
∫

d g e−L I(g) eL trAg � eLw(A) with w(A) = infg(trAg− I(g)). The series expansion
for I(g) is :

I(g) =
tr(g −ρ1Id)2

2(ρ2 −ρ2
1)
−

tr(g −ρ1Id)3

3(ρ2 −ρ2
1)3
(ρ3 − 3ρ2ρ1 + 2ρ3

1) +O(||g −ρ1Id||4). (16)

To leading order, G is Gaussian with mean ρ1Id and variance
�

(ρ2 −ρ2
1)/L

�1/2
.

The second scaling we consider is when Nk ∝ Lk. For instance, consider this time a
factorized, diagonal state with density matrix ρ = ⊗ j r j with r j a matrix written in the fermion
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number basis with 1
2 for each entries. Again the tool we have used in this regime is invariant

theory. We quote only the result here, relegating details to Appendix C:

E∞[
1
n!

tr(AG)n] =
∑

nk ,
∑

k≥1 knk=n

∏

k

1
nk!

�

Nk tr Ak

kLk

�nk

+ o(L0) ,

which can be resummed
E∞[etr AG] = e

∑

k≥1
1
k

Nk
Lk tr Ak

+ o(L0),

with the proviso that o(L0) holds for a fixed order in the expansion of the exponential at large
L and with the assumption that traces of powers of A remain finite at large L.

5 Diagrammatics

For any (gentle) function f from the set of L × L matrices to an affine space, we shall denote
by [· · · ] the average defined by :

[ f (G)] :=

∫

U(L)
dη(V ) f (V GV−1).

Proposition 1 can alternatively be formulated as claiming that for any function of Gt :

lim
t→+∞

E[ f (Gt)] = [ f (G0)] .

This notation for averages is identical to that introduced above when using the graphical rep-
resentation, and indeed the graphs stand for certain functionals of G. The goal of this section
is to describe the diagrammatic representation of averages in general.

We shall associate to each 2n-plet (i1, j1, i2, j2 · · · , in, jn) ∈ [1, L]2n a diagram constructed
as follows. The diagram has vertices labeled by {i1, j1, i2, j2 · · · , in, jn}. To make the point
clear, this set may well have less than 2n elements, because repetitions do not count in the
enumeration of a set. If i and j are two vertices, draw an oriented edge from i to j and label
it with m if im = i and jm = j. Thus the diagram has n edges. It is clear that the diagram fully
encodes for (i1, j1, i2, j2 · · · , in, jn). For example (n= 4, L ≥ 5),

(5,3, 3,2, 1,1, 1,1) ⇐⇒
5 3 2

1 .

3

4

1 2

Let us recall that multisets are kinds of sets (so in particular the order of enumeration does
not matter), but for the fact that the same element can appear with a multiplicity. We shall
need the n-multisets {{ii , · · · , in}}, and {{ii , · · · , in}} = {{ ji , · · · , jn}} is exactly equivalent to the
fact that there is (at least) one permutation σ ∈ Sn such that j1 = iσ(1), · · · , jn = iσ(n). Note
that this implies that {ii , · · · , in}= { ji , · · · , jn} (an equality of sets).

Invariant theory, see Appendix C, allows to show that
�

G⊗n
�

i1 j1,··· ,in jn
= 0 (for every L) un-

less {{ii , · · · , in}}= {{ ji , · · · , jn}}, i.e unless the collection of is counted with multiplicities and the
collection of js counted with multiplicities coincide. We say that the 2n-plet
(i1, j1, i2, j2 · · · , in, jn) is admissible if {{ii , · · · , in}} = {{ ji , · · · , jn}}, and a diagram is admissible
if the associated 2n-plet is admissible. Thus we may restate our statement in [O]i1 j1,··· ,in jn = 0
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unless (i1, j1, i2, j2 · · · , in, jn) is admissible. In the diagram associated to an arbitrary multiplet
(i1, j1, i2, j2 · · · , in, jn), the out-degree at a vertex, i.e. the number of edges leaving this vertex,
is the multiplicity of this vertex in the multiset {{ii , · · · , in}} and the in-degree at a vertex, i.e.
the number of edges arriving at this vertex, is the multiplicity of this vertex in the multiset
{{ ji , · · · , jn}}. Thus, a diagram is admissible if and only if the in and out degrees at each vertex
are equal, which by a classical remark due to Euler means that the (strongly) connected com-
ponents of the diagram can be traveled through in a closed journey by using every oriented
edge once. The diagram above was clearly not admissible but its loopy component was. Here
is an example of an admissible diagram (n= 7, L ≥ 6):

(2, 1,2, 4,4, 2,6,4, 4,1, 1,2, 1,6) ⇐⇒

1 2

46

1

2 3

4

6

7 5 .

Given an admissible diagram D, we may define other closely related objects as follows. We
call this the covering construction. At each vertex, pair the incoming edges with the outgoing
edges, i.e associate to each incoming edge an outgoing edge (with two distinct edges arriving
at a vertex being paired to two distinct edges leaving that vertex). The possibility of this pairing
is nothing but the admissibility conditions. Suppose the diagram D has n edges. Associate to
it a diagram with vertices labeled 1,2, · · · , n and for l, m ∈ [1, n] draw an edge from vertex l
to vertex m labeled v if at vertex v of D the edge l was incoming, the edge m was outgoing
and l was paired to m. Then we say that m is the successor of l and l the precursor of m. We
call this new diagram a ∗-covering diagram of D.

Denoting by dv the (in or out) degree of vertex v in a given admissible diagram D, the
number of ∗-covering diagrams of D is

∏

v of D dv!.
So our favorite example has 8 ∗-covering diagrams. Let us construct one. At vertex 1 pair

edge 1 to edge 7 and edge 5 to edge 6. At vertex 2 pair edge 6 to edge 1 and edge 3 to edge
2. At vertex 4 pair edge 2 to edge 3 and edge 4 to edge 5. At vertex 6 pair edge 7 to edge 4.
The resulting diagram is3:

1

7

4

5

6

2 3

1

6

4

1

2
4

2

.

On the original admissible diagram D, and for each pairing, each edge has a unique succes-
sor and a unique precursor, so the edges of the ∗-covering diagram define a bijection on its set
of vertices, i.e. on [1, n]. Thus the ∗-covering diagram defines an element of the permutation
group Sn, say σ: each ∗-covering diagram is a collection of (decorated) cycles, as illustrated
by our example. By construction the vertex label at the end of edge m is the same as the vertex
label at the beginning of edgeσ(m) i.e iσ(m) = jm for m= 1, · · · , n. Conversely, if iσ(m) = jm for

3Note that we use a different convention for the original diagram and its derived diagrams to place the labels
of the vertices and edges.
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m= 1, · · · , n for some permutation σ ∈Sn and some 2n-plet (i1, j1, i2, j2 · · · , in, jn) ∈ [1, L]2n,
we may decorate the cycle decomposition of σ by labeling the edge joining m and σ(m) with
iσ(m) = jm. Given an admissible diagram D with n edges and a permutation σ ∈ Sn, there is
at most one way to decorate the edges of the cycle decomposition of σ with the labels of the
vertices of D to get a ∗-covering diagram of D. So it is meaningful to say that a permutation
covers D.

From a ∗-covering diagram, one can retrieve the original admissible diagram as follows.
The first step is to rotate the edges of the ∗-covering diagram by half an edge (so that the roles
of edges and vertices are exchanged, this rotation makes sense because the components of a
covering graph are cycles). We obtain in this way what we call a covering diagram of D. The
second step is to identify vertices of the covering diagram with carrying the same label. Again,
let us illustrate the construction.

The edge rotation yields:

1

7

4

5

6

2 3

1

6

4

1

2
4

2

⇒

1

6

4

1

2
4

2

1

7

4

5

6

32 ,

and then vertex identification yields the original admissible diagram:

1

6

4

1

2
4

2

1

7

4

5

6

32 ⇒

1 2

46

1

2 3

4

6

7 5 .

There are special admissible 2n-plets (i1, j1, i2, j2 · · · , in, jn) whose associated diagram D
has only one (∗-)covering: admissible diagrams where each vertex has a single incoming and
a single outgoing edge. As there are n edges, they must also be n vertices, i.e. i1, · · · , in must all
be distinct. Let us call those admissible 2n-plet (i1, j1, i2, j2 · · · , in, jn) extremal. Then there is a
unique permutation σ ∈Sn such that iσ(m) = jm for m= 1, · · · , n. Moreover, in this situation,
the unique ∗-covering diagram of D is indeed the diagram associated to the decomposition of
σ in cycles, decorated by the appropriate edge labels.

Notice that if D is an arbitrary admissible diagram, edge rotation applied to any of its ∗-
covering diagrams yields an extremal diagram from whom D is recovered by identification of
vertices carrying the same label: covering diagrams are always extremal diagrams.

Up to now, we have worked with graphs D carrying labels on vertices and on edges. How-
ever, from the topological nature of averages, the vertex labels are irrelevant, it only matters
that different vertices correspond to different points in [1, L], so that vertex indices can safely
be removed from the notation. Also, the tensor G⊗n is symmetric under permutation of pairs
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of indices, and this imples that edge labels are also irrelevant. Thus, as far as the computation
of averages [· · · ] are concerned, all labels can be removed. For instance, we may replace

1 2

46

1

2 3

4

6

7 5 by the simpler .

This is the rationale for the graphical representation (i.e. replacing the matrix element of G⊗n

by the associated unlabeled diagram with n edges) of averages that we have used all along
this work. The advantage of working wiht labeled graphs is that no multiplicities appear. This
is not true when labels are removed. For instance the reader can easily work out that the 8
covering diagrams of our favorite example, which with labels present are all distinguishable,
fall in only 4 classes after unlabeling:

, , , and ,

with multiplicities 3, 2,2 and 1, leading to the expected 3+ 2+ 2+ 1= 8 covering diagrams.
Multiplicities are sometimes, but seldom in fact, related to symmetries and should not be

confused with symmetry factors. Anyway, the algorithm to compute the (∗-)coverings of a
diagram also work without labels, and in fact without labels there is no difference anymore
between a ∗-covering and the associated covering obtained by edge rotation.

Extremal diagrams are the building blocks for averages. Indeed we have the following

Lemma 2
Let D be an unlabeled diagram associated to some matrix element of some power of G. Then
[D] = 0, if D isn’t admissible, or

[D] =
∑

D′ covering D

mD′
�

D′
�

,

where mD′ is the number of times the extremal (unlabeled) diagram D′ appears as a covening of
D.

Thus, for our favorite example we have







= 3







+2







+2







+







 .

Proof
The formula is a direct consequence of its avatar for the labeled version of the diagrams, which
for admissible diagrams reads

[D] =
∑

D′ covering D

�

D′
�

(multiplicity is 1 for each covering diagram). This labeled version is essentially a tautology
once the invariants are known, see Appendix C for the details. �
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The representation of arbitrary (admissible) diagram averages in terms of extremal dia-
gram averages that this lemma provides is at the heart of the contact relations 7, 18 and their
generalization to all orders. For instance the relation at order 2, [ ] =

� �

+
� �

, is
exactly the decomposition of [ ]. This is also true of the first and third relations at or-
der 3,

� �

=
� �

+
� �

and [ ] =
� �

+
� �

, while the second rela-

tion
� �

= [ ] + 2
� �

is a consequence of the other two plus the decomposition
� �

= 2
� �

+3
� �

+
� �

. Note that the second relation can also be interpreted as
a kind of intermediate covering relation.

6 Generalization and conclusion

Let us now discuss how the previous statements can be generalized to stochastic random flows
generated by Hamiltonian generators of the form

dHt = H0 d t +
p

D
∑

j

�

c†
j+1c j dW j

t + c†
j c j+1 dW

j
t

�

, (17)

with non trivial (preferably local) bare Hamiltonians H0. We assume periodic boundary con-
ditions.

The simplest case is H0 =
∑

j µ jc
†
j c j with chemical potential µ j . Such Hamiltonian pre-

serves the form of the density matrix ρt = Z−1
t exp(c†Mt c) and the flow induced on the one-

particle sector is generated by :

dht = h0d t +
p

D
∑

j

(E j+1; jdW j
t + E j; j+1dW

j
t),

with h0 an L × L diagonal matrix with µ j entries on the diagonal. We can absorb the h0

dynamics by going to an interacting picture. Let G̃t = eih0 t Gt e
−ih0 t , then

G̃t+d t = eih0(t+d t)e−idht Gt eidht e−ih0(t+d t) = e−idh̃t G̃t eidh̃t ,

with e−idh̃t = eih0(t+d t)e−idht e−ih0 t , and

dh̃t =
p

D
∑

j

(E j+1; jdW̃ j
t + E j; j+1dW̃

j

t),

where dW̃ j
t = ei(µ j+1−µ j)t dW j

t and dW̃
j

t = e−i(µ j+1−µ j)t dW
j
t . Let us remark that dW̃ j

t and

dW̃
j

t are complex conjugated Brownian motions with the same quadratic variations as before,

dW̃ j
t dW̃

k

t = δ
j;kd t. Hence, the proof given in Section 3 applies and the stationary distribution

for G̃ is again generated by the Harish-Chandra-Itzykson-Zuber integral. Because this measure
is U(L) invariant, the stationary distributions of G̃ and G are identical, and thus independent
of the chemical potentials µ j .

This last result indicates that even with disorder (e.g. by choosing the µ j ’s to be random)
a Brownian hopping destroys any signs of localization.

For the interacting case, take H0 =
∑

k,l,m,n Vk,l,m,nc†
kcl c

†
mcn. Since such evolution does not

preserve the Gaussian form of the density matrix, we do not have an effective dynamics on the
one-particle sector anymore. In the weak interaction regime –say there is some small scaling
parameter λ that weights the interacting Hamiltonian– we can do perturbation theory to get
the first correction to the stationary distribution.
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We now give a hint – but not a proof – why there exists an invariant measure indepen-
dent of λ. Let us suppose that the stationary measure Eλ∞ admits a perturbative expan-

sion : Eλ∞[•] = E∞[•] + λE
(1)
∞[•] + O(λ2) with E∞ the measure of the previous Sections

whose support is on Gaussian states. Consider again the function FA(G) = exp(trAG) with
G ji = Tr(ρt c

†
i c j). We can decompose its infinitesimal variation dFA(G) in two parts, the one

generated by the free stochastic part dF free
A (G) and the one generated by the interacting part

λdF int
A (G) :

Eλ∞[dFA(G)] = λE∞[dF int
A (G)] +λE

(1)
∞[dF free

A (G)] +O(λ2)

= λ(iE∞[Tr
�

ρ[H0, c†
l ck]

� ∂

∂ Gkl
FA(G)] +E(1)∞[dF free

A (G)]) +O(λ2).

Demanding Eλ∞ to be an invariant measure imposes that Eλ∞[dFA(G)] = 0. Using the Wick’s
theorem to evaluate Tr

�

ρ[H0, c†
l ck]

�

, we can show that the first term of the previous line is

zero. Hence, Eλ∞[dFA(G)] = 0 can be satisfied by choosing E(1)∞ = 0. This indicates that the
stationary distribution exposed in Section 3 might be an invariant measure even for non trivial
H0 but, of course, it is not a proof.

We expect the universality of the invariant measure to hold true for a large class of stochas-
tic many-body quantum systems, such as the stochastic quantum spin chains considered in
[20], as a consequence of a variant of Hörmander’s theorem.

For the free case, it is clear that the results of previous Sections can be generalized in higher
space dimension D for similar models (for a given graph -say a D dimensional lattice-, associate
to each edge fermionic jumping operators with amplitudes given by local independent complex
Brownians). It is also clear that the results of previous Sections can also apply to bosonic
systems instead of fermionic ones.

A glance at the proof of the Proposition 1 reveals that it can be transferred to a large class
of models. Consider quantum systems, defined over on Hilbert space H, whose stochastic dy-
namics is generated by the noisy Hamiltonian dHt = H0 d t +

∑

α Lα dBαt , as alluded to in the
introduction. The proof of Proposition 1 is going to be applicable if iterative actions of the el-
ementary unitaries e−idHt are ergodic enough to cover the special unitary group of the system
Hilbert space SU(H). That property is going to hold if the operators Lα satisfy Hörmander
criteria [32] which demands that their multiple commutators [Lα1

, [Lα2
, [· · · , LαM

] · · · ]] span
the Lie algebra of SU(H), with or without the bare Hamiltonian H0 =: L0 included. This
holds true if the set of Lα’s contains at least a family of simple root generators of su(H). In
that case, the steady distribution of density matrix ρ on H is such that its generating func-
tion E∞[eTr(Mρ)], with M ∈ GL(H), is the Harish-Chandra-Itzykson-Zuber integral (which of
course depends on the spectrum of the initial density matrix ρ0). The steady statistical behav-
ior of these models will then share similarities with that of random unitary channels [25–28].
However the operators Lα, and hence the noisy interactions, have to be non local on the chain
to satisfy Hörmander’s condition.

It is worth pointing out that, although fluctuations are encoded into the Harish-Chandra-
Itzykson-Zuber integral, this last class of models and the quantum diffusive XX model (1)
differs notably in the scaling behavior of their fluctuations. In both cases, the density matrix
attains a non random equilibrium state ρeq at large volume or at large Hilbert space, so that

ρ ' ρeq +δρ.

But the fluctuating part δρ scales very differently in both cases : in the former class of models
it scales inversely with the dimension of the Hilbert space as 1/

p
dimH, which for a q-state

spin model decreases exponentially with the system size as q−vol./2, with ‘vol.’ the volume of
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the system, whereas in the quantum diffusive XX model it scales inversely proportional to the
volume as 1/

p
vol., which makes more physical sense for extended many-body systems.

The results described above open an avenue of explorations: by looking at the entangled
characters of the steady states, by driving the system out of equilibrium, by extending them
to more general noisy spin chains, by adding temperature effects, etc. We hope to report on
these questions in a (possibly near) future.
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A Stationarity and correlations at order 3

Moments of higher orders can be computed following the method we used for the moments of
first and second order. For third order moments we need to compute E∞(Gi jGkl Gmn). Again,
because of the diffusive nature of the dynamics, we can regroup the terms that will have a non
zero value in the stationary state in different groups, all elements within a given group having
the same value. For the third order moments, the different groups are ;

� �

:= E∞(Gi jG jkGki),
∀(i 6= j 6=k)

� �

:= E∞(GiiG jkGk j), ∀(i 6= j 6= k),
� �

:= E∞(Gi jG jiGii), ∀(i 6= j),
� �

:= E∞(GiiG j jGkk), ∀(i 6= j 6= k), [ ] := E∞(G2
iiG j j), ∀i 6= j,

� �

:= E∞(G3
ii),

∀i. The dynamical equation of E∞(Gi jGkl Gmn) evaluated in the steady states imposes three
relations between these quantities :

0=
� �

−
� �

+
� �

,

0= [ ]−
� �

+ 2
� �

, (18)

0= [ ]−
� �

−
� �

.

We again have conserved quantities N3, N2N1, N3
1 :

N3
1 = L(L − 1)(L − 2)

� �

+ 3L(L − 1) [ ] + L
� �

,

N2N1 = L(L − 1)(L − 2)
� �

+ L(L − 1) [ ] + L
� �

+ 2L(L − 1)
� �

,

N3
1 = L(L − 1)(L − 2)

� �

+ 3L(L − 1)
� �

+ L
� �

.
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Together with the three previous equations they form a system of six independent equations
that fix the value of our six unknowns;

� �

=
2N3 + N3

1 + 3N2N1

L(L + 1)(L + 2)
,

[ ] =
−2N3 + (L + 1)N3

1 + (L − 1)N1N2

(L − 1)L(L + 1)(L + 2)
,

� �

=
4N3 +

�

L2 − 2
�

N3
1 − 3LN1N2

(L − 2)(L − 1)L(L + 1)(L + 2)
,

� �

=
LN3 + (L − 1)N1N2 − N3

1

(L − 1)L(L + 1)(L + 2)
,

� �

=

�

L2 + 2
�

N1N2 − L
�

2N3 + N3
1

�

(L − 2)(L − 1)L(L + 1)(L + 2)
,

� �

=
N3 L2 − 3LN1N2 + 2N3

1

(L − 2)(L − 1)L(L + 1)(L + 2)
.

We now calculate explicitly E∞[(tr AG)2] and E∞[tr AG)3] and show that only the term in-
variant under U(L) conjugation remain :

E∞[(tr AG)2] =
∑

i, j,k,l

Ai; jG j;iAk;l Gl;k

= [ ]
∑

i

A2
i;i +

� �

∑

i 6= j

Ai;iA j; j +
� �

∑

i 6= j

Ai; jA j;i

= [ ] (tr A2
d) +

� �

((tr A)2 − tr A2
d) +

� �

(tr A2 − (tr A2
d))

=
� �

(tr A)2 +
� �

(tr A2) + ([ ]−
� �

−
� �

)(tr A2
d),

where Ad is defined by Ad i; j = δi; jAi; j . Recall that the condition we had on the different
stationary values was [ ] =

� �

+
� �

so :

E∞[(tr AG)2] =
� �

(tr A)2 +
� �

(tr A2),

and indeed only depends on the invariants. In the same manner one shows :

E∞[(tr AG)3] =
� �

tr A3
d + 3 [ ] (tr A2

d tr A− tr A3
d)

+
� �

((tr A)3 + 2 tr A3
d − 3 tr A2

d tr A)

+ 3
� �

(tr A2 tr A− 2 tr A2Ad − tr A2
d tr A+ 2 trA3

d)

+ 6
� �

(tr A2Ad − tr A3
d)

+ 2
� �

(tr A3 − 3 tr A2Ad + 2 tr A3
d)

=
� �

(tr A)3 + 3
� �

tr A2 tr A+ 2
� �

tr A3

+ (
� �

− 3 [ ] + 2
� �

+ 6
� �

− 6
� �

+ 4
� �

) tr A3
d

+ (3 [ ]− 3
� �

− 3
� �

) tr A2
d tr A

+ (−6
� �

+ 6
� �

− 6
� �

) tr A2Ad

=
� �

(tr A)3 + 3
� �

tr A2 tr A+ 2
� �

tr A3.

To write the last line we used the stationary condition (18). Once again, only the invariant
terms contribute.
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B Proof of Proposition 1

We here present a proof of Proposition 1.
(i) The crucial observation is that the matrices E j+1; j and E j; j+1, j ∈ [1, L] which appear

as the coefficients of Brownian motions in the definition of the process Vt , generate the Lie
algebra sl(L,C), so that the matrices E j+1; j+ E j; j+1 and i(E j+1; j− E j; j+1), j = 1, L generate the
Lie algebra su(L). Rewritten in terms of these generators, the coefficients will be independent
real Brownian motions.

By Hörmander’s theorem [32], we may conclude that the transition Kernel Kt(v, B), which
gives the probability that starting at v at time 0 Vt will be in a Borel subset B ⊂ SU(L), has a
density with respect to the normalized Haar measure on SU(L): Kt(v, B) =

∫

B kt(v, v′)dη(v′)
with kt(v, v′) a continuous strictly positive function of v′ ∈ SU(L).

By homogeneity, Kt(v, B) = Kt(1, v−1B) and kt(v, v′) = kt(1, v−1v′). As SU(L) is compact,

inf
v′

kt(v, v′) = inf
v′

kt(1, v−1v′) = inf
v′

kt(1, v′) =: εt > 0

for every t > 0. Let ν be a finite (not necessarily positive) measure on SU(L). Let us recall
that by the Hahn-Jordan decomposition theorem there is a unique decomposition ν= ν+−ν−

where ν± are finite positive measures, and that moreover there is a partition of
SU(L), SU(L) = A+ ∪ A−, such that for every Borel subset of SU(L) ν±(B) = ±ν(B ∩ A±).
As usual, we define |ν| := ν+ + ν−, the total variation measure of ν and denote by ||ν|| the
total variation norm of ν, i.e.||ν|| :=

∫

SU(L) d |ν|. We define another measure νt , t ≥ 0 by

νt(B) :=
∫

SU(L) dν(v)Kt(v, B) for every Borel subset. Now if
∫

SU(L) dν(v) = 0 then

νt(B) =
∫

SU(L) dν(v) (Kt(v, B)− εtη(B)). Choosing A+, A− that implement the Hahn-Jordan
decomposition of νt we get

0≤ νt(A
+) =

∫

SU(L)
dν(v)

�

Kt(v, A+)− εtη(A
+)
�

≤
∫

SU(L)
d|ν|(v)

�

Kt(v, A+)− εtη(A
+)
�

,

where we have used that Kt(v, B)− εtη(B)≥ 0 for every Borel set B, and analogously

0≤ −νt(A
−) =

∫

SU(L)
−dν(v)

�

Kt(v, A−)− εtη(A
−)
�

≤
∫

SU(L)
d|ν|(v)

�

Kt(v, A−)− εtη(A
−)
�

.

Summing the two yields

||νt || ≤
∫

SU(L)
d|ν|(v)

�

Kt(v, A+ ∪ A−)− εtη(, A+ ∪ A−)
�

=

∫

SU(L)
d|ν|(v)(1− εt) = ||ν||(1− εt)

for t ≥ 0. We have proven that if
∫

SU(L) dν(v) = 0 then ||νt || decreases with t, and then by
iteration that it decreases exponentially (for instance taking τ small and t ∈ [nτ, (n+1)τ[ we
get

||νt || ≤ ||νnτ|| ≤ ||ν||(1− ετ)n ≤ ||ν||(1− ετ)t/τ−1.

Now note that as time evolution acts by unitary multiplication on V , the Haar measure
dη() is obviously stationary. If µ is any initial probability distribution, ν := µ − η has zero
average, and thus ||µt−η||= ||µt−ηt || decreases exponentially at large t, i.e. µt → η in total
variation norm. This implies also that η is the only stationary measure for the stochastic flow
Vt . This proves the statement concerning Vt .

The statement concerning Gt follows immediately.
(ii) The invariance of E∞ with respect to the flow generated by dht means that its gener-

ating function satisfies
Z(A) = E

�

Z
�

eidht Ae−idht
��

, (19)
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where the expectation E is with respect to the Brownian increments dW j
t and dW

j
t . Recall that

these increments are Gaussian variables normalized according to dW j
t dW

k
t = δ

j;kd t. Let us
introduce some notations to express conveniently the consequences of this relation. For any
Hermitian X ∈ su(L), let L[X ] be the vector field, linear in X , acting on function F of A via

L[X ]F(A) = d
ds

F(eisX Ae−isX )|s=0 = i
∑

kl

[X , A]kl
∂ F(A)
∂ Akl

.

Recall that we choose A to be Hermitian (or anti-Hermitian), so that the conjugation
A → eisX Ae−isX preserves this property. These operators are anti-Hermitian with respect to
the L2 scalar product, (G, F) =

∫

dAG(A) F(A). They form a representation of the Lie algebra
su(L) : [L[X ],L[Y ]] = L[[X , Y ]]. We extend the definition of L to complex matrices by lin-
earity, and let L+j = L[E j; j+1] and L−j = L[E j+1; j]. Now, expanding the expectation value (19)
using the fact the Brownian increments are Gaussian variables with covariance d t, or using
the Itô rules, yields

D
2

∑

j

�

L+j L
−
j +L−j L

+
j

�

Z(A) = 0.

The differential operators L+j and L−j are hermitian conjugated with respect to the L2 scalar
product, and the operators L+j L

−
j and L−j L

+
j are all negative. Hence demanding the above

equation be satisfied imposes
L±j Z(A) = 0, ∀ j.

Since E j; j+1 and E j+1; j form a system of simple root generators for the Lie algebra su(L), the
above equation implies that

L[X ]Z(A) = 0, ∀X ∈ su(L).

Hence, Z(A) is SU(L) invariant and it is also U(L) invariant because the extra U(1) is central.
(iii) Using the U(L) invariance and the fact that the spectrum of Gt is preserved by the

flow, we have

Z(A) =

∫

dη(V ) Z(VAV †) =

∫

dη(V ) E∞
�

etr VAV †G
�

= E∞

�∫

dη(V )etr AV †GV

�

= E∞

�∫

dη(V )etr AV †G0V

�

=

∫

dη(V ) etr AV †G0V .

In the first line we use the U(L) invariance of Z(A) and its definition as the generating function
for E∞. In the second line, we first permute the two integrations, with respect to the Haar
measure and to E∞, and second we use the fact that

∫

dη(V )etr AV †GV is a function of the
spectrum of G only (because it is invariant under conjugation of G by a U(L) matrix thanks
to the invariance of the Haar measure). The last step in the third line consists in using the
key property that the spectrum of G is conserved by the flow and thus non random, so that
∫

dη(V )etr AV †G0V can be pulled out form the expectation with respect to E∞.

C Invariant theory and expectations

Having recognized that any stationary measure for the time evolution of G has to be U(L)
invariant (in fact SU(L) invariant, but this makes no difference for the adjoint action), if G0 is
deterministic, or more generally if it it sampled within a set of unitarily equivalent matrices,
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the stationary measure is exactly the one induced by the Haar measure on U(L) via the adjoint
action of U(L) on G0. This is the situation we concentrate on in this section.

So we forget about the time evolution, and simply ask: if G is an L × L matrix, and if
VG := V GV−1 i.e.

�

VG
�

i j :=
L
∑

k,l=1

VikGkl V
−1
l j

is the action of the unitary matrix V ∈ U(L) on the matrix G, what are the properties of the
averages of functions of V G with respect to the normalized Haar measure dη(V ) on U(L)?

C.1 Generalities

Recall that if f is a (gentle) function from the set of L× L matrices to an affine space, we have
defined

[ f (G)] :=

∫

U(L)
dη(V ) f (VG).

We shall be in particular interested in the case when f (G) := Gi1 j1 · · ·Gin jn for arbitrary
n = 1,2, · · · and i1, j1, · · · , in, jn ∈ [1, L] or equivalently with an index-free notation
f (G) := G⊗n. Note that

�

G⊗n
�

i1 j1,··· ,in jn
= Gi1 j1 · · ·Gin jn and that

�

�

G⊗n
�

i1 j1,··· ,in jn

�

=
�

G⊗n
�

i1 j1,··· ,in jn
.

We can go a bit further in abstraction by noting that the matrix G can be seen as a mem-
ber of End(E) ∼= E∗ ⊗ E where E is the fundamental representation of U(L) – V acts as
(V.x)i :=

∑

j Vi j x j – and E∗ its dual – V acts as (V.x∗)i :=
∑

j V−1
ji x∗j . Observing that t V−1⊗ V

belongs to End(E∗ ⊗ E), so that
�

t V−1 ⊗ V
�

(G) := V GV−1 is naturally defined,
�

G⊗n
�

can be

retrieved by contracting appropriately the indices of
∫

U(L) dη(V )
�

t V−1 ⊗ V
�⊗n

with those of
G⊗n. Arrived at this stage, we may as well work not only with G⊗n but with general elements
O ∈ (E∗ ⊗ E)⊗n, that is, with general tensors. There is a natural action of U(L) on (E∗ ⊗ E)⊗n,
which in components reads

�

VO
�

i1 j1,··· ,in jn
:=

V
∑

k1,··· ,kn,l1,··· ,ln

Ok1 l1,··· ,kn ln Vi1k1
· · ·Vinkn

V−1
l1 j1
· · ·V−1

ln jn
.

For later use we introduce a transposition t mapping (E∗ ⊗ E)⊗n to itself and reading in com-
ponents

�

tO
�

i1 j1,··· ,in jn
:= Oj1 i1,··· , jn in ,

and the corresponding adjoint O† := tO where the bar is complex conjugation, a trace Tr (a
linear form on mapping (E∗ ⊗ E)⊗n, we reserve the notation tr for the case n = 1) which in
components reads

Tr O :=
∑

i1,··· ,in

Oi1 i1,··· ,in in ,

and a natural product ON ∈ (E∗ ⊗ E)⊗n for O, N ∈ (E∗ ⊗ E)⊗n which in components reads

(ON)i1 j1,··· ,in jn :=
∑

k1,··· ,kn

Oi1k1,··· ,inkn
Nk1 j1,··· ,kn jn .

All these objects are the natural generalization of their ancestor for n = 1 and share most of
its properties. For instance, it is plain that Tr VO = Tr O for every V ∈ U(L), Tr tO = Tr O,
V(ON) = VO VN and Tr ON = Tr NO. Moreover, the sesquilinear form (O, N) 7→ Tr O†N (which
reduces to Tr tON for real tensors) is positive definite.
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We extend the definition of [· · · ] to (E∗ ⊗ E)⊗n

[O] :=

∫

U(L)
dη(V ) VO,

which yields an endomorphism of (E∗⊗ E)⊗n and we observe that by the left invariance of the
Haar measure [O] is invariant for the action of U(L), i.e. that V [O] = [O] for every V ∈ U(L).

We now come to the crux of the matter. The identity V−1V = Id can be reinterpreted as
that V Id = Id, i.e. contracting t V−1 and V in t V−1 ⊗ V using Id yields Id: Id is an invariant
for the action of U(L) on End(E). It is well-known, and easy to prove, that this is the only
invariant up to normalization. This has a nice generalization to

�

t V−1 ⊗ V
�⊗n
= t V−1 ⊗ V ⊗ t V−1 ⊗ V ⊗ · · · ⊗ t V−1 ⊗ V :

if one contracts each of the n t V−1s in the product with a V (the V s will be different for different
t V−1s of course, there are only enough indices to contract once) one obtains an invariant. We
interpret the contraction pattern in a natural way as a permutation σ ∈Sn of [1, n] such that
(reading from left to right) the i th factor t V−1 is contracted with the σ(i)th factor V , so that
the resulting invariant Iσ reads in components

Iσi1 j1,··· ,in jn
:= δiσ(1) j1 · · ·δiσ(n) jn .

Note that
Tr Iσ = Lc(σ),

where c(σ) is the number of cycles of the permutation σ. One checks readily that Iσ
−1
= t(Iσ)

for σ ∈Sn and Iσ Iτ = Iστ for σ,τ ∈Sn.
It turns out (see e.g. chapter 5 in [38]) that for general n (this is quite a bit deeper that

the special case n= 1) the space of invariants is spanned by the Iσs when σ ranges over Sn.
If n ≤ L they are linearly independent: if i1, · · · , in are all distinct, Iσi1 i1,··· ,in in

vanishes
for every permutation except the identity, so that the invariant corresponding to the trivial
permutation is linearly independent from the other invariants, and from Iσ Iτ = Iστ one infers
the full linear independence.

If n > L this is not true anymore. We do not reprove this and content to observe that if n
is so large that n!> L2n there are more Iσs than the dimension of (E∗⊗ E)⊗n and they cannot
be linearly independent.

Henceforth we assume that n ≤ L. The linear independence of the Iσs has the following
two consequences. First, the matrix C with rows and columns indexed by Sn and matrix
elements Lc(στ−1) is positive definite, because

Cσ,τ := Lc(στ−1) = Tr Iσ tIτ.

Second every invariant tensor is an unique linear combination of the Iσs. We denote by
�

t V−1 ⊗ V
�⊗n,inv

the space of invariant tensors. Now [O] is invariant for every O ∈ (E∗⊗ E)⊗n,
and we infer the existence and uniqueness of linear forms `σ on (E∗ ⊗ E)⊗n such that

[O] =
∑

σ∈Sn

`σ(O)I
σ.

Let us pause for a moment to stress one feature this formula makes obvious: the correlation
functions are “topological”. In the formulation of the model, the sites i = 1, · · · , L are arranged
around a ring, and the form of the interactions gives a physical meaning to the notion that site
i is connected to sites i±1 i.e. that those sites are neighbors. However, the U(L) Haar measure
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does not care about neighbors anymore: after all, the L × L permutation matrices belong to
U(L) so we expect that if π is any permutation of [1, L]

[O]i1 j1,i2 j2··· ,in jn = [O]π(i1)π( j1),π(i2)π( j2)··· ,π(in)π( jn) ,

which is clearly true from the explicit form of the matrix elements of each Iσ.
The `σs could in principle be computed without any recourse to integration by an usual

trick: for each τ ∈Sn we have

Tr
�

OIτ
−1
�

= Tr

∫

U(L)
dη(V ) V(OIτ

−1
) =

∫

U(L)
dη(V )Tr V(OIτ

−1
)

=

∫

U(L)
dη(V )Tr OIτ

−1
= Tr OIτ

−1
,

while
Tr
∑

σ∈Sn

`σ(O)I
σ Iτ

−1
=
∑

σ∈Sn

`σ(O)L
c(στ−1).

Comparison yields
∑

σ∈Sn

`σ(O)L
c(στ−1) = Tr OIτ

−1
.

As noted above, the matrix Cσ,τ := Lc(στ−1) is positive definite, hence invertible, and

`σ(O) =
∑

υ∈Sn

Tr OIυ
−1

C−1
υ,σ.

Thus in principle the task of computing U(L) averages is reduced to the inversion of the matrix
C . The last formula has two immediate consequences. First, if O is orthogonal (with respect to
the trace form) to

�

t V−1 ⊗ V
�⊗n,inv

then `σ(O) = 0 for every σ. Second, taking O to be some
Iτ yields

`σ(I
τ) =

∑

υ∈Sn

Tr Iτ Iυ
−1

C−1
υ,σ =

∑

υ∈Sn

Cτ,υC−1
υ,σ = δ

τ
σ.

Thus, restricted to
�

t V−1 ⊗ V
�⊗n,inv

the linear forms `σ build the dual basis of the basis of
invariants Iσ.

The explicit inverse of C is not so easy to write down in general, and the size of C , n!,
makes computations prohibitive even for moderate ns. However in the end, our interest is
in tensors O of the form O = G⊗n, and the linear space they span is the space of symmetric

tensors
�

t V−1 ⊗ V
�

s ym
⊗n

. If O ∈
�

t V−1 ⊗ V
�⊗n

and σ ∈Sn we define σ·O by

(σ ·O)i1 j1,··· ,in jn := Oiσ(1) jσ(1),··· ,iσ(n) jσ(n) ,

which is a left action, i.e. τ ·(σ ·O) = (τσ) ·O. Symmetric tensors are those Os such that
σ·O = O for every σ ∈Sn. A simple computation shows that σ·Iτ = Iστσ

−1
, σ·( VO) = V(σ·O)

and then [σ·O] = σ ·[O], so we infer that `τ(σ ·O) = `σ−1τσ(O). In particular, restricted to
�

t V−1 ⊗ V
�

s ym
⊗n

, `σ depends only on the conjugacy class ofσ inSn. We define the cycle spectrum
of a permutation σ ∈Sn as the collection nk = nk(σ), k ≥ 1 where nk is the number of cycles
of length k in the cycle decomposition of σ. The nks satisfy

∑

k knk = n. Two members in Sn
are conjugate if and only if they have the same cycle lengths spectrum, so conjugacy classes in
Sn are parametrized by integers sequences nk, k ≥ 1 such that

∑

k knk = n. These sequences
also parameterize Young diagrams with n boxes (nk is the number of rows of length k in the

22

https://scipost.org
https://scipost.org/SciPostPhys.6.4.045


SciPost Phys. 6, 045 (2019)

diagram) or (unordered) partitions of n. Thus in the case of symmetric tensors the complexity
is reduced from n! to p(n), the number of partitions of n. Henceforth we denote by the same
name a Young diagram and a conjugacy class, identifying a Young diagram with n boxes with
a subset of Sn.

Also, in the special case O = G⊗n one checks that, if σ ∈Sn has cycle spectrum nk, k ≥ 1
then

Tr G⊗n Iσ
−1
=
∏

k

�

tr Gk
�nk .

If λ is a Young diagram we set
Iλ :=

∑

σ∈λ

Iσ

and denote by `λ the restriction of `σ (for any σ ∈ λ) to the space of symmetric tensors. Thus

if O ∈
�

t V−1 ⊗ V
�

s ym
⊗n

we have

[O] =
∑

λ

`λ(O)Iλ.

The Iλs form a basis of symmetric invariant tensors, and the duality relation `λ(Iµ) = δλµ holds
at the level of conjugacy classes. Noting that in Sn a permutation and its inverse are conjugate
(they have obviously the same cycle lengths), we also obtain

Tr OIµ =
∑

λ

`λ(O)Cλ,µ where Cλ,µ :=
∑

σ∈λ,τ∈µ

Cσ,τ =
∑

σ∈λ,τ∈µ

Lc(στ−1).

Let us note that another symmetry condition, complete symmetry under permutations of
the is and/or the js, which would be relevant in the study of the statistical properties of 〈ci〉
and 〈c†

j 〉, leads to the fact the `σs applied to symmetric objects are σ-independent and can
thus be computed explicitly. This leads to a completely solvable case, with mostly pedagogical
interest and we leave the details to the reader.

C.2 Application to the one-site statistics of the fermion number

As noticed above, there is no easy closed form for the `σs. However, they satisfy certain sum
rules. We give two of them, and then use the second one to give an explicit form for the
averages of Gn

ii for arbitrary n, i.e. moments of the particle number at site i.
We start with two counting formulæ:

∑

σ∈Sn

Lc(σ)ε(σ) = L(L − 1) · · · (L − n+ 1)
∑

σ∈Sn

Lc(σ) = L(L + 1) · · · (L + n− 1),

were ε(σ) is the signature of the permutation σ i.e. ε(σ) = −1 if the cycle decomposition of
σ contains an odd number of cycles of even length, and ε(σ) = 1 otherwise.

Induction on n gives an easy proof: the formulæ are obvious if n = 1. To work out the
induction step, write down the cycle decomposition of a permutation in Sn+1 and remove n+1
to get a permutation in Sn. If n+1 was a cycle by itself, removing it diminishes the number of
cycles by 1 but does not change the signature. If n+ 1 was in a cycle of length ≥ 2, removing
it changes the signature but not the number of cycles. Now from a permutation in Sn written
as a product of cycles, there is only 1 way to insert n+1 as a new cycle on its own, and n ways
to insert it within already existing cycles. Thus going from n to n+ 1 yields a factor L − n for
the first sum, and L + n for the second sum.

We return to the general formula
∑

σ∈Sn

`σ(O)L
c(στ−1) = Tr OIτ

−1
.

23

https://scipost.org
https://scipost.org/SciPostPhys.6.4.045


SciPost Phys. 6, 045 (2019)

Multiply by ε(τ) = ε(τ−1) = ε(σ)ε(στ−1). On the left-hand side, use στ−1 for fixed σ and
varying τ as a summation variable. On the right-hand side, use keep τ−1 as a summation
variable. This yields

∑

σ∈Sn

`σ(O)ε(σ)L(L − 1) · · · (L − n+ 1) =
∑

τ∈Sn

Tr OIτε(τ).

The same change of variable applied to the general formula without multiplying by the signa-
ture yields a second identity

∑

σ∈Sn

`σ(O)L(L + 1) · · · (L + n− 1) =
∑

τ∈Sn

Tr OIτ.

It is this last identity that we are going to exploit. We observe that for k ∈ [1, L] the matrix
element

�

Oii···ii
�

=
∑

σ∈Sn

`σ(O)I
σ
ii···ii =

∑

σ∈Sn

`σ(O),

because from the definition of Iσ the matrix element Iσii···ii (all indices are equal to k) equals
1 for every σ ∈Sn. Using the second identity we obtain

�

Oii···ii
�

=
(L − 1)!
(L + n− 1)!

∑

τ∈Sn

Tr OIτ.

Specializing to O = G⊗n, we can use our observations on symmetric tensors to simplify this
formula. Let us recall that the number of permutations with cycle spectrum nk, k ≥ 1 (with
∑

k knk = n) is
n!

∏

k nk!knk
.

The counting is elementary. For example, if m1, · · · , m j are positive integers such that
∑ j

i=1 mi = n there are n!
∏

i mi !
ways to color n objects with j colors, with mi objects carry-

ing color i for 1= 1, · · · , j. Our interest is when
∑

k nk = j, yielding n!
∏

k(k!)nk
colorings. But in

contrast to the pure coloring problem:
– We have to order each packet of a given color into a cycle, for a packet of size k there are
(k− 1)! ways to do so.
– We care only about the packets, not about their precise color, so we have to divide by

∏

k nk!.
Finally

n!
∏

k(k!)nk
×
∏

k

(k− 1)!nk/
∏

k

nk!=
n!

∏

k nk!knk
,

as announced.
Recall that the diagonal elements of G have a clear physical meaning: Gii = 〈c

†
i ci〉, the

(quantum) mean particle number at site i. Thus

�

〈c†
i ci〉n

�

=
�

Gn
ii

�

=
n!(L − 1)!
(L + n− 1)!

∑

nk ,
∑

k≥1 knk=n

∏

k

1
nk!

�

Nk

k

�nk

,

proving the formula announced in the main text. It is strongly reminiscent of the combinatorics
relating moments to cumulants, in that if µn, n≥ 0 and γk, k ≥ 1 are two sequences such that
as formal series in x

∑

n≥0

µn
xn

n!
= e

∑

k≥1 γk
xk
k ,
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it is readily checked that µ0 = 1 and that for n≥ 1

µn = n!
∑

nk ,
∑

k≥1 knk=n

∏

k

1
nk!

�γk

k

�nk
.

Apart from the combinatorial factor (L−1)!
(L+n−1)! , the traces Nk := tr Gk are analogs of the cumu-

lants of the distribution of Gii = 〈c
†
i ci〉. The combinatorial factor is not totally innocent (i.e.

cannot be reabsorbed by a trivial manipulation). But one checks that if µn :=
�

〈c†
i ci〉n

�

then

γ1 =
N1

L
γ2 =

N2

L(L + 1)
−

1
L + 1

�

N1

L

�2

,

and so on.
In the large L limit under the scaling Nk ' L for k = 0,1, · · · the asymptotics gives

�

〈c†
i ci〉n

�

=
�

N1

L

�n

+
n(n− 1)

2L

�

N1

L

�n−2
�

N1

L
−
�

N2

L

�2
�

+ o(1/L),

whilde under the scaling Nk ' Lk; k = 1,2, · · · all terms in the sum over partitions contribute
to the dominant order, leading to

�

ex〈c†
i ci〉
�

= e
∑

k≥1
Nk xk

kLk + o(1) =
1

det(1− xG/L)
+ o(1).

C.3 The covering rule decomposition

In this subsection we establish the labeled counterpart of Lemma 2, which reads: if D is an
admissible diagram then

[D] =
∑

D′ covering D

�

D′
�

(multiplicity is 1 for each covering diagram). The unlabeled version is an immediate conse-
quence. The point is that the covering diagrams are always extremal diagrams. In the labeled
category, they are associated to a 2n-plets (i1, j1, i2, j2 · · · , in, jn)with i1, · · · , in must all distinct
and a well-defined permutation σ ∈ Sn such that iσ(m) = jm for m = 1, · · · , n. Then, for an
extremal 2n-plets (i1, j1, i2, j2 · · · , in, jn)

�

G⊗n
�

i1 j1,··· ,in jn
= `σ(G

⊗n).

But for an arbitrary 2n-plets (i1, j1, i2, j2 · · · , in, jn) we have the general formula

�

G⊗n
�

=
∑

σ∈Sn

`σ(O)I
σ.

From the very definition of a ∗-covering, Iσi1 j1,··· ,in jn
= 0 unless (i1, j1, i2, j2 · · · , in, jn) is admissi-

ble and has a ∗-covering of with associated permutationσ in which case Iσi1 j1,··· ,in jn
= 1. Putting

the two equations together yields, for an arbitrary admissible 2n-plets (i1, j1, i2, j2 · · · , in, jn)

�

G⊗n
�

i1 j1,··· ,in jn
=

∑

(k1,l1,··· ,kn,ln) covering (i1, j1,··· ,in, jn)

�

G⊗n
�

k1 l1,··· ,kn ln
,

which translates immediately in terms of diagrams in the identity that was to be proven.
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D Character expansion of Z(A)

Let us list the characters of the linear group up to m(Y ) = 3.

Y χY (A) dY σY

tr A L 1
1
2((tr A)2 + tr A2) 1

2 L(L + 1) 1
1
2((tr A)2 − tr A2) 1

2 L(L − 1) 1
1
6((tr A)3 + 2 trA3 + 3 tr Atr A2) 1

6 L(L + 1)(L + 2) 1
1
3((tr A)3 − tr A3) 1

3 L(L + 1)(L − 1) 2
1
6((tr A)3 + 2 trA3 − 3 tr Atr A2) 1

6 L(L − 1)(L − 2) 1

We explicitly compute the term of degree three Z(A)|3 in the character expansion of the Harish-
Chandra-Itzykson-Zuber generating function and show that it matches the results obtained by
explicit calculations of the coefficient by perturbative treatment.

Z(A)|3 =
1
6
(

6
L(L + 1)(L + 2)

(A) (G0) +
3

L(L + 1)(L − 1)
(A) (G0)

+
6

L(L − 1)(L − 2)
(A) (G0)

=
1
6
(

1
6L(L + 1)(L + 2)

((tr A)3 + 2 trA3 + 3 tr Atr A2)(N3
1 + 2N3 + 3N1N2)

+
2

3L(L + 1)(L − 1)
((tr A)3 − tr A3)(N3

1 − N3)

+
1

6L(L − 1)(L − 2)
((tr A)3 + 2 tr A3 − 3 tr Atr A2)(N3

1 + 2N3 − 3N1N2)))

=
1
6
((tr A)3(

(L2 − 2)N3
1 − 3LN1N2 + 4N3

(L − 2)(L − 1)L(L + 1)(L + 2)
)

+ 2(tr A3)(
2N3

1 − 3LN1N2 + L2N3

(L + 2)(L − 1)L(L + 1)(L + 2)
)

+ 3 trAtr A2(
−LN3

1 + (L
2 + 2)N1N2 + 2LN3

(L − 2)(L − 1)L(L + 1)(L + 2)
))

=
1
6
(
� �

(tr A3) + 3
� �

tr Atr A2 + 2
� �

tr A3).

E Large L scaling limits

We turn to the possible scaling behaviors of U(L) averages at large L. Let us start with an
obvious bound. By definition, the matrix elements of G, Gi j := 〈c†

j ci〉, have modulus ≤ 1 by

the Cauchy-Schwartz inequality. This implies immediately that | tr Gk| ≤ Lk for k = 1,2, · · · .
As these traces are the building blocks of correlation functions, any physical scaling limit at
large L must respect this constraint.

But the very notion of large L scaling limit has to be taken with a grain of salt because it
implies to work with a family of density matrices indexed by L, and this can only be based on
physical assumptions.
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To illustrate the point, let us observe that our model can be obtained via a Jordan-Wigner
transformation from a spin model. The spin model looks like the fermionic one except that the
Hilbert space is not a Fock space but a tensor product

�

C2
�⊗L

where the fermionic operators
commute at different sites (but have the usual anticommutation rules at a given site)4. Let r
be a one site density matrix possibly with non-trivial off-diagonal elements. Then a factorized
density matrix ρ = ρ(L) := r⊗L gives a natural candidate for which the system ought to have
a large L limit. An easy computation shows that if this density matrix is used for quantum
averages then 〈c†

j ci〉 (remember the fermionic operators commute at different sites in this
discussion) is of the general form

〈c†
j ci〉= αδi j + β with α(1−α)≥ β ≥ 0.

Then tr Gk = αk(L − 1) + (α + β L)k. As β turns out to be the modulus square of the off-
diagonal element of the one site density matrix r (in the basis where c†c is diagonal), we infer
that tr Gk∝ L if r is diagonal, but tr Gk∝ Lk else.

Even if, for reasons recalled in the footnote, the above result does not translate immediately
in Fock space (of course we could use G to reverse-engineer an M and the corresponding
density matrix on Fock space but this is a bit artificial), we expect that those scaling behaviors
are natural there as well. Other scaling behaviors are possible, but in the present study we
have concentrated on the above two. The case when tr Gk∝ L for k = 0,1, · · · means roughly
that all eigenvalues of G are of order 1. The case when tr Gk ∝ Lk for k = 1,2, · · · , meaning
roughly that all eigenvalues of G are of order 1 but a finite number of them which are of order
L.
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[18] M. Žnidarič, Dephasing-induced diffusive transport in the anisotropic Heisenberg model,
New J. Phys. 12, 043001 (2010), doi:10.1088/1367-2630/12/4/043001.

[19] D. Bernard and B. Doyon, Diffusion and signatures of localization in stochastic conformal
field theory, Phys. Rev. Lett. 119, 110201 (2017), doi:10.1103/PhysRevLett.119.110201.

[20] M. Bauer, D. Bernard and T. Jin, Stochastic dissipative quantum spin chains
(I) : Quantum fluctuating discrete hydrodynamics, SciPost Phys. 3, 033 (2017),
doi:10.21468/SciPostPhys.3.5.033.

[21] D. Bernard, T. Jin and O. Shpielberg, Transport in quantum chains under strong monitor-
ing, Europhys. Lett. 121, 60006 (2018), doi:10.1209/0295-5075/121/60006.

[22] M. Knap, Entanglement production and information scrambling in a noisy spin system,
Phys. Rev. B 98, 184416 (2018), doi:10.1103/PhysRevB.98.184416.

[23] D. A. Rowlands and A. Lamacraft, Noisy coupled qubits: Operator spread-
ing and the Fredrickson-Andersen model, Phys. Rev. B 98, 195125 (2018),
doi:10.1103/PhysRevB.98.195125.

[24] S. Xu and B. Swingle, Locality, quantum fluctuations, and scrambling (2018),
arXiv:1805.05376.

[25] S. Belinschi, B. Collins and I. Nechita, Eigenvectors and eigenvalues in a random subspace
of a tensor product, Invent. Math. 190, 647 (2012), doi:10.1007/s00222-012-0386-3.

28

https://scipost.org
https://scipost.org/SciPostPhys.6.4.045
http://dx.doi.org/10.1088/0305-4470/24/7/022
http://dx.doi.org/10.1088/0305-4470/24/7/022
http://dx.doi.org/10.1007/BF02097018
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1007/978-3-540-47620-7
http://dx.doi.org/10.1017/CBO9780511813948
http://dx.doi.org/10.1016/j.physrep.2017.02.003
http://dx.doi.org/10.1093/acprof:oso/9780198509141.001.0001
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1007/BF02098275
http://dx.doi.org/10.1088/1367-2630/12/4/043001
http://dx.doi.org/10.1103/PhysRevLett.119.110201
http://dx.doi.org/10.21468/SciPostPhys.3.5.033
http://dx.doi.org/10.1209/0295-5075/121/60006
http://dx.doi.org/10.1103/PhysRevB.98.184416
http://dx.doi.org/10.1103/PhysRevB.98.195125
https://arxiv.org/abs/1805.05376
http://dx.doi.org/10.1007/s00222-012-0386-3


SciPost Phys. 6, 045 (2019)

[26] W. Brown and O. Fawzi, Decoupling with random quantum circuits, Commun. Math. Phys.
340, 867 (2015), doi:10.1007/s00220-015-2470-1.

[27] F. G. S. L. Brandão, A. W. Harrow and M. Horodecki, Local random quantum cir-
cuits are approximate polynomial-designs, Commun. Math. Phys. 346, 397 (2016),
doi:10.1007/s00220-016-2706-8.

[28] G. Aubrun and S. Szarek, Alice and Bob meet Banach: The interface of asymptotic geometric
analysis and quantum information theory, Am. Math. Soc., Providence, Rhode Island,
ISBN 9781470434687 (2017), doi:10.1090/surv/223.

[29] A. Nahum, J. Ruhman, S. Vijay and J. Haah, Quantum entanglement growth under random
unitary dynamics, Phys. Rev. X 7, 031016 (2017), doi:10.1103/PhysRevX.7.031016.

[30] A. Nahum, S. Vijay and J. Haah, Operator spreading in random unitary circuits, Phys. Rev.
X 8, 021014 (2018), doi:10.1103/PhysRevX.8.021014.

[31] A. Chan, A. De Luca and J. T. Chalker, Solution of a minimal model for many-body quantum
chaos, Phys. Rev. X 8, 041019 (2018), doi:10.1103/PhysRevX.8.041019.

[32] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119, 147
(1967), doi:10.1007/BF02392081.
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