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Consensus of Multi-agent Systems with Nonholonomic Restrictions
via Lyapunov’s Direct Method

Mohamed Maghenem Abraham Bautista Emmanuel Nuño Antonio Lorı́a Elena Panteley

Abstract—This paper presents a smooth time-varying δ-
persistently exciting controller for full consensus of autonomous
nonholonomic vehicles modelled as unicycles. This consists in the
robots assuming a common prescribed Cartesian position relative
to an unknown barycentre and an unknown common orientation.
More significantly, for the first time in the literature, a strict
Lyapunov function is provided and uniform global asymptotic
stability for the closed-loop system is established. This is well
beyond weaker convergence properties that are more commonly
guaranteed in the literature.

I. INTRODUCTION

In multi-agent systems, consensus means that the state of
each agent reaches an agreement coordinate value that is not,
in general, a priori specified as a set-point target [1]. The
consensus problem has been extensively studied for networks
of linear systems [2], [3], [4] and for different classes of non-
linear systems [5], [6], [7]. Distributed solutions to cooperative
control problems including consensus and formation problems
have been addressed, for instance, in [8], [9], [2], [1], [10],
[11], [12]. However, these results cannot be applied in multi-
agent systems with nonholonomic constraints.

We distinguish two types of the consensus problems for such
vehicles: partial-consensus, in which a reference orientation is
imposed to each vehicle and full-consensus, in which it is
additionally required that all vehicles assume the same non-
predetermined orientation.

Consensus of nonholonomic autonomous vehicles has been
extensively studied in the literature during the last decade.
Necessary and sufficient conditions for the feasibility of a
class of position formations are formulated in [13]. In [14]
a discontinuous decentralized feedback controller that drives
a network of nonholonomic unicycles to a rendezvous point
in terms of both position and orientation is proposed. Smooth
time-varying controllers are also used for distributed formation
control. For instance, in [15] a consensus-based approach
is used in order to drive a group of agents to a desired
geometric pattern; this work is extended in [16] by introducing
a PD-based controller for the velocity dynamics; in [17] the
position/orientation control problem is addressed that leads the
agents to a given formation using only their orientation.
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Consensus is also addressed in [18] via a cooperative control
law that is robust to constant communication delays. In [19]
a distributed control law for a network of nonholonomic
agents in the presence of bounded disturbances with unknown
dynamics in all inputs channels is presented. In [20] the
formation control problem with respect to a prespecified set-
point is studied taking into account loss of connectivity and
obstacle avoidance.

In this paper we solve the full-consensus problem via de-
scentralized control. Our controller is smooth time-varying and
of the δ−Persistently-Exciting class —see [21], [22], [23]. A
significant contribution is to establish uniform global asymp-
totic stability (UGAS) for the closed-loop system. Contrary to
the significantly weaker property of non-uniform convergence,
which is more commonly established in the literature on robot
control, UGAS guarantees robustness with respect to bounded
disturbances (local Input-to-State-Stability). Furthermore, in
contrast to most of the previous works where only the kinemat-
ics model is considered, we use a model augmented by two
integrators, which represent the feedback-linearized velocity
dynamics.

To the best of our knowledge, apart from the prelimi-
nary conference paper [24] where only the partial-consensus
problem is addressed —see also [25], for the first time in
the literature we provide a strict and differentiable Lyapunov
function for the closed-loop system. This function is based
on the Mazenc contstruction method to render Lyapunov
functions strict, introduced in [26] —see also [27].

The rest of the paper is organized as follows. In the next
section we describe the networked systems’ model and we
formulate the problem at hand. Our main result is presented
in Section III and some simulation results are provided in
Section IV. Concluding remarks are presentned in Section V.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

Let us consider a swarm of N autonomous vehicles modeled
as unicycles, that is, with kinematics

ẋi = vi cos(θi) (1a)
ẏi = vi sin(θi) (1b)
θ̇i = ωi, i ≤ N (1c)

and dynamics1

v̇i = uvi (2a)
ω̇i = uωi (2b)

1For simplicity, the dynamics is modeled as a simple integrator. There is
little loss of generality in this assumption considering that velocity dynamics
models are typically feedback linearizable.



where νi := [vi ωi]
>, ςi := [xi yi θi]

>. The variables xi and
yi denote Cartesian coordinates of a fixed point on the vehicle
relative to a fixed frame, θi denotes its orientation with respect
to the X-axis, and vi and ωi denote the forward and angular
velocities respectively.

It is assumed that for each vehicle its pair of control
inputs (uvi, uωi) depend on own local coordinates and time,
(νi, ςi, t), but also on the coordinates of the neighbors. From
a physical viewpoint, there exists a direct relation between the
wheels’ input torque and the controls (uvi, uωi) —cf. [28];
hence, the latter are easily implementable.

It is also assumed that the interconnection topology of the
network is determined by a connected, undirected, and static
graph whose connectivity is defined by the Laplacian matrix
L := [`ij ] ∈ RN×N , where

`ij =

{ ∑
j∈Ni

aij i = j

−aij i 6= j
(3)

and aij ≥ 0; aij > 0 if the ith and jth vehicles communicate
with each other and aij = 0 otherwise.

Remark 1: By construction, L has a zero row sum, i.e.,
L1N = 0, where 1N ∈ RN corresponds to the vector
[1 · · · 1]>. Moreover, since the interconnection graph is con-
nected, undirected and static, L is symmetric, it has a single
zero-eigenvalue and the rest of the spectrum of L is positive.
Thus, rank(L) = N − 1. 4

Two types of consensus are of interest, namely, the partial
and the full consensus problems. In the first case, it is required
from each of these vehicles to reach a certain Cartesian
position relatively to a barycentre with unknown Cartesian
coordinates zc := [xc yc]

> and a given desired orientation,
that is, given (δxi, δyi) ∈ R2 and θdi ∈ R, it is required that

lim
t→∞

xi(t) := xc + δxi, lim
t→∞

yi(t) := yc + δyi, (4)

lim
t→∞

θi(t) := θdi, ∀ i ≤ N. (5)

In the case of full consensus, it is required, in addition to (4),
that the vehicles adopt a common non-given orientation θc,
i.e.,

lim
t→∞

θi(t) := θc, ∀ i ≤ N. (6)

These goals are reached via smooth nonlinear dynamic
control and by addressing the more challenging stabilization
problems described next.

Definition 1 (Consensus-based formation control problem):
For a network of N vehicles with a topology represented by
a connected, undirected, and static graph, with Laplacian L as
above we define partial consensus as the goal of rendering the
manifold

Spc :=
{
ςi ∈ R3, i ≤ N : [xi − δxi ] = xc, [yi − δyi ] = yc,

θi = θdi}

uniformly globally asymptotically stable for a given pair
(δxi, δyi) ∈ R2 and given desired orientations θdi. The full-
consensus problem is defined as the property of rendering the
manifold

Sfc :=
{
ςi ∈ R3, i ≤ N : [xi − δxi ] = xc, [yi − δyi ] = yc,

θi = θc}

uniformly globally asymptotically stable for some non-
predefined θc. �

To address the problems previously defined we introduce
an adequate dynamical model for the interconnected vehicles.
Let us start by defining the translated coordinates

zi :=

[
xi − δxi
yi − δyi

]
, z :=

[
z>1 · · · z>N

]>
(7)

as well as θ = [θ1 · · · θN ]> ∈ RN ; v = [v1 · · · vN ]> ∈ RN ;
ω = [ω1 · · ·ωN ]> ∈ RN , Φ(θ) = blockdiag[φ(θi)] ∈ R2N×N ,
with φ(θi) = [cos(θi) sin(θi)]

>, and the control inputs uv =
[uv1 · · ·uvN ]> ∈ RN and uω = [uω1 · · ·uωN ]> ∈ RN . In
terms of these variables the dynamics of the networked system
is given by

ż = Φ(θ)v (8a)
v̇ = uv (8b)
θ̇ = ω (8c)
ω̇ = uω. (8d)

Next, we express the relative Cartesian position errors for
each vehicle i communicating with Ni neighbors in the ith
coordinates frame and we introduce the consensus errors

ei = φ(θi)
>
∑
j∈Ni

aij(zi − zj),

si = φ(θi)
⊥>

∑
j∈Ni

aij(zi − zj).

where φ(θi)
⊥ = [sin(θi) −cos(θi)]

>. In the equivalent vector
form e := [e>1 · · · e>N ]> and s := [s>1 · · · s>N ]> these satisfy

e =Φ(θ)>Lz, s = Φ(θ)⊥>Lz, (9)

where L := L⊗ I2 and, after the following statement,

lim
t→∞

z(t) = 1N ⊗ zc, (10)

is equivalent to (e, s)→ (0, 0).
Lemma 1: Consider the error states (e, s) defined in (9);

let L be symmetric, have a single zero-eigenvalue, and let the
remainder of its spectrum be strictly positive. Then, Lz = 0⇔
(e, s) = (0, 0) and, moreover,

λ2(L)z>Lz ≤ |e|2 + |s|2 ≤ λN (L)z>Lz, (11)

where λ2(L) and λN (L) are the second smallest and the
largest eigenvalues of L, respectively.
Proof. That Lz = 0 ⇔ (e, s) = (0, 0) follows from the fact
that the matrix

[
Φ(θ) Φ(θ)⊥

]
is non singular. To establish the

inequalities in (11) we use the identity |e|2 + |s|2 = z>L2z =
z>L 1/2LL 1/2z. Since L 1/2z is orthogonal to the eigenspace
associated to the zero eigenvalue of L, we have

λ2(L)z>L 1/2L 1/2z ≤ z>L 1/2LL 1/2z ≤ λN (L)z>L 1/2L 1/2z,

so (11) follows. /
Lemma 1 enables us to “discard” the kinematics equation (8a)



and replace it by the dynamic equations of e and s. These are
computed by differentiating on both sides of (9) to obtain

ė = −ω̄s+ Φ(θ)>LΦ(θ)v (12a)
ṡ = ω̄e+ Φ(θ)⊥>LΦ(θ)v (12b)

for whose computation we used (8a) and

Φ̇(θ) = −Φ(θ)⊥ω̄, Φ̇(θ)⊥ = Φ(θ)⊥ω̄, ω̄ := diag[ωi].

Regarding the orientation angles, we introduce the errors
θ̃ := θ − θ∗ where θ∗ := [θ∗1 · · · θ∗N ]. In the case of full
consensus, we define θ∗ := 1Nθc and for partial consensus
we define θ∗i := θdi.

Thus, recasted in terms of stabilization theory, consensus, in
the sense of Definition 1, is achieved if for the dynamic system
(12), (8b)–(8d) the origin {(e, s, v, ω, θ̃) = (0, 0, 0, 0, 0)} is
rendered uniformly globally asymptotically stable.

III. CONTROL DESIGN AND MAIN RESULT

Our main purpose is to address the full-consensus problem
for the torque-controlled unicycle. To put our main result
in perspective, however, we start by describing the control
approach in the context of the partial-consensus problem,
solved in the preliminary conference article [24].

A. Partial consensus

Let, for the time being, θ∗ := θd that is, it is assumed that
each vehicle assumes its own orientation.

For the translational dynamics v̇ = uv we employ a simple
Proportional-Derivative controller akin to the one proposed in
[16], that is, let

uv = −Kdtv −Kpte, (13)

where Kdt and Kpt are diagonal positive definite matrices.
Then, for the rotational dynamics we propose the following
δ-persistently-exciting controller —cf. [21], [29]

uω = −Kdθω −Kpθ θ̃ − p(t)κ(s, e) (14)

where Kdθ and Kpθ are diagonal positive definite matrices, p
is persistently exciting, i.e., there exist T and µ > 0 such that∫ t+T

t

|p(τ)|dτ ≥ µ ∀ t ≥ 0, (15)

and κ(s, e) ∈ RN is defined as

κ(s, e) =
1

2
[s21 + e21 · · · s2N + e2N ]>. (16)

The closed-loop system that results from Equations (8), (9),
(13) and (14), is given by Equations (12) and

v̇ = −Kdtv −Kpte (17a)
˙̃
θ = ω (17b)
ω̇ = −Kdθω −Kpθ θ̃ − p(t)κ(s, e) (17c)

Roughly speaking, the stabilization mechanism is the follow-
ing. The terms −Kdtv−Kpte are designed to steer v and e to
zero while Equation (12) corresponds to those of a harmonic
oscillator perturbed by the vanishing input v. The combined

effect of this steering and oscillations produces a “spiraling”
motion towards the origin, in the plane (e, s) —cf. [30].
The oscillatory effect is induced and maintained by keeping ω
away from zero. This is achieved by the δ-persistently-exciting
controller uω . Indeed, note that the equations (12) are those of
a stable second order system with input −p(t)κ(s, e), which
possesses the so-called δ-persistency-of-excitation property
with respect to (e, s) —[31]: for any δ > 0 there exist T
and µ > 0 such that

|[e s]| ≥ δ =⇒
∫ t+T

t

κ(e, s)|p(τ)|dτ ≥ µ ∀ t ≥ 0.

Technically, the input −p(t)κ(s, e) produces a δ-
persistently-exciting output ω which oscillates as long
as the error trajectories |[e(t) s(t)]| are away from the origin.
The δ-persistency-of-excitation property of ω is guaranteed
by the property that the output of a strictly proper stable
linear system driven by a δ-persistently-exciting input is also
δ-persistently-exciting [31]. In [24], for the system system
(12), (17) with p(t) and up to its 3rd derivative bounded and
ṗ(t) is persistently exciting, it is showed that the origin for
the is uniformly globally asymptotically stable and a strict
Lyapunov function is provided. Below, we present a solution
to the full-consensus problem.

B. Full consensus

Let θ∗ := 1Nθc, which is unknown. For any continuous
function ϕ : R≥0 → Rn×m let |ϕ|∞ := sup

t≥0
|ϕ(t)|, where

| · | denotes, depending on the context, the absolute value of
scalars, the Euclidean norm of vectors, or the induced norm
of matrices.

Assumption 1: There exists bp > 0 such that
max

{
|p|∞, |ṗ|∞, |p̈|∞, |p(3)|∞

}
≤ bp and, moreover, ṗ(t) is

persistently exciting, with excitation parameters (T, µ).
Let q̄(t) = diag[qi(t)] ∈ RN×N be defined dynamically via

the differential equation

q̄(3) +Kα ¨̄q +KI ˙̄q = ṗ(t)IN , (18)

where KI and Kα are diagonal positive definite matrices of
appropriate dimension that will appear in the control design.
Under Assumption 1, after [25], the function ˙̄q : R≥0 →
RN×N is persistently exciting.

Theorem 1 (Main result): Consider the system (8) in closed
loop with (13) and

uω = −Lθ + Lq̄(t)κ(s, e) + α (19a)
α̇ = −Kαα−KIω + ṗκ(s, e) (19b)

where Kα and KI are introduced in (18) and κ is defined
in (16). Suppose further that Kdt and Kpt in (13) are di-
agonal positive definite and Assumption 1 holds. Then, the
origin of the closed-loop state space, i.e, (e, s, v, θ̃, ω, α) =
(0, 0, 0, 0, 0, 0) is uniformly globally asymptotically stable. �

The proof of Theorem 1 relies on Lyapunov’s direct method
hence, it is constructive, but lengthy. Only the main guidelines
are presented here; the complete proof may be consulted in
[25].



A strict Lyapunov function for the closed-loop system is
constructed using the following global change of coordinates:

eθ := θ̃ + q̄(t)κ(s, e) (20a)
eω := ω + ˙̄q(t)κ(s, e) (20b)
eα := α+ ¨̄qκ(s, e). (20c)

Next, to compact the notation, we define Xt :=
[v> e> s>]> ∈ R3N , Xr := [e>θ e

>
ω , e
>
α ]> ∈ R3N , ē =

diag[ei], s̄ = diag[si], ēω = diag[eωi], and κ̄ = diag[κi]. Thus,
differentiating on both sides of all equations in (20) and using
(8a), we obtain

Ẋt =

−Kdt −Kpt 0
0 0 ˙̄qκ̄− ēω
0 − ˙̄qκ̄+ ēω 0

Xt +

 0
Φ>L

Φ⊥>L

Φv

(21a)

Ẋr =

 0 IN 0
−L 0 IN
0 −KI −Kα

Xr +

q̄˙̄q
¨̄q

 [ēΦ>L+ s̄Φ⊥>L
]
Φv.

(21b)

Then, consider the set

D :=
{

(Xt, Xr) ∈ R6N : (Xt, Leθ, eω, eα) = 0
}
. (22)

Note that in view of Lemma 1, (Xt, Xr) ∈ D if and only if
(v, e, s, θ, ω, α) ∈ S where

S :=
{

(v, e, s, θ, ω, α) ∈ R6N : (v, e, s, Lθ, ω, α) = 0
}

(23)

which, in view of the properties of L, implies that θi = θc for
all i ≤ N . In other words, full consensus is achieved if D is
uniformly globally asymptotically stable.

Remark 2: It is worth stressing that uniform global asymp-
totic stability of D or, equivalently, of the equilibrium
{(v, e, s, θ̃, ω, α) = (0, 0, 0, 0, 0, 0)}, is a much stronger prop-
erty than the consensus non-uniform convergence property
(v, e, s, θ̃, ω, α)→ (0, 0, 0, 0, 0, 0).

The starting point in the construction of a strict Lyapunov
function for (21) is the function V1 : R3N×N × RN → R≥0
defined by

V1(Xt, θ) = v>K−1pt v + z(Xt, θ)
>Lz(Xt, θ) (24)

in which we emphasize the dependence of z on e, s, and θ
—see (9). In view of Lemma 1, V1 satisfies

|e|2 + |s|2

λN (L)
+ v>K−1pt v ≤ V1(Xt, θ) ≤ v>K−1pt v +

|e|2 + |s|2

λ2(L)

so it is positive-definite, decrescent, and radially unbounded
in Xt. Furthermore, its total derivative along the trajectories
generated by (8a), (12), and (17a) yields

V̇1(Xt, θ) = −2v>K−1pt Kdtv. (25)

Next, we remark that the nominal part of the angular motion
dynamics (21b) (that is, with v = e = s = 0) is linear; this
makes it natural to introduce the quadratic function

V2(Xr) := c2
[
e>θ Leθ + e>ω eω + e>αK

−1
I eα

]
+c5e

>
ω eα+e>θ Leω,

where c2 and c5 are positive constants to be defined such that
V2 be positive definite with respect (eα, eω, eθ) and, at the
same time, the total derivative of V2 along the trajectories of
(21b) satisfy

V̇2(Xr) ≤ −Y2(Xr) + nl.t.

Y2(Xr) := c2e
>
αK

−1
I Kαeα + c5e

>
ωKIeω + e>θ L

2eθ

where “nl.t.” stands for diverse nonlinear terms of undefined
sign —cf. [25].

Thirdly, we introduce a term whose derivative generates
negative terms in the remaining closed-loop state variables,
e and s. To that end, as for instance in [26], for a bounded
function ψ : R≥0 → RN , with |ψ|∞ = bψ > 0, we define

Q̄ψ(t) := diag [Qψi(t)]

Qψi(t) := 1 + 2bψTψ −
2

Tψ

∫ t+Tψ

t

∫ m

t

ψi(s)
2ds dm.

The interest of this function is that it admits the bounds 1 ≤
Qψi < bQi := 1 + 2bψTψ and, furthermore,

Q̇ψi = − 2

Tψ

∫ t+Tψ

t

ψi(s)
2ds+ 2ψ2

i . (26)

Moreover, if ψi is persistently exciting with parameters µψ
and Tψ , we obtain

Q̇ψi ≤ −
2µψ
Tψ

+ 2ψ2
i . (27)

Thus, in view of the latter and the persistency-of-excitation
condition on ṗ, the function

V3(t,Xt) := κ(e, s)>Q̄q̇i(t)κ(e, s) (28)

where q̇i is the ith element in the diagonal of the persistently
exciting function ˙̄q —see (18), is positive definite and radially
unbounded in (e, s) and its total derivative satisfies

V̇3 ≤ −
2µq̇
Tq̇
|κ(e, s)|2 + nl.t.

These computations suggest that a strict Lyapunov function
for (21) should contain the functions V1, V2, and V3. However,
the system being highly nonlinear and time-varying, a simple
linear combination of the latter does not suffice to dominate all
the resulting high-order terms. For this, we rely on the methods
of strictification of Lyapunov functions, laid in [27]. Lengthy
computations show that the following is a strict Lyapunov
function for (21) and that the set D is uniformly globally
asymptotically stable —see [25] for a detailed computation
of its derivative. Let2

V(t,Xt, Xr) = W (t,Xt, Xr) + ρ1(V1)V2(Xr) + ρ2(V1)V1

where

W = γ(V1)V1 + V1V3(t,Xt) + α(V1)e>v − c1V1e> ˙̄qs

+ c1bqλN (L)V 2
1 + (λN (L) + |Kpt|)α(V1)V1,

ρ1(V1) =
2σ(V1)

c5λm(KI)

[
α(V1) + c1bqV1

]
+ 1,

2Not to cumbersome the notation futher we drop the arguments of V1.



σ(V1) = max

{
16Tc1bq

µ
,

4λN (L)
∣∣K−1dt Kpt

∣∣α(V1)V1

γ(V1)

}
,

α(V1) = 4b2qλN (L)V 2
1

∣∣K−1pt ∣∣+ 4c1b
2
qλN (L)

∣∣K−1pt ∣∣V 2
1

+
4c1
c4

∣∣ ˙̄q2Φ⊥>LΦ
∣∣2
∞

∣∣K−1dt ∣∣V1 + c21c4b
2
q

∣∣K−1pt ∣∣ ,
γ(V1) = 2c4V

2
1 λN (L)

∣∣K−1dt Kpt

∣∣ ∣∣Q̄q̇Φ>LΦ
∣∣2
∞

+2c4V
2
1 λN (L)

∣∣K−1dt Kpt

∣∣ ∣∣Q̄q̇Φ⊥>LΦ
∣∣2
∞

+
∂α

∂V1
V1 (|Kpt|+ λN (L)) +

c4
2
c1V1

+2α(V1)
∣∣Φ>LΦ

∣∣
∞

∣∣K−1dt Kpt

∣∣
+
c4
2

∣∣KptK
−1
dt

∣∣α2(V1) +
c4
2
α(V1) |Kdt|

+2c1bqλN (L)V1 +
4

c4
V 2
1 λN (L)

∣∣K−1dt ∣∣
+
c4
2
c21
∣∣K−1dt Kpt

∣∣ ∣∣∣ ˙̄q2 (Φ>LΦ
)2∣∣∣
∞
,

and

ρ2(V1) = c3

[
V1ρ1(V1)λN (L)

[∣∣Φ>LΦ
∣∣
∞ +

∣∣Φ⊥>LΦ
∣∣
∞

] ]
.

An appropriate choice of c1 and c4 guarantees positive defi-
niteness of W with respect to (e, s, v) —see [25] for details.

Remark 3: Note that
∣∣Φ>LΦ

∣∣
∞ is short-hand notation for

the supt≥0
∣∣Φ(θ(t))>LΦ(θ(t))

∣∣ which is bounded since Φ(θ)
is uniformly bounded.
Furthermore, the constants c1, c2, c3 and c4 are:

c1 = 1 +
λN (L)

max
{

2, 2Tµ

(
1 + 2N

λ2(L)

)} ,
c2 = 4c5λ(KIKα) + 4c5λM (K2

IKα) + 4c25λM (KIK
−1
α )

+4λM (KIK
−1
α ) + 2λn(L) + 4 + 2λM (KI)c

2
5,

c3 = 2b2q

[
(2c2 + 1)2 +

λM (K−1I )

c5
(2c2 + c5 + λn(L))2+

λM (K−1α KI)

c2
(2λM (K−1I ) + c5)2

] ∣∣K−1dt Kpt

∣∣ ,
c4 = max

{
2,

2T

µ

(
2 +

8N

λ2(L)

)}
,

c5 = 4λn(L)λM (K−1I ).

Since ρ1 and ρ2 are positive functions and radially unbounded,
positive definiteness of V with respect to D is ensured under
the proposed parameters ci with i ∈ {1, . . . , 5}. Indeed, V1 is
positive definite with respect to (e, s, v), W is so with respect
to (e, s, v), and V2 is also so with respect to (eα, eθ, eω) —see
[25].

Lengthy, but straightforward computations that involve the
definitions of ρ1, ρ2, σ, γ and ci above, lead to the expression

V̇ ≤ − ρ1(V1)

8

[
c2e
>
αK

−1
I Kαeα + c5e

>
ωKIeω + e>θ L

2eθ
]

− 1

4
γ(V1)v>KdtK

−1
pt v −

1

8
α(V1)e>Kpte−

µ

4T
V 3
1

(29)
—see [25] for details. The result follows.

IV. SIMULATIONS

In this section we present some illustrative numerical sim-
ulations using four differential wheeled mobile robots. The
desired formation pattern is fixed to be a rhomboid with an
interconnection graph that has the following Laplacian matrix

L =


1 −1 0 0
−1 2 0 −1

0 0 1 −1
0 −1 −1 2

 .
The initial positions and the relative distances with regards
to the barycentre of the formation are given in Table I. For
sake of space, we only show simulations of the full consensus
controller. The control gains have been set to: Kdt = 3I;

TABLE I
INITIAL CONDITIONS AND RELATIVE DESIRED POSITIONS.

xi(0) yi(0) θi(0) δxi δyi
1 5 -7 −(1/3)π -2 0
2 -4 7 (2/3)π 0 2
3 -2 -5 (4/3)π 2 0
4 7 3 0 0 -2

Kpt = 5I; Kdt = 3I; Kα = 2I and KI = I. The persistently
exciting function p(t) is given by p(t) = sin(0.1t). The results
are illustrated in Figs. 1–3.
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Fig. 1. Trajectories and formation of the network of mobile robots.
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Fig. 2. Orientation of each mobile robot in the network.

Fig. 1 shows the xi, yi trajectories of the nonholonomic
mobile robots, while Figs. 3 and 2 depict the relative positions
zi and the orientation of the robots. From these plots it can be
observed that the robots reach the desired formation and they
agree on their final orientation. From the plot in Figure 1 one
may notice a slightly oscillatory behaviour of the robots before



reaching the consensus posture. This is a rather typical per-
formance of persistency-of-excitation based controllers, which
has been compared in [32] to that of dicontinuous set-point
controllers for individual velocity-controlled robots.
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Fig. 3. Evolution of the relative positions zi.

V. CONCLUSIONS

A solution to the full-consensus problem of autonomous
vehicles based on a complete kinematics-dynamics model
and a smooth time-varying controller has been presented.
For the first time in the literature we have provided a strict
Lyapunov function to establish the main result. Beyond the
undoubted benefits of establishing uniform global asymptotic
stability, having a strict Lyapunov function is the first step
towards important relaxations in our setting, as for instance,
the consideration of an environment that includes obstacles.
This topic is currently under research.
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(Karlsrühe, Germany), pp. 1363–1368, 1999.

[22] A. Lorı́a, E. Panteley, and K. Melhem, “UGAS of skew-symmetric time-
varying systems: application to stabilization of chained form systems,”
European Journal of Control, vol. 8, no. 1, pp. 33–43, 2002.

[23] Y. Wang, Z. Miao, H. Zhong, and Q. Pan, “Simultaneous stabilization
and tracking of nonholonomic mobile robots: A lyapunov-based ap-
proach,” IEEE Transactions on Control Systems Technology, vol. 23,
pp. 1440–1450, July 2015.

[24] M. Maghenem, A. Bautista-Castillo, E. Nuño, A. Lorı́a, and E. Panteley,
“Consensus-based formation control of nonholonomic robots using a
strict Lyapunov function,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 2439–
2444, 2017. Presented at IFAC World Congress 2017, Toulouse, France.
DOI: 10.1016/j.ifacol.2017.08.406.

[25] M. Maghenem, Stability and stabilization of networked varying systems.
PhD thesis, Univ Paris Saclay, Gif sur Yvette, 2017. Available online
at: https://tel.archives-ouvertes.fr/tel-01596158/document.

[26] F. Mazenc, “Strict Lyapunov functions for time-varying systems,” Au-
tomatica, vol. 39, no. 2, pp. 349–353, 2003.

[27] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov functions.
London: Springer Verlag, 2009.

[28] K. D. Do, Z.-P. Jiang, and J. Pan, “A global output-feedback controller
for simultaneous tracking and stabilization of unicycle-type mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3,
pp. 589–594, 2004.

[29] M. Maghenem, A. Lorı́a, and E. Panteley, “A robust δ-persistently
exciting controller for leader-follower tracking-agreement of multiple
vehicles,” European Journal of Control, vol. 40, pp. 1–12, 2018.
Appeared online: sept. 2017. DOI: 10.1016/j.ejcon.2017.09.001.

[30] M. Maghenem and A. Lorı́a, “Strict Lyapunov functions for time-varying
systems with persistency of excitation,” Automatica, vol. 78, pp. 274–
279, 2017.

[31] A. Lorı́a, E. Panteley, D. Popović, and A. Teel, “A nested Matrosov
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