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A manufacturing process is not able to provide exactly the same workpieces; indeed, theoretical dimensions of a design product cannot be reached in a repetitive manner (tool wear, operator variability,. . .). The mechanism behavior is disturbed by geometrical deviations as well as gaps between different parts of the mechanism. Design tolerances are therefore specified on different features of the mechanism to limit the deviations. Tolerance analysis aims at analyzing the impact of these admissible variations on the mechanism behavior. The main stake is to evaluate a quality level of the product during its design stage. The technique used consists of assessing a probability of failure P f of the mechanism of magnitude around 10 -6 for large series production. This value represents the probability that a functional condition, C f = y th -Y ≥ 0, is not satisfied, where Y is a functional characteristic of the mechanism and y th is a threshold value to not be exceeded.

Tolerance analysis methods must consider the geometrical deviations as random variables whose probabilistic distributions are chosen regarding the manufacturing process [START_REF] Qureshi | A statistical 267 tolerance analysis approach for over-constrained mechanism based on op-268 timization and monte carlo simulation[END_REF][START_REF] Dantan | Worse case and statistical tolerance analysis based 271 22 on quantified constraint satisfaction problems and Monte Carlo simulation[END_REF]. However, gaps between parts or contact points cannot be modeled by aleatory uncertainty. Gaps belong to the parameter uncertainty category [START_REF] Vesely | Uncertainties in nuclear probabilistic risk analyses[END_REF] of the epistemic uncertainty which makes difficult the mechanical behavior of this kind of mechanisms to be modeled. Indeed, analyzing isoconstrained or overconstrained mechanisms is different. An assembly which have only its six degrees of freedom fixed in three dimensions (three degrees of freedom in two dimensions) is considered to be an isoconstrained mechanism, usually without gaps. On the contrary, an assembly which have more than six degrees of freedom fixed is considered as an overconstrained mechanism. Gaps allows this kind of mechanism to be assembled although more than six degrees of freedom are fixed. Figure 1 shows a simple isoconstrained mechanism in one dimension where the functional characteristic Y must not exceed a specified threshold. On such a mechanism, the expression of this characteristic Y is a function only of the dimensions x 1 and x 2 . This kind of problem is well-defined.

In contrast, Figure 2 shows two configurations of an overconstrained mechanism. and part 2. In this case the tolerance analysis problem is overconstrained due to the multiple possible configurations of gaps. Tolerance analysis methods must therefore take into account the worst configurations of gaps to compute the probability of failure. This operation is usually performed using an optimization scheme [START_REF] Qureshi | A statistical 267 tolerance analysis approach for over-constrained mechanism based on op-268 timization and monte carlo simulation[END_REF]. This particularity turns out to deal with a system probability assessment, the transition from one worst configuration to another leading to an abrupt change of the limit-state surface. 

i , i = 1, . . . , 4; j = 1, 2 , the worst configuration of gaps changes: contact with the right pin for j = 1 and contact with the left pin for j = 2.

For an isoconstrained mechanism, computing the probability of failure is simple because the functional condition is only expressed as a function of the random variables which describes the geometrical parameters. Classical reliability methods such as Monte Carlo simulation or variance reduction techniques like Importance Sampling [START_REF] Melchers | Radial importance sampling for structural reliability[END_REF] can be used to quickly compute the probability of functional failure. For complex non explicit applications, surrogate models replacing the true functional condition may also be used in simulations in order to save time. Numerous techniques used in computer experiments exist in the literature such as quadratic response surfaces [START_REF] Kaymaz | A response surface method based on weighted regression for structural reliability analysis[END_REF][START_REF] Allaix | An improvement of the response surface method[END_REF], Kriging [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation[END_REF][START_REF] Dubourg | Metamodel-based importance sampling for structural reliability analysis[END_REF], support vector machines [START_REF] Vapnik | Pattern recognition using generalized portrait method[END_REF][START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and Support Vector Machines[END_REF][START_REF] Hurtado | An optimization method for learning statistical classifiers in structural reliability[END_REF] and polynomial chaos [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Li | Evaluation of failure probability via surrogate models[END_REF][START_REF] Sudret | Meta-models for structural reliability and uncertainty quantification[END_REF]. Approximation methods like FORM [START_REF] Lemaire | Structural Reliability[END_REF][START_REF] Ditlevsen | Structural Reliability Methods[END_REF] can also be performed. All methods are efficient provided that the problem has a smooth limit-state surface which is the case for an isoconstrained mechanism tolerance analysis problem. For an overconstrained mechanism, these techniques, except the Monte Carlo simulation, can no longer be used because of a piecewise limit-state function coming from the different configurations of gaps.

This paper intends to propose an efficient method to compute the probability of failure of a tolerance analysis problem in the case of overconstrained mechanisms. The technique is based on a transformation of the tolerance analysis problem formulation using the Lagrange duality property. This operation leads to an auxiliary problem which is free from the optimization step. The solution method includes a selective search algorithm so as to determine the dominant failure situations among the numerous possible ones. The probability of failure is eventually computed using the First Order Reliability Method (FORM) for systems [START_REF] Lemaire | Structural Reliability[END_REF][START_REF] Ditlevsen | Structural Reliability Methods[END_REF].

The paper is organized as follows: section 2 shows the current tolerance analysis problem formulation whose probability is estimated thanks to the Monte Carlo simulation. Section 3 describes the mathematical transformation of the optimization problem into its Lagrange dual. Section 4 is devoted to the comparison of the proposed method with the Monte Carlo simulation on different applications: first, the different transformation steps of the proposed formulation are detailed on a simple academic example. Then the method is applied to an overconstrained industrial application modeled in three dimensions.

Tolerance analysis of overconstrained mechanisms

Problem formulation based on quantifiers

The presence of gaps in overconstrained mechanisms makes the mechanical behavior difficult to model. Gaps are considered as free variables, but they are not free of constraints because interpenetration between two surfaces of two parts of the mechanism cannot be allowed. A set of N C interface constraints are therefore defined to prevent surfaces from penetrating into each other. Let X = {X 1 , . . . , X n } be the vector of random variables and g = {g 1 , . . . , g m } the vector of gaps. Given a realization x of the random vector X, these constraints are inequations written as follows:

{C k (x, g) ≤ 0} k=1,...,NC (1) 
The functional condition equation of the mechanism is expressed as follows:

C f (x, g) = y th -Y ≥ 0 (2) 
where Y = f (x, g) is the response of the system (a parameter such as a gap or a functional characteristic) modeled by a function f characterizing the influences of the deviations and gaps on the mechanism behavior [START_REF] Nigam | Review of statistical approaches of tolerance analysis[END_REF].

The universal quantifier "∀" (all) is used to translate the concept that the functional condition must be must respected in all configuration of the mechanism. The definition of the functionality of the mechanism is given by Qureshi et al. [START_REF] Qureshi | A statistical 267 tolerance analysis approach for over-constrained mechanism based on op-268 timization and monte carlo simulation[END_REF]: "for all admissible gap configurations of the mechanism, the geometrical behavior and the functional requirement are respected". For any realization

x of the random vector describing the geometrical deviations, the mechanism is functional if the following holds:

C f (x, g) ≥ 0, ∀g ∈ R m : C k (x, g) ≤ 0, ∀k ∈ 1, . . . , N C (3) 
The goal of tolerance analysis is to compute a probability of failure. From the previous definition of the functionality, the definition of the non functionality can be formulated as: "there exists at least one admissible configuration for which the functional condition is not respected". That is why the worst configurations of gaps must be considered which is obtained when the minimum value of C f (x, g) is found whereas the interface constraints are satisfied. The expression of the probability of failure is given in Eq. ( 4).

P f = Prob (R(X) ≤ 0) (4) 
where

R(x) = min g∈R m C f (x, g) such that C k (x, g) ≤ 0, ∀k ∈ 1, . . . , N C .

First approach combining Monte Carlo simulation and optimization

A straight forward approach to estimate the probability of failure is based on the Monte Carlo simulation combined with an optimization algorithm. Let us introduce the indicator function ½ min C f ≤0 being equal to one if min g C f (x, g) ≤ 0 and zero otherwise. The probability of failure estimation is then expressed as follows:

P f mc = 1 N N i=1 ½ min C f ≤0 x (i) (5) 
where x (1) , . . . , x (N ) is a set of samples from the random vector X. This estimation technique, combined with the optimization scheme to evaluate

½ min C f ≤0 x (i)
for each (i), is easy to implement and able to provide an accurate estimate of the probability provided that the coefficient of variation of the estimator, given

Eq. ( 6), is small enough (<10%).

C.O.V P f mc = 1 -P f mc N P f mc (6) 
Monte Carlo simulation is the reference method, which can cope with a piecewise continuous limit-state surface. For simple mechanisms, the optimization step is costless although repeated N times. However, for highly overconstrained systems, the optimization step makes the Monte Carlo simulation too much time consuming, especially for small target probabilities. A new method is therefore required in order to analyze complex systems faster.

System reliability formulation based on Linear Programming

As previously stated in the introduction, the full failure domain turns out to be a system combinations of several failure domains relative to the different configurations of gaps of the mechanism. Indeed, due to gaps and following the realization of the random variables, several worst configurations of gaps may exist in a mechanism when minimizing C f (x, g) [START_REF] Beaucaire | Statistical tolerance analysis of over-constrained mechanisms with gaps using system reliability methods[END_REF]. In practice, some configurations often occur but some others may never happen. If several dominant configurations are identified, then several discontinuities appears in the limitstate surface. It represents a change of position of the mechanism parts from a configuration to another. A worst configuration leading to a non functional domain is called a failure situation. In [START_REF] Beaucaire | Statistical tolerance analysis of over-constrained mechanisms with gaps using system reliability methods[END_REF], Beaucaire et al. propose a system reliability formulation which can be obtained by solving the KKT optimality conditions of the optimization problem given in Eq. ( 4). However this formulation leads to define a probability formulation as the union of intersection of events and cannot be used for complex mechanism. 

Transformation of the optimization problem into the Lagrange dual form

The tolerance analysis problem formulation is defined as a linear function of gaps [START_REF] Qureshi | A statistical 267 tolerance analysis approach for over-constrained mechanism based on op-268 timization and monte carlo simulation[END_REF]. Indeed the functional condition is always defined as a linear combinations of several gap components. Interface constraints are most of the time also written as a linear functions of gaps [START_REF] Qureshi | A statistical 267 tolerance analysis approach for over-constrained mechanism based on op-268 timization and monte carlo simulation[END_REF]. However, cylinder type joints lead to define quadratic interface constraints. In this case, constraints have to be linearized. This linearization of the behavior model has an impact on the probability of failure but this is not the purpose of the present paper. Given these properties, the optimization problem belongs therefore to the linear programming category. In addition, the objective function C f is assumed differentiable.

Given a realization x = {x 1 , . . . , x n } of the random vector X, let us define the Lagrange function:

L(x, g, λ) = C f (x, g) + NC k=1 λ k C k (x, g) (7) 
where λ are the N C Lagrange multipliers [START_REF] Bonnans | Numerical Optimization -Theoretical and Practical Aspects[END_REF].

Proposition 3.1. In the present case, g * is an optimal solution of the optimization problem if and only if there exists λ * ≥ 0 such that (g * , λ * ) is a saddle point of the Lagrange function in Eq. [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation[END_REF]. In particular, the optimization problem has a solution if and only if L has saddle points, and if it does, then its

Lagrange dual problem has a solution whose optimal values are equal.

Let us consider a Linear Programming problem, characterizing a tolerance analysis problem, which is written in a matrix form as follows:

min g C f (x, g) = a T x + b T g + c 0 subject to C k (x, g) = d T k x -e T k g + c k ≤ 0 (8) 
for k = 1, . . . , N C and for g ∈ R m . The Lagrange function is given by:

L(x, g, λ) = C f (x, g) + NC k=1 λ k C k (x, g) = b - NC k=1 λ k e k T g + NC k=1 λ k d T k x + c k + a T x + c 0 (9)
Finally, the Lagrange dual problem reads:

max λ C f,dual (x, λ) = NC k=1 λ k d T k x + c k + a T x + c 0 subject to NC k=1 λ k e k = b; λ ≥ 0 (10) 
The expression of the dual form allows the objective function to be no more a function of gaps. In addition, according to the proposition 3.1, if an optimal solution exists, then both optimization problems in Eqs. ( 8) and ( 10) have the same solution. The optimization constraints are now m equality equations to be satisfied and the Lagrange multipliers must be positive. The number of interface constraints N C being greater than the dimension m, the dual optimization problem is under constraints: there are more Lagrange multipliers λ than equality constraints. In order to find the admissible Lagrange multipliers satisfying the constraints, all possible combinations must be tested. However, some combinations are impossible. Table 1 lists several impossible situations. 

Impossible situation Physical interpretation

All λ equal to 0 because b = 0. This is equivalent to consider that there is no contact between the mechanism parts because no interface constraints can be equal to zero.

All λ are different from 0 because

N C >> m.
This is equivalent to consider that there are contacts in every possible points of the mechanism simultaneously because all interface constraints must be equal to zero.

In fact, the number of non zero Lagrange multipliers

λ s k = {λ s (1) k , . . . , λ s (m) k }
must be equal to the number of gaps to be found, where s k contains the indices of the Lagrange multipliers different from zero of the k th situation. So, the number of possible situations is equal to N s = NC m , but all situations may not be admissible regarding the optimization constraints, given in Eq. [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and Support Vector Machines[END_REF]. Let N as be the number of the admissible situations of Lagrange multipliers satisfying the given constraints and C (s k ) f,dual (x) = C f,dual (x, λ s k ) be the expression of the dual functional condition relative to the combination s k . There are then N as admissible solutions to the maximization problem, in Eq. [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and Support Vector Machines[END_REF], which can now be written as follows:

C * f,dual (x) = max i={1,...,Nas} C (si) f,dual (x) (11) 
In addition, according to the proposition 3.1, the optimal values of the primal and dual optimization problem are equal, i.e. both expressions of the functional condition are equal:

C * f (x) = C * f,dual (x) = max i={1,...,Nas} C (si) f (x) (12) 
Finally, the probability of failure is simply expressed as follows:

P f = Prob max i C (si) f (X) ≤ 0 (13) = Prob Nas i=1 C (si) f (X) ≤ 0 (14) = Prob C (s1) f (X) ≤ 0 ∩ . . . ∩ C (sN as ) f (X) ≤ 0 (15) 
The above transformation procedure is described in detail in a simple example in Subsection 4.1. This new formulation of the tolerance analysis problem as a simple intersection of events allows the efficient FORM method for systems to be applied to compute the probability of failure. This method is explained in the following Subsection.

The FORM method for systems

The goal is to compute the probability from the multivariate Gaussian probability density function φ n , with the hypothesis of a first order approximation on each situation [START_REF] Lemaire | Structural Reliability[END_REF][START_REF] Ditlevsen | Structural Reliability Methods[END_REF]. Given N as admissible failure situations, the parallel system failure probability, see Figure 4, is expressed as follows:

P f = Prob Nas k=1 C (s k ) f (X) ≤ 0 (16) 
The reliability indices β s k and direction cosines α s k , for k = 1, . . . , N as , of each situation can be computed using the Hasofer-Lind-Rackwitz-Fiessler algorithm [20] or the improved version [START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF]. In addition the matrix [ρ] of the limit-state correlation coefficients is gathered from the direction cosines:

ρ s k sj = α s k • α sj (17) 
The expression of the failure probability is given in Eq. [START_REF] Beaucaire | Statistical tolerance analysis of over-constrained mechanisms with gaps using system reliability methods[END_REF].

P f = Prob Nas k=1 C (s k ) f (X) ≤ 0 = Φ Nas (-β; [ρ]) (18) 
where Φ Nas is the multivariate Gaussian cumulative distribution function. The numerical value of this function can be evaluated using the method proposed by Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF]. In addition, a confidence interval on the result is provided with no extra numerical cost.

Reduction of the number of intersections

The admissible failure situations may be found by computing the Lagrange multipliers in all possible cases. This operation can be achieved if a small number of possibilities exist, e.g. N s ≤ 10. However for complex systems, the number of cases may exceed several thousands making this operation impossible.

In addition, some admissible situations may have no influence on the failure probability value. In both cases, finding and considering the N as admissible situations is not conceivable. A search algorithm is therefore required in order to select only a number N ds of dominant failure situations. The probability of failure is now expressed as follows: points on a hypersphere near the origin to the points with a larger distance.

P f = Φ N ds (-β; [ρ]) (19) 
For a given hypersphere radius, several search directions in the standard space are pseudo randomly defined. Points leading to a failure situation are saved as elite chromosomes and an evolutionary operation is performed in order to find additional failure situations in the same area (crossover) or in the opposite direction (mutation). The evolutionary operation is repeated several times until no new failure situations are found. The hypersphere radius is then increased in order to search further away in the standard space. Once the hypersphere radius is great enough or sufficient failure situations have been found, the algorithm stops. The full algorithm is well described in [START_REF] Kim | System reliability analysis using dominant failure modes identified by selective searching technique[END_REF].

Applications

A simple academic example is proposed as a first illustration in Subsection 4.1. In particular, the proposed formulation with the transformation steps into the Lagrange dual form is detailed. Subsection 4.2 shows the application of the method to an industrial application. Results are compared with the reference results obtained with the Monte Carlo simulation combined with the optimization scheme.

Illustration on a simple academic example

The optimization problem characterizing a pseudo behavior model in its primal form is defined in Eq. ( 20). The functionality is ensured when C f ≥ 0.

The goal is to compute the probability

P f = Prob(min g C f (X 1 , X 2 , g) ≤ 0)
where the random variables X 1 and X 2 follow a normal distribution N (µ X , σ X )

whose parameters are given in Table 2. Three different set of parameters are used in order to change the order of magnitude of the probability failure.

min C f (x, g) = x 1 + x 2 + 1 + g 1 + 2g 2 subject to C 1 (x, g) = x 1 -1 -g 1 ≤ 0 C 2 (x, g) = x 2 + 2 -g 2 ≤ 0 C 3 (x, g) = x 1 -x 2 -2g 1 ≤ 0 C 4 (x, g) = 2x 1 + x 2 + g 1 -2g 2 ≤ 0 ( 20 
)
Table 2: The three set of parameters of the normal random variables for the academic example.

µ X σ X Set of parameters All 1 2 3

X 1 0 1 0.5 0.4 X 2 0 1 0.5 0.4
From the definition of the Lagrange dual problem given in Eq. ( 10), the dual form of this optimization problem is written as follows:

max λ C f,dual (x, λ) = λ 1 (x 1 -1) + λ 2 (x 2 + 2) + λ 3 (x 1 -x 2 ) +λ 4 (2x 1 + x 2 ) + x 1 + x 2 + 1 subject to λ 1 + 2λ 3 -λ 4 = 1 λ 2 + 2λ 4 = 2 λ 1 , λ 2 , λ 3 , λ 4 ≥ 0 (21) 
The number of Lagrange multipliers λ is greater than the number of equality constraints so the different possibilities where two λ are different from zero (and the others are set to zero) must be tested, i.e. a number of possible situations

N s = 4 2 = 6.
Lagrange multipliers values λ are computed solving the linear system of equality constraints. Table 3 lists these possible situations and shows if the result is admissible or not. 

Situation hypothesis Result Expression of C

f s 1 : λ 3,4 = 0 λ 3 = 1 C s1 f = 4x 1 + x 2 + 1 λ 1,2 = 0 λ 4 = 1 s 2 : λ 2,4 = 0 λ 4 = -1 < 0 It is not an optimum λ 1,3 = 0 λ 2 = 4 s 3 : λ 2,3 = 0 λ 2 = 2 C s3 f = 3x 1 + 5x 2 2 + 5 λ 1,4 = 0 λ 3 = 1/2 s 4 : λ 1,4 = 0 λ 1 = 2 C s4 f = 5x 1 + 2x 2 -1 λ 2,3 = 0 λ 4 = 1 s 5 : λ 1,3 = 0 Constraint of Eq. (21) Impossible λ 2,4 = 0 ⇒ 2 = 0 s 6 : λ 1,2 = 0 λ 1 = 1 C s6 f = 2x 1 + 3x 2 + 4 λ 3,4 = 0 λ 2 = 2
The admissible failure situations are found in this case by computing the Lagrange multipliers in order to describe in detail why some configurations are not admissible. The selective search algorithm, see Subsection 3.3, can also be used. From Table 3, the number of admissible situations is N as = 4. The optimization problem is now written as follows:

C * f (x) = max C s1 f (x), C s3 f (x), C s4 f (x), C s6 f (x) (22) 
= max 4x 1 + x 2 + 1, 3x 1 + 5x 2 2 + 5, 5x 1 + 2x 2 -1, 2x 1 + 3x 2 + 4
The associated probability of failure is only a function of random variables X 1 and X 2 , as seen from the following expression:

P f = Prob    {4X 1 + X 2 + 1 ≤ 0} ∩ 3X 1 + 5X 2 2 + 5 ≤ 0 ∩ {5X 1 + 2X 2 -1 ≤ 0} ∩ {2X 1 + 3X 2 + 4 ≤ 0}    (23) 
The FORM method is applied on each failure situation of the previous formulation. In this case of linear functions with normal random variables, the FORM method provides exact results of each reliability index. Results obtained for the first set of parameters are shown in Table 4. The correlation matrix associated with this problem is given in Eq. ( 24). 

        (24) 
Given these values, the probability of failure can be computed using the multivariate Gaussian cumulative distribution function in four dimensions:

P f = Φ 4 (-{β s1 , β s3 , β s4 , β s6 } ; [ρ]) (25) 
The comparison of the results obtained with the Monte Carlo simulation (for a C.O.V ≈ 5%) and the FORM method for systems are shown in Table 5 for the three set of parameters. The probability of failure is expressed in parts per million (ppm). The smallest the probability, the longer the Monte Carlo simulation to be accurate enough. In contrast, using the proposed formulation and solution method, the computing time is small and stable. Results provided by the FORM method for systems are consistent with those obtained by the Monte Carlo simulation. In addition, the selective search algorithm appears useful because only two failure situations are selected as dominant situations, which allows again to save time. Indeed, only the failure situations s 1 and s 3 are required to compute the probability of failure. As shown in Figure 5, the failure domain is the intersection of two failure domains corresponding with the situations s 1 and s 3 . 

Industrial application

The application is based on a gear pump, see Figure 6, which has two parts positioned with two pins. The positioning of these two parts has an influence on the angle of both gear axes. The functionality of the pump can be reduced if the assembly precision of the parts is insufficient. Based on this pump, a simplified overconstrained mechanism is studied. Figure 7 shows the mechanism with amplified gaps between parts. The functional condition concerns the deviation of the point G of part (1) with respect to part (2). This point G can be seen as a functional point that is representative of one axis of the gear pump. Characteristics of the mathematical behavior model are listed below:

• 38 random variables following a Gaussian distribution X ∼ N (µ X , σ X ).

Values of all parameters are given in Appendix A.

• 3 gap variables g which are the optimizations parameters.

• 4 quadratic interface constraints which give N C = 160 interface constraints after applying a linearization procedure.

• N s = 160 3 = 669920 possible situations.

In order to show the efficiency of the proposed formulation, different orders of magnitude of the probability of failure are intended to be reached. Probabilities of failure are expressed in parts per million (ppm). Table 6 shows the numerical results obtained for three levels of probability. The maximum number of dominant failure situations, N ds , found by the selective search algorithm is set to 5, 100 and 200. A number of failure situations too small leads to a loss of accuracy of the probability of failure whereas a too large number leads to a waste of time in calculation because there is no need to increase the precision on the result. In cases with a large N ds , it can be seen that the FORM method for systems allows to get accurate results that are identical to the reference results with the Monte Carlo simulation. The obtained values of the confidence interval are small enough to ensure an accurate result. In addition, reaching low probabilities with precision is also possible within an acceptable computing time. Results are obtained in less than two minutes whereas the Monte Carlo simulation requires several hours. Indeed, low probabilities lead to define a large Monte Carlo population so as to yield an accurate estimation of the probability of failure, thus greatly increasing the computing time because of the optimization step. 

Conclusion

Considering that a mechanism behavior of a product is disturbed by admissible geometrical deviations and gaps between surfaces, it is natural to dispose of a tool able to evaluate the quality level of a designed mechanism. The tolerance analysis method takes into account the specified design tolerances in order to determine whether they ensure a mechanism to be assembled and functional.

Evaluating the quality level turns out to be an estimation of a probability of failure which must be done as fast and accurate as possible. The standard method, which combines Monte Carlo simulation and an optimization scheme, is not able to provide accurate result and small values of ppm in a reasonable computing time for complex overconstrained mechanism. This paper proposes a new procedure to deal with a functional tolerance analysis.

The proposed procedure is based on a system formulation of the problem so that a system reliability method can be used. This formulation is obtained using the Lagrange dual form of the original optimization problem. The system formulation of the problem is defined as a simple intersection of events. A simulation-based selective search algorithm is used in order to find only the dominant events. The probability of failure is then quickly estimated using the FORM method for systems.

An academic example is used to detail all the transformation procedure.

Then the proposed method is applied on an industrial application modeled in three dimensions. Results show that the FORM method for systems provides accurate result much faster than with the Monte Carlo simulation. In addition, the procedure is able to handle problems where low probabilities are intended to be reached. The application remains simple enough to be able to perform a Monte Carlo simulation so as to compare results. The major advantage of the proposed method is for highly complex systems, a functional condition computed using a finite element modeling for instance, in this case Monte Carlo simulation cannot be applied anymore. 
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Figure 1 :

 1 Figure 1: Isostatic mechanism. The functional characteristic Y can be expressed as a function of variables x 1 and x 2 .

Figure 2 :

 2 Figure 2: Two worst configurations of gaps in a 1D mechanism.The goal is to find the maximum value of Y .For two given sets of random variable realizations x

Figure 3 :

 3 Figure 3: Limit-state surface for a mechanism with two random variables and three failure situations.

Figure 3

 3 Figure 3 shows a limit-state surface for a mechanism with two random variables and three failure situations. It appears clearly that the probability of failure matches the intersection of all failure domains of each situation. The goal of this paper is to demonstrate this assumption from the current tolerance analysis formulation and to propose a procedure to compute the probability of failure P f based on a system formulation. Subsection 3.1 shows the proposed formulation of the tolerance analysis problem based on the Lagrange dual form of the optimization problem. Subsection 3.2 describes the FORM method for systems. Subsection 3.3 proposes a method in order to reduce the number of intersection events by selecting only dominant failure situations.

Figure 4 :

 4 Figure 4: The FORM method for systems in the standard space with three failure domains.

Kim

  et al. [23] propose a simulation-based selective search algorithm which uses a genetic algorithm. It is specially developed to find dominant failure modes of a structure among a large number of possible modes. In the present paper, the failure modes correspond to the failure situations. Considering the standard space of the random variables, the dominant failure situations are located close to the origin. Kim et al. propose an outward search in the standard space, from

Figure 5 :

 5 Figure 5: Failure domain of the academic example. The failure domain is the intersection of two failure domains of situations s 1 and s 3 .

Figure 6 :

 6 Figure 6: Full pump view.

Figure 7 :

 7 Figure 7: Simplified mechanism in 3D.

Table 1 :

 1 List of impossible combinations of Lagrange multiplier values.

Table 3 :

 3 List of possible combinations to compute Lagrange multiplier values.

Table 4 :

 4 Reliability indices obtained for the first set of parameters for the academic example.

	Failure situation	s 1	s 3	s 4	s 6
	β			0.24 1.71 -0.19 1.12
					
	[ρ] =	      	1 0.707 0.998 0.739 0.707 0.998 0.796 1 0.739 0.991 1 0.824
			0.796 0.991 0.824	1

Table 5 :

 5 Comparison between Monte Carlo simulation and FORM method for systems resultsfor the academic example.

		Monte Carlo FORM system
		42300	41214
	P d (x10 -6 )	307	301
		9.06	9.03
		8050	
	95% C.I. (x10 -6 )	57	
		1.7	
		4 s	0.7 s
	Computing time	11 min	0.7 s
		6.2 h	0.6 s

Table 6 :

 6 Comparison between Monte Carlo simulation and FORM method for systems resultsfor the industrial application.

		Monte Carlo		FORM system
	N ds		5	100	200
		17933	23889 18239	18289
	P d (x10 -6 )	155	282	156	154
		9.4	16	9.3	9.1
		3065			
	95% C.I.	28			
		1.7			
		3 min	22 s	66 s	2.15 min
	Computing time	5.1 h	23 s	67 s	2.26 min
		3.5 d	26 s	73 s	2.35 min

  The proposed procedure is developed to solve tolerance analysis problems, though it is conceivable that other research Appendix A. Parameters of the normal random variables of the in-

		µ X		σ X	
	Set of parameters All	1	2	3
	X 18	0	0.01	0.01	0.01
	X 19	0	0.01	0.01	0.01
	X 20	0	0.01	0.01	0.01
	X 21	0	0.01	0.01	0.01
	X 22	0	0.01	0.01	0.01
	X 23	0	0.01	0.01	0.01
	dustrial application X 24 0	0.01	0.01	0.01
	X 25	0	0.01	0.01	0.01
	X 26	µ X 0	0.01	σ X 0.01	0.01
	Set of parameters All X 27 0	1 0.001 0.001 0.001 2 3
	y th X 28	0	0.25 0.001 0.001 0.001 0.28 0.29
	X 1 X 29	20 0	0.06 0.001 0.001 0.001 0.03 0.02
	X 2 X 30	19.8 0.06 0 0.01	0.03 0.01	0.02 0.01
	X 3 X 31	20 0	0.06 0.01	0.03 0.01	0.02 0.01
	X 4 X 32	19.8 0.06 0 0.01	0.03 0.01	0.02 0.01
	X 5 X 33	0 0	0.01 0.001 0.001 0.001 0.01 0.01
	X 6 X 34	0 0	0.01 0.001 0.001 0.001 0.01 0.01
	X 7 X 35	0 0	0.01 0.001 0.001 0.001 0.01 0.01
	X 8 X 36	0 0	0.01 0.01	0.01 0.01	0.01 0.01
	X 9 X 37	0 0	0.01 0.01	0.01 0.01	0.01 0.01
	X 10 X 38	0 0	0.01 0.01	0.01 0.01	0.01 0.01
	X 11	0	0.01	0.01	0.01
	X 12	0	0.01	0.01	0.01
	X 13	0	0.01	0.01	0.01
	X 14	0	0.01	0.01	0.01
	X 15	0	0.01	0.01	0.01
	X 16	0	0.01	0.01	0.01
	X 17	0	0.01	0.01	0.01
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fields may have problems written as the original formulation. In this case, the transformation of the formulation into a system formulation may also be applied.