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Abstract—On-demand video delivery with a Content Delivery
Network (CDN) solely based on set-top-boxes has been introduced
recently. This architecture combines the load balancing and
fault tolerating features of peer-to-peer systems with stableness
of a server based CDN by storing contents in set-top-boxes.
Since the set-top-boxes usually have much longer online time
than traditional PC based peers, they are ideal for On-demand
video services. Currently, videos are separated into pieces and
randomly stored in boxes. Requests from clients are redirected to
the nearest boxes. However, random strategy may lead to some
costly and inefficient allocations, for example, a video part could
be placed much further than other parts of the same video,
while two close boxes hosting the same part. This paper aims
to reduce downloading cost by exploiting the network location
of boxes when allocating the videos. We show that optimizing
the allocation is NP-hard. Two locality-based online heuristics
which support transient boxes are proposed. Simulations with
realistic network settings demonstrate that our heuristics have
comparable performance to an existing approximate algorithm
and outperform the random allocation.

I. INTRODUCTION

Most analysts forecast a continuous growth in the popu-
larity of video on demand services and user-generated video
websites [1, 2]. Along with the increasing quality of video
content, these video providers are expected to deliver in the
very next years several terabits per second of video data over
the unicast IP network. Numerous papers have shown that
current system architectures, based on data-centers assisted by
Content Delivery Networks (CDN), are insufficient [3].

Several works have suggested to also make use of the
set-top boxes or residential gateways of clients, thereafter
called boxes, to assist the video provider [4]–[7]. The design
principles of such a system have been clearly stated:

1) a catalog of videos (noted C) to be hosted by the box-
powered CDN is selected. Requests for the top 5%
popular videos (approximately half of the global traffic)
are handled by CDN proxies. The traffic generated by
the three quarter most unpopular videos (a tenth of the
global traffic) is managed by the data-center. Therefore,
the catalog C is chosen in the remaining: several millions
of mid-popular videos in the popularity range [5%, 25%].

2) a set of boxes (noted V) agree to participate.
3) each video a ∈ C is cut into ka independent substreams.

The principle of spreading distinct video substreams in
distributed video service is now widely admitted [8].

The optimal number of substreams per video has been
extensively studied in [6].

4) a subset of boxes Va ∈ V is chosen to host a substream
of the video a ∈ C. The ideal number of boxes (|Va|) has
been thoroughly analyzed in [5, 6]. A random choice of
boxes is usually assumed.

5) the ka substreams of a video a ∈ C is allocated to
the boxes Va. Capacity constraint imposes to allocate
only one substream to each box. Previous works have
neglected the question of which substream to which box.
This is the topic of this paper.

6) requests from clients of any video a ∈ C (noted Ja)
are automatically routed to the ka nearest boxes in
Va hosting separate substreams. Various works have
addressed the nearest server selection problem [9]–[12]

The allocation of substreams to the selected boxes is crucial
for network operators and Internet Service Providers (ISP).
A good allocation can indeed represent a substantial savings
when considering the network cost of the streaming sessions
from their clients to the different requested substreams, i.e.
the cost to transport the data from the boxes hosting the
substreams to the client. The notion of network cost is generic:
it can be computed from the inter-AS peering, the estimated
traffic cost or the number of traversed routers. In this paper,
without loss of generality, we use the latter indicator, so
we consider Internet as a network of routers, the distance
between two network elements being computed as the number
of routers on the shortest path between them.

Ideally, all substreams are hosted by boxes that are in the
same local network as the requester or in close sub-networks.
Unfortunately, less advantageous cases may occur, where at
least one substream is located much further than any other
substreams. It may be quite frustrating if in the meantime two
close boxes host the same substream.

In this paper, we provide a comprehensive study of the
substream allocation problem. Our analysis completes the
design of a massive video service with an objective that has
not been yet addressed: being friendly for network operators in
the sense that the whole network cost incurred by the delivery
of the video content is minimized. We show in Section III
that the problem of allocating optimally the substreams is NP-
hard. The problem formulation and the NP-hardness is the first
contribution of this paper.

Then we study two heuristics for a realistic scenario. We
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consider that boxes join the system when their owners sign in.
Hence, the heuristics are online: previous allocations can not
be modified, each new box is treated iteratively. We assume
that the service provider is able to estimate the location of
any new box x and to determine its closest boxes. In previous
works, it has been shown that the selection of Cx ⊂ C (the
set of videos that the box x will be partially in charge of)
can be easily decided. Then our problem is to choose, for
every video a in Cx, one substream i, i ∈ [1, ka]. We show by
simulations in Section V that our heuristics have the potential
to let network operators make substantial savings, which is the
second contribution of the paper.

II. RELATED WORKS

Besides aforementioned works, the design of a CDN hosting
multiple substreams has been introduced in [13] but this study
considers only two substreams per video, so the distribution of
substreams across proxies is not really an issue, and a random
allocation is assumed in this work. Yet, authors provide a short
description of this coloring problem where the goal is to assign
to each proxy a color corresponding to a unique substream.
More recent works have shown that increasing the number of
substreams can lead to substantial performance improvements
(e.g. [14, 15]). Therefore, the problem of allocating substreams
to elements of a CDN has been more deeply analyzed, but
these works usually focus on maintaining a number of sub-
streams proportional to their popularity as a countermeasure
to crashes [16, 17]. How to reduce the network cost when
clients retrieve all substreams of requested videos is less
frequently addressed. The distributed storage system described
in [18] proposes a mechanism to discover the “closest” video
substreams. However, the allocation algorithm does not take
into account any network proximity, so a video substream
may be excessively far from other substreams while two close
boxes could store the same substream. In our context, the
video service provider is expected to implement a redirection
mechanism able to route the request of clients to the k closest
boxes hosting the k required substreams of the requested
video.

The deployment of CDN has often been related with a
minimum κ-Median Problem where the problem consists of
determining κ servers to host same objects so that the cost of
retrieving one replica from many clients is minimized [19].
Our problem is different as now each server can choose any
of the k distinct substreams, the cost of retrieving the k
substreams from many clients being minimized.

III. PROBLEM STATEMENT AND MODEL

In a very first attempt to formally state the problem of
allocating the substreams to the boxes, we assume that the
service provider is able to accurately estimate the cost d(x, p)
between any pair of client x and box p. It means that the
service provider is able to locate the future clients of a video,
which is actually a very strong assumption. The decision
problem related with allocating the substreams to boxes can be
formulated as follows. As we consider separately each video,

we will omit in the following the subscript a in the notation.
The set of clients is thus noted J , the set of selected boxes V
and the number of descriptions k.
Decision Problem for Box-powered Video Delivery Net-
work
INSTANCE : Two subsets J and V , a positive integer k ≤ |V |,
a cost function d : J × V → R+ and a positive real K ∈ R.
QUESTION : Is there a labelling function ϕ from V onto
{1, · · · , k} such that the sum of all minimum costs to other
substreams is lower or equal to K, that is :∑

x∈J

∑
i∈[1,k]

min {d(x, p) : p ∈ V, ϕ(p) = i} ≤ K

This problem is a subproblem of k-Product Uncapacitated
Facility Location Problem (k-PUFLP) [20]. It is known as
NP-hard. An approximate optimal algorithm for the k-PUFLP
problem has been recently proposed in [21]. The algorithm is
able to find a solution which it is at most 3

2k − 1 times the
optimal solution.

Unfortunately, the client location can hardly be predicted,
moreover this algorithm requires to recompute the whole
allocation after every event, for example a client appears or a
box crashes. Therefore it can not be realistically implemented.
It can however be useful as a competitor for any algorithms
fitting better with realistic settings. Indeed, in a snapshot of our
simulations, it is possible to compare the allocation given by
any heuristic versus this proven approximation of the optimal
solution.

A. Our Approach

Actually the only parameters that we can assume to be
known by the video provider are (i) the local network of the
box, i.e. the identifier of the first router that connects this
box to the Internet, and (ii) the network cost between every
two routers (see [22]–[24] for some techniques that may be
used). Our claim is that, when the network cost between two
boxes is low, there is a high probability that both boxes will be
chosen simultaneously among the k nearest boxes of a given
client. This claim could be formulated as follows. We define
the matrix of remoteness D = (δp,q)p,q∈V to represent the
closeness of two boxes. In a first implementation, we choose
δp,q as a linear function of the cost d(p, q). The smaller is
δp,q , the higher is the probability that they will be chosen
simultaneously by a box, hence the more likely they should
host distinct substreams.

We validate this claim through a short simulation. We
give more details about the parameters of the simulation
environment in Section V, that is, we just give here some basic
elements. We are using a router map, namely nec topology, and
we attach some boxes and some clients to some end-routers
in a realistic manner. Then we determine, for each client, the
k nearest boxes. For each pair of distinct boxes p and q, we
compute three values: apq , the number of clients having either
p or q among their k nearest boxes; bpq , the number of clients
having both p and q in their k nearest boxes; and dpq , the
hop distance between p and q. Then, for each distance value
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Fig. 1. Correlation between the distance between two boxes and the
probability that they are both among the k nearest of a client

d (from 1 to the network diameter), we compute B(d)
A(d) , where

A(d) =
∑

(p,q):dpq=d apq , B(d) =
∑

(p,q):dpq=d bpq . A point
at (5, 0.2) means that 20% of boxes at distance equal to 5 are
chosen simultaneously by a client.

Results presented in Figure 1 show a strong correlation
between the distance between boxes and the probability that
they are selected simultaneously by the same client. When
d = 2, the edge routers of two boxes are connected to the
same sub-network. As can be expected, this case exhibits the
more significant probability while the probability is strictly
decreasing. Please observe also that this decreasing is quite
quick, even boxes that are not so far (e.g. seven routers far)
have very few chances to be selected together by a client. Note
also that two close boxes are not sure to be selected together
because, for some clients, this pair of boxes could be ranked
at k and k + 1.

Thus, our approach is intuitive: we try to allocate distinct
substreams to close boxes, of course. But, more important, we
try to allocate the subsreams such that every box is close to
all other substreams, that is, a client has higher probability to
find all substreams among its closest boxes.

B. Rainbow Cost Problem Formulation

Now, we define the rainbow cost for a box p ∈ V as the
sum of costs between p and the k boxes assigned to the k
substreams with the lowest remoteness. A box p chooses itself
for its substreams because δp,q = 0. Formally, the rainbow cost
of p is: ∑

i∈[1,k]

min {δp,q : q ∈ V, ϕ(q) = i}

Ideally, we would like to push k substreams of the same
video such that each box and its k−1 boxes having the lowest
remoteness collectively store all k substreams. However this is
not always possible and under this case, we would naturally try

to minimize the sum of rainbow costs. The decision problem
associated with this goal is as follows.
Minimal Overall Rainbow Cost Problem
INSTANCE : A set V , a positive integer k ≤ |V |, a symmetric
function D : V × V → R+ and a positive real K ∈ R.
QUESTION : Is there a labelling function ϕ from V onto
{1, · · · , k} such that the sum of all rainbow costs is lower
or equal to K, that is∑

p∈V

∑
i∈[1,k]

min {D(p, q) : q ∈ V, ϕ(q) = i} ≤ K

By solving this rainbow cost problem, we come up with a
substream distribution scheme where each box is connected
with k − 1 boxes hosting complementary substreams and the
sum of the costs on the edges are minimized. This result can
be easily extended to the original problem (with clients) in the
following sense. Actually, an edge between two boxes reflects
the likeliness that both of them are close to the same client.
Thus if a client is close to a given box p, it is likely to be close
to the boxes that are close to p. If all substreams are stored
in these boxes, the allocation has great chance to be near an
optimal solution. Sub-optimal results are possible when it is
impossible to allocate all substreams on the nearest neighbors
of every client. However, when this occurs, it is often possible
to allocate these substreams on a slightly extended set of nearer
neighbors.

C. NP-Completeness of Rainbow Cost Problem

The Rainbow Cost Problem is also a subproblem of the k-
PUFLP problem, which is NP-Complete. But as it is a strict
subproblem (we can not transform any k-PUFPL instance
into an instance of Rainbow Cost Problem), we must prove
that it is also NP-Complete. This problem is tight with the
Domatic Partition Problem [25] which is among the classical
NP-Complete problems. A dominating set in a graph is a set of
vertices such that every vertex of the graph is either in this set
or has a neighbor in this set. A domatic partition is a partition
of vertices such that each set of the partition is a dominating
set. Thus, the domatic partition problem is to determine if a
graph admits a domatic partition of size K, where the size of
a domatic partition is the number of sets of the partition.
Domatic Partition Problem
INSTANCE : A graph G = (V,E) with V the set of vertices
and E the set of edges, and a positive integer K.
QUESTION : Is there a partition D of V with K sets such that
each set belonging to D is a dominating set of G ?

Theorem 1 Rainbow Cost Problem is NP-Complete.

Proof . Given an instance of Rainbow Cost Problem and a
labelling function ϕ, verifying that this is a valid one is clearly
polynomial in the size of the problem: hence the Rainbow Cost
Problem belongs to NP.

We now reduce Domatic Partition Problem to our problem.
Given a graph G′ = (V ′, E′) and a positive integer K ′ as
an instance of the Domatic Partition Problem, we define the
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instance of Rainbow Cost Problem as follows : V as V ′, k as
K ′, K as K ′ ·|V ′| and for any p, q ∈ V , we define D(p, q) = 1
if p is a neighbor of q in G′, D(p, q) = 1 if p = q and
D(p, q) = K ′ · |V ′|+ 1 otherwise. Clearly the instance of the
Rainbow Cost Problem can be constructed in polynomial time
in the size of the instance of Domatic Partition Problem. We
claim that G′ admits a domatic partition of size K ′ if and only
if our instance admits a labelling ϕ from V to {1, · · · , k} such
that the sum of all rainbow costs is lower or equal to K.

For the forward implication, assume that D′ is a domatic
partition of G′ having K ′ elements. Let D′ = {D′1, · · · , D′K′},
then for any p ∈ V we define ϕ(p) such that p ∈ D′ϕ(p). As
k = K ′ and as D′ is a partition of V , we obtain that ϕ is a
labelling ϕ from V to {1, · · · , k}. Now, as every element of D′

is a dominating set, for any p ∈ V and for any s ∈ {1, · · · , k},
we obtain that min {D(p, q) : q ∈ V, ϕ(q) = s} = 1. So we
obtain that for every element p of V its rainbow cost is exactly
k. Thus ϕ provides a labelling such that the sum of all rainbow
costs is k · |V ′| which is lower or equal to K.

For the backward implication, assume that ϕ is a labelling
function such that the sum of all rainbow costs is lower or
equal to K. Let D′c the set {p ∈ V : ϕ(p) = c}. We claim
that D′ = {D′c : c ∈ {1, · · · , k}} is a domatic parition of
G′ having K ′ elements. First of all, as ϕ is a function from
V onto {1, · · · , k}, we obtain that each D′c is not empty and
thus that D′ is partition of V ′. Second, we show that each D′c
is a dominating set of G′. Assume on the contrary, that there
exists a vertex p ∈ V ′ such that p is neither in D′c nor has
a neighbor in D′c. Thus, by definition of D, we obtain that
min {D(p, q) : q ∈ V, ϕ(q) = c} = K ′ · |V ′|+ 1, and then the
rainbow cost of p is greater than K ′ · |V ′|+1. This contradicts
that ϕ is a labelling such that the sum of all rainbow costs is
lower or equal to K = K ′ · |V ′|. �

IV. PROPOSED HEURISTICS

The approximate algorithm for the k-PUFLP gives guaran-
teed results, but can not be realistically implemented. The sim-
plified problem for realistic implementations is unfortunately
NP-hard. We define in the following two online heuristics that
have no guaranteed approximation results but are expected to
produce good results and have practical interest in large-scale
dynamic systems.

Let say that box p′ is the nearest to box p if ∀q ∈ V, δpp′ ≤
δpq . The set of boxes K(p) contains the k nearest boxes to p.
For our problem, the optimal overlay would be the merge of
the following two graphs:
• a k-nearest neighbor graph, i.e. two boxes p, q are linked

if either q ∈ K(p), or p ∈ K(q)
• a rainbow colored graph, i.e. each box and the set of its

neighbors are assigned with all colors in C.
Unfortunately, the k-nearest graph is not necessarily a

domatically full graph [25], in other words the existence of
a partition into k + 1 dominating sets is not guaranteed. This
implies that a rainbow coloring with k + 1 colors on the k-
nearest graph is not guaranteed. Therefore, the idea of the

heuristics is either to relax the distance to the furthest boxes
a box can reach in a rainbow colored graph, or to allow sub-
optimal rainbow coloration of a nearest neighbor graph.

Assume a box p is able to sort all boxes in ascending
distance to itself. We note rp(q) the rank of the box q for p,
meaning that a number of rp(q) boxes are closer to p than q.
We denote by r(p) the rank of the nearest box to p completing,
with all closer boxes, the set of colors. Formally, r(p) is the
smallest integer ρ such that {ϕ(q) : q ∈ V, rp(q) ≤ ρ} = C.
We note r the maximal value of r(p) for all boxes p in V .
The reduction of the value of r is an objective. As previously
said, an optimal overlay would be obtained with r = k.

There is another motivation for reducing r. Intuitively, the
smaller is r, the more “local” is the required knowledge to
build the overlay. We observe indeed that most services aiming
at discovering nearby entities (e.g. [22]) succeed in quickly
determining a kind of “position” and the entities that are also
near this position. But the discovery of further entities is both
harder and less accurate. Even for a central server monitoring
the system, exploring distant boxes, for instance boxes in other
AS, requires computation time and is not likely to provide
relevant results.

A. Rainbow Coloring Heuristic

The Rainbow Coloring Heuristic builds an overlay where
a box and its nearest neighbors contain all colors. The idea
we suggest is simple. When a new box joins the system, it
iteratively explores the nearest boxes until it discovers k − 1
colors, then it chooses the unassigned color.

This heuristic is definitely more efficient in the case of a
metric, the triangular inequality enlarging the probability that
some close neighbors will also be satisfied by this new color.
We note however that this heuristic does not provide any bound
on r. In the worst case, a new box has to explore all other
boxes in order to determine its own color.

This heuristic corresponds to our first approach: we relax the
distance to the furthest box completing the rainbow coloring.

B. k-Nearest Partially Colored Heuristic

The k-nearest Partially Colored Heuristic builds a k-nearest
neighbor overlay, and tries to rainbow color it. A new box
p first looks for its k closest boxes K(p), and selects one
color among all colors that are not assigned in K(p). There
is ideally only one free color, but, as previously said, the k-
nearest neighbor graph may not be a domatically full graph,
so some boxes should probably choose, by default randomly,
among more than one color.

There is still no bound on r in this heuristic because there is
no guarantee on the rainbow coloration of the neighborhood.
But the computation of this heuristic ensures that a box
should not determine more than its k nearest boxes, so the
computation cost is bounded to the discovery of k boxes, while
the rainbow coloring heuristic has a computation cost that is
bounded by the number of boxes.

Note that this k-nearest partially colored heuristic as well as
the random allocation may generate overlay of boxes where no
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Dataset Year Type # Nodes # Links
GT-ITM – Generated 1944 6584
HOT – Generated 939 998
Nec 2003 Real 47k 119k
CAIDA 2003 Real 192k 600k

TABLE I
TOPOLOGY DATASETS

box at all chooses a certain color. In the evaluation part, we
tackle this issue by first allocating all colors to k randomly
chosen boxes, then assigning to other boxes through this
heuristic.

C. Discussion

Various more complex and efficient heuristics could be de-
signed, but we are looking for simple heuristics with minimal
requirements. We note here that the k-nearest Partially Colored
heuristic does only require the knowledge of the k nearest
boxes, which can be easily done in a centralized service or
using a dedicated network discovery service. The Rainbow
Coloring heuristic is more costly as more than k boxes have
to be discovered with no prior guarantee on the exact number
of required neighbors. Evaluations will however reveal that
this number of boxes is quite close to k in the real network,
so the cost of this heuristic is generally acceptable.

From a theoretical point of view, the challenge is to build a
rainbow colored overlay where the furthest neighbor of a box
is as close as possible. As previously shown, this problem
corresponds to finding the minimum integer κ, independent of
the number of nodes, such that the κ-nearest neighbor graph
is guaranteed to have a domatic number greater than k. To the
best of our knowledge, theoretical studies related with domatic
number have explored neither k-nearest neighbor graphs, nor
more general proximity or spanner graphs.

V. PERFORMANCE EVALUATION

We conduct extensive simulations to validate the efficiency
of the proposed heuristics. The simulations rely on realistic
network topologies, widely adopted parameters and experi-
mentally demonstrated properties, in order to obtain accurate
and meaningful results.

A. Simulation Environment

Our simulation platform is PeerSim, which emulates a vast
network expected to reflect the main characteristics of the
Internet. A router-level topology resulted from the Network
Cartographer (nec) [26] is used as our default network topol-
ogy, but three other network topologies have been also used
in the simulator: (i) GT-ITM [27], which is not recent though
still often used. It incorporates hierarchical structures observed
in Internet, (ii) HOT (Heuristically Optimal Topology) [28],
which includes technology constraints and economic consid-
erations, and (iii) CAIDA [29], which is considered as the
reference Internet map for researchers. The main characteris-
tics of these topologies are listed in Table I.

In our context, all system elements (clients and boxes) are
located at the edge of the Internet. Since nodes in the topology
graph represent routers, we randomly select a number of edge
routers with degree equal to one. Then, we transform them
into a “virtual” small cluster according to [30]: we attach
to a selected edge router a number of elements following
a normal distribution N(µ, 0.2µ) where µ is an adjustable
parameter. Intuitively, a high value for µ means that elements
are clustered, which is representative of a VoD service that
either is offered to clients of a few ISP, or is a local service,
for instance delivering video related with local topics. On
the contrary, a low value for µ indicates that elements are
spread all over the Internet, so the VoD service is probably a
worldwide service. Among these elements, some are randomly
selected to be boxes.

It is now time to set some default parameters for the ratio of
boxes, the number of clients and the parameter µ. We rely on
some trustworthy trends highlighted by recent measurement
studies [31]. We envision a service which is accessed one
billion time a day, so approximately three million typical four-
minutes long videos are simultaneously downloaded. The size
of the catalog of mid-popular videos can be approximated
with twenty million of videos, these videos being watched
simultaneously by one million users. The number of boxes
agreeing to participate as well as the amount of resources
(storage and bandwidth) they agree to supply are difficult to
estimate. But, in average for one video, with the same context
than described in [6], we consider by default that 30 boxes host
the video, and that this video is accessed by 1, 500 clients. This
latter number does not mean simultaneous clients, but rather
over the time this video is stored on the box until it is replaced
by another video. This represents around hundred giga-bytes of
data and less than one megabits of upload bandwidth. Finally,
the number of clients for one video in this catalog is low
in comparison with the total number of clients that use the
service. We use equivalent ratio to set µ = 7, that is, seven
elements are, in average, active (either as client, or as box)
about one video in this catalog of mid-popular videos in a
local network.

The optimal number of substreams in distributed environ-
ment is still an open question since the seminal works [14],
e.g. k is fixed at 15 in [5] or at 8 in [18]. However, when it
applies specifically for our context of box-powered CDN, it
appears that the number should preferentially be chosen in the
range k = 8 . . . 15 [6]. In our simulations, we use the default
value of k = 12, but k varies in a range from 1 to 30.

Given a substream allocation method, every client should
simultaneously download k distinct substreams. The prob-
lem of selecting the nearest servers over Internet has been
addressed in many previous works [9]–[12]. The commonly
used selection metrics are round-trip time (RTT), hop count
and available bandwidth. Hop count is used in [11, 12] rather
than RTT, because backbone links are often faster than local
links, the use of RTT could favor traversing backbone links.
Studies on peer selection (distinct from server selection) have
also adopted hop count as metric [32], because it reflects
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directly network proximity and network resource utilization.
Additional metrics could be combined with hop count to
achieve substream selection, such as RTT, loss rate and server
load. Here, we make trade off between simulation complexity
and reality by using hop count based selection method, as used
also in [13]. Thus, every client picks the k closest distinct
substreams, the distance to substream being the hop-number
in the topology graph.

B. Heuristic Performance

We evaluate the efficiency of the heuristic by observing the
rank of the furthest box a client should visit to complete its
k substreams. That is, a perfect assignation would produce
that the k nearest boxes of every client contain the k distinct
substreams. On the contrary, when the jth nearest box to a
client stores the same substream as the ith one, with j > i,
the allocation is not optimal. That is, we measure the rank of
the furthest box that is required to explore before to reach all
substreams. Figure 2 demonstrates the Cumulative Distribution
Function (CDF) of clients versus the rank of their furthest box.
A point at (20, 0.9) in the figure could be understood as 90%
of the clients have found the k substreams among their 20
nearest boxes. Rainbow, k-Nearest, k-PUFLP algorithms are
compared with the Random allocation. As expected, the k-
PUFLP heuristic achieves the best placement efficiency, while
the random allocation exhibits the worst results. In the case of
12 substreams, more than half of clients have to connect to at
least their 23rd nearest boxes to reach 12 substreams, which
means more than half of the explored boxes are redundant.
In this simulation, both rainbow and k-Nearest heuristics
have similar results compared to k-PUFLP. Rainbow coloring
heuristic is slightly better than k-Nearest.

Besides measuring the efficiency of the heuristics, note
that exploring more boxes to reach all substreams can also
be costly for the clients when connecting to the system.
Therefore, reducing the number of boxes to discover before to
start downloading the content can enhance the start-up delay
and reduce the cost of running a discovery service.
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Fig. 3. Average distance (nb. of routers) when the number of clients increases

C. Network Cost Reduction

The network cost is defined as average distance client to
boxes and is obtained as follows: we measure the overall
number of routers that are in the paths between each client and
its k closest boxes having the k substreams, then we divide
this value by the number of boxes.

The impact of various system parameters on the network
cost is studied by varying the number of clients, the number
of boxes, the number of substreams and the density of elements
µ in each simulation run. The results are shown in Figure 3
to Figure 6, respectively.

We immediately observe that both heuristics always out-
perform the random allocation and comparable to k-PUFLP
algorithm under various settings. It proves not only the as-
sumption that two close boxes are likely to serve the same
clients, so should be complementary, but also the successful
rainbow coloring of the overlay. However, if we look further
at the results, we find that the difference between the random
allocation and the other heuristic is not so significant. That
is, the gain is usually around less than a half router over an
average of 11 routers. This difference can become substantial
in the case of large-scale systems, but it is however quite
modest. Therefore, although our results are convincing about
the performance of our heuristics and the general approach
detailed in this study, the interest of implementing such
techniques in a real implementation can be considered. We
now let focus on the behavior of the system.

In Fig. 3, the average distance is quite stable while the
number of clients increases in the system. This curve reveals
the scalability of the system in the sense that the traffic stays
local: boxes find their substreams in their surroundings.

In Fig. 4, the average distance decreases when the number of
boxes increases. All heuristics have obviously the same result
for 12 boxes because we have 12 substreams so each box has a
different substream. We observe that the gain of our heuristics
to the random allocation reaches a kind of optimality for 40
boxes. This has also been confirmed by other simulations. In



7

 9

 10

 11

 12

 13

 20  40  60  80  100  120

A
ve

ra
ge

 H
op

 N
um

be
r 

to
 B

ox
es

Number of Boxes

1500 clients, 12 substreams, mu = 7

Random
k-PUFLP
Rainbow

k-Nearest

Fig. 4. Average distance (nb. of routers) when the number of boxes increases

 9

 10

 11

 12

 13

 5  10  15  20  25  30

A
ve

ra
ge

 H
op

 N
um

be
r 

to
 B

ox
es

Number of substreams

1500 clients, 30 boxes, mu = 7

Random
k-PUFLP
Rainbow

k-Nearest

Fig. 5. Average distance (nb. of routers) when the number of substreams
increases

general, maximal gain is achieved when the number of boxes is
approximately equal to three times the number of substreams.
It can be explained by noting that, when the number of boxes
becomes high, a client can find many boxes at a reasonable
distance to it. Whatever the cleverness of the heuristic, it is
likely that this large set of boxes will be assigned to all colors.
Therefore, the more boxes there are, the less advantageous will
be the heuristics because all colors will be easily found nearby
when one assigns the colors randomly.

In Fig. 5, the network cost increases with the number
of substreams, which is quite natural because, with a fixed
number of boxes, the clients should necessarily reach far boxes
to complete their substreams. We observe again the optimal
number of boxes per substream is about 3. Actually, when the
number of substreams is equal to the number of boxes, all
heuristics have obviously the same results. The other extreme
scenario occurs when the number of substreams is equal to
one, where all heuristics will again obviously give the same
results. Between these two extrema, the heuristics exhibit a
gain that seems to reach its maximal value when the number
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of boxes is between k ∗ 2 and k ∗ 3. It also corresponds to
a network cost which appears to be a good trade-off in both
Fig. 4 and 5, where we observe that the derivative of the curve
is maximal for a number of boxes between 25 and 40 in Fig.4
and a number of colors ranging from 10 to 17 in Fig.5.

Finally, in Fig. 6, the clustering density of boxes evolves.
In a highly clustered service, which may emulate a local
service, the average distance to box is naturally decreasing
as some boxes are probably attached to the same edge router
as the clients, so the distance is null to reach this substreams.
Substantial gain can be obtained by a clever algorithm which
can avoid that two boxes attached to the same routers store
the same substream, so the gain tends to slowly increase.

D. Impact of Network Topology

We now aim to show that these heuristics are not oppor-
tunistically presented in these simulations because they fit
with the selected network topology. We emphasize in Fig. 7
that these heuristics can provide a substantial gain even when
the distance is computed by the number of traversed AS or
in a topology exhibiting various characteristics. We have run
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the algorithms on top of topologies described in Tab.I. The
metric called hit ratio is the probability that a client finds
the k substreams among its k nearest boxes. The results
confirm the previous curves by showing that our heuristics
always outperform the random allocation, with results that are
almost similar for the Rainbow heuristic and k-nearest partially
colored heuristic and both are very close to the unrealistic k-
PUFLP algorithm. As the k-nearest Partially Colored Heuristic
is less costly to implement than the Rainbow Colored one, it is
definitely a good candidate to replace the random allocation.

VI. CONCLUSION AND FUTURE WORKS

Long videos encoded into multiple substreams and box-
powered CDN are two major trends for the future of video
services. An important but less studied problem is how to store
these substreams in proxies such that the overall download
cost is minimized when the client has to retrieve a set of
substreams. We have identified and formulated this problem
and proven its NP-completeness. Two fast and distributed
heuristics have been proposed. The heuristics are based on
the observation that if a client selects a certain proxy for
one substream, it is very likely that it selects the neighboring
proxies of the already selected one. The proposed heuristics
have been compared with the existing k-PUFLP and Random
placement algorithms. On one hand, both proposed heuristics
demonstrated promising performance gains over the random
placement, while on the other hand, they have comparable
performance as the k-PUFLP, which has bounded performance
guarantee but requires perfect knowledge about the network.
In contrast, our heuristics only require knowledge about the
proxies which is more realistic. The simulations also demon-
strate that an optimal gain over Random placement is achieved
when the number of proxies is about 3 times the number
of substreams which may shed light on the way to better
algorithms.
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