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ABSTRACT
In Panteley and Loria (2017) a framework for the study of synchronization and
collective behaviour of networked heterogeneous systems was introduced. It was un-
derlined that in such scenario an emergent collective behaviour arises, one that is
inherent to the network and that is independent of the interconnection strength.
Therefore, the natural way to make complete study of synchronization is by inves-
tigating, on one hand, the stability of the emergent dynamical system and, on the
other, by assessing the difference between the motion of each individual system and
that of the emergent one. Thus, if all systems’ motions approach that of the emer-
gent dynamics, we say that they reach dynamic consensus. In this paper we study
dynamic consensus of a fairly general class of nonlinear heterogeneous oscillators,
called Stuart-Landau. We establish that the emergent dynamics consists in that of
an “averaged” oscillator with a global attractor that consists in a limit-cycle and,
moreover, we determine its frequency of oscillation. Then, we show that the heteroge-
neous oscillators achieve practical dynamic consensus that is, their synchronization
errors measured relative to the collective motion, are ultimately bounded.

KEYWORDS
Networked systems, consensus, nonlinear oscillators; robust stability;
synchronization

1. Introduction

In its simplest form, consensus consists in a group of linear interconnected systems
synchronizing their trajectories and asymptotically reaching a common equilibrium
point determined by the systems’ intial conditions (Olfati-Saber & Murray, 2004;
Ren et al., 2007). Furthermore, when the network is heterogeneous, that is, when it
comprises systems with different dynamics and/or different parameters, it is possible
that consensus is not reached, but a steady-state error may prevail —see e.g., Qin et
al. (2018); Steur et al. (2016); Wang et al. (2015); Zhang et al. (2016). This may be
referred to as practical consensus.

CONTACT: E. Panteley Email: panteley@lss.supelec.fr. This work was partially supported by the Dept.
STITS of University of Paris Saclay and by the Government of Russian Federation (grant 08-08).



The phenomenon is even more complex in the case of heterogeneous networks of
systems that have no equilibria, such as oscillators. In this case it is more appropriate
to speak of dynamic consensus which, roughly speaking, consists in all systems’ tra-
jectories synchronizing and reaching a common steady-state dynamical behaviour (as
opposed to equilibria). Although the term was coined in (Panteley & Loria, 2017), the
concept is well documented in the literature of various research communities, including
that of physics, computer science, biology, neurosciences etc. For instance, synchro-
nization in neuronal activity has been recognized to cause neural disorders (Dunn &
Anderssen, 2011; Mormann et al., 2000), among which Parkinson’s disease (Cagnan
et al., 2009; Mallet et al., 2008). Understanding synchronization in disciplines such
as biology, neurosciences, and medicine, has naturally led researchers to study of the
collective behavior of networks of coupled nonlinear oscillators.

The first mathematical formulation of the synchronization problem for nonlinear
oscillators is due to Andronov et al. (1987), which inspired the design of more gen-
eral models of coupled oscillators, that include both phase and amplitude variations.
Among these, the complex Stuart-Landau equation displays the amplitude equation
derived from a general ordinary differential equation near an Andronov-Hopf bifurca-
tion point (Sune et al., 2005). Networks of Stuart-Landau oscillators are used to model
complex-systems behaviour in a wide range of applications; for instance, to describe
chemical reaction diffusion systems (Ipsen et al., 1997), semiconductor lasers (Carr et
al., 2006), electronic oscillators (Bergner et al., 2012), as well as neuro-physiological
phenomena (Aoyagi, 1995).

One of the key questions in the study of networked oscillators is to determine how
the synchronization and collective behavior is intertwined with the coupling strength.
Assuming that in the limit (in terms of coupling gain) all oscillators have the same
limit cycle, in the 1970s Y. Kuramoto proposed a reduced-order model which charac-
terizes the limit-case behavior of such oscillators. The so-called Kuramoto model be-
came one of the most popular models of phase oscillators in many disciplines including
control theory. It exhibits cooperative phenomena such as frequency synchronization
and phase-locking beyond a certain coupling strength —see e.g., Kuramoto (1975);
Sakaguchi and Kuramoto (1986), and Strogatz (2000). The control problem was ad-
dressed, for instance, by Panteley, Loŕıa, and El Ati (2015), as well as in (Selivanov et
al., 2012) where communication delays are considered, and by Lehnert et al. (2014),
under topological changes.

Now, there exist a range of tools in the literature to study stability properties of the
limit cycle for a single Stuart-Landau oscillator (Andronov et al., 1987; Kuznetsov,
1998; Perko, 2000) as well as for networks of such oscillators (Karnatak et al., 2007;
Teramae & Tanaka, 2004) where Lyapunov-based techniques are used to study stability
for a network of identical oscillators; see also Pham and Slotine (2007). If the coupling
gain is finite and the network is heterogeneous the coupled Stuart-Landau oscillators
are only frequency synchronized that is, the amplitudes of their oscillations do not
coincide. Finding the synchronization frequency, however, is a challenging problem
that remains open.

In this paper, which is the outgrowth of Panteley, Loŕıa, and El Ati (2015), we
present results on synchronization of Stuart-Landau oscillators with different frequen-
cies of oscillation, under diffusive coupling. The analysis that we carry out is based
on the framework laid in Panteley and Loria (2017), according to which synchronized
behavior of heterogeneous networks consists in two parts: the so-called emergent dy-
namics and the synchronization of all oscillators relative to the emergent behavior. To
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that end, as in Olfati-Saber and Murray (2004) and many succeeding works, we employ
a network model that is derived using a coordinate transformation. However, in place
of using the Jordan decomposition of the Laplacian we base our transformation upon
a matrix involving both the Laplacian and linear terms from the systems’ dynamics.
This is not innoccuous; such decomposition leads to the estimation of the synchro-
nized oscillations frequency in function of the interconnection strength. There are, in
addition, several technical specificities proper to Stuart-Landau oscillators, which are
not covered in Panteley and Loria (2017). For instance, one technical difficulty in the
study of Stuart-Landau oscillators is that the most classical Lyapunov stability tools
are inapplicable since the equilibrium of the system form a compact disconnected set.

The rest of the paper is organized as follows. In the next section we describe the
model of a single Stuart-Landau oscillator; in Section 3 we recall some important con-
cepts related to the collective behavior of heterogenous networked systems. In Section
4 we describe the network structure under diffusive coupling and exhibit some funda-
mental properties of the interconnections’ graph. In Section 5 we present a suitable
model of the network dynamics in coordinates that exhibit the dichotomous character
of the behavior of interconnected systems. In Section 6 we present our main results
on stability of the collective behavior and, hence, in the synchronization for Stuart-
Landau oscillators. The paper is wrapped up with some remarks in Section 8.

Notation. We denote a complex number z ∈ C as z = zR + izI where i :=
√
−1 and

zR, zI ∈ R denote, respectively, the real and imaginary parts of z. We denote by z̄
the complex conjugate of z, i.e., z̄ = zR − izI. Correspondingly, for complex vectors
z ∈ CN , z = [z1 · · · zN ]> (where > denotes the usual transpose operator) and complex

matrices M ∈ CN×P , M = [mij ], we denote by z̄ and M , their respective complex

conjugates, i.e., z̄ = [z̄1 · · · z̄N ]> and M = [m̄ij ]. We denote by ∗ the transpose
conjugate operator for complex matrices and vectors hence, z∗ = [z̄1 · · · z̄N ]. Also, we
use | · | to denote |z| = z̄z and |z| = z∗z. For a closed set A ⊂ Cn and x ∈ Cn, we
define |x|A := inf

y∈A
|x− y|.

2. The generalized Stuart-Landau oscillator

2.1. The oscillator’s model

The Stuart-Landau dynamic equation is given by

ż = −ν|z|2z + µz (1)

where z ∈ C denotes the state of the oscillator, ν, µ ∈ C are complex constant
parameters defined as ν = νR + iνI and µ = µR + iµI. The real part of µ, denoted µR,
determines the distance from the Andronov-Hopf bifurcation.

The subject of study in this paper is the stability of networks of oscillators (1).
It is worth stressing that statements originally formulated for systems on Euclidean
spaces may be used for systems whose solutions lay in the complex (hyper)plane.
Indeed, in general, for a dynamical system ẋ = f(x) with complex state variables,
x ∈ CN , one can define stability in the sense of Lyapunov by decomposing x in its
real and imaginary parts: x = xR + ixI ∈ CN . Then, we define the vector x̃ ∈ R2N as
x̃ := [x>R x>I ]>. Note that, in particular, |x̃|2 = |x|2. Then, provided that f admits
the decomposition f(x) := fR(xR,xI) + ifI(xR,xI), we may re-express the dynamics
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Figure 1. Trajectories of the Stuart-Landau oscillator on the complex plane

in the case that νR, µR > 0. The origin is unstable but all trajectories tend to

a stable limit cycle with radius r =
√
µR
νR

of ẋ = f(x) in a 2N -dimensional Euclidean space, via

ẋR = fR(xR,xI)

ẋI = fI(xR,xI)

and stability of the origin {x = 0} ⊂ CN is equivalent to the stability of {x̃ = 0} ⊂
R2N .

For Stuart-Landau oscillators (1) the stability analysis may be carried out using
of polar coordinates, which are real. Let z = reiϕ then, the equations for the radial
amplitude r and the angular variable ϕ can be decoupled into:

ṙ = µRr − νRr3 (2a)

ϕ̇ = µI − νIr2. (2b)

Note that the origin is unstable if µR > 0. Also, if νR < 0 the solutions may explode
in finite time, while if νR = 0 the oscillator becomes a simple first-order linear system.
Thus, in the sequel, we assume that νR > 0. Furthermore, when µR ≤ 0, Equation (2a)
has only one stable fixed point at r = 0. Moreover, the latter is Lyapunov (globally
exponentially) stable. In contrast to this, if µR > 0, this equation has a stable fixed

point r =
√

µR
νR

, while r = 0 becomes unstable. This implies that in this case the tra-

jectories of the system converge to a circle of radius r, starting from initial conditions
either inside or outside the circle. The curves

Γα =

√
µR

νR

[
cos(t)
sin(t)

]
(3)

define a limit cycle of the system —see the illustration in Figure 1. In this case, z
represents the position of the oscillator in the complex plane and z(t) has a stable

limit cycle of the amplitude |z| =
√

µR
νR

on which it moves at its natural frequency.

The bifurcation of the limit cycle from the origin that appears at the value µR = 0 is
known in the literature as the Andronov-Hopf bifurcation.
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2.2. Stability of the unforced Stuart-Landau oscillator

As we have explained above, the set composed of a limit cycle plus the origin, that is,

W :=

{
z ∈ C : |z| =

√
µR

νR

} ⋃
{z = 0} (4)

is invariant for the trajectories of the unforced oscillator (1). More precisely, the fol-
lowing theorem generalizes a statement from Pham and Slotine (2007) concerning the
case of real coefficients, i.e., with νR = 1 and νI = 0.

Theorem 2.1. For the unforced Stuart-Landau oscillator, defined by Equation (1),
the following statements hold true:

(1) if µR < 0 then the origin z ≡ 0 is globally exponentially stable;

(2) if µR > 0 then the limit cycle W1 =
{
z ∈ C : |z| =

√
µR/νR

}
is almost globally

asymptotically stable and the origin {z = 0} is anti-stable1. Moreover, in this
case, the oscillation frequency on W1 is defined by

ω = µI −
νI
νR
µR. (5)

Proof of Theorem 2.1

Proof of Item 1. Consider the Lyapunov function candidate V (z) = |z|2. Using |z| = z̄z
we see that the derivative of V along trajectories of (1) yields

V̇ (z) =
[
− ν̄|z|2z̄ + µ̄z̄

]
z + z̄

[
− ν|z|2z + µz

]
= −(ν + ν̄)|z|4 + (µ+ µ̄)|z|2

= −2νR|z|4 + 2µR|z|2.

Now, since µR < 0, we have V̇ (z) ≤ −|µR||z|2 for all z ∈ C, so the origin is globally
exponentially stable.

Proof of Item 2. Anti-stability of the origin, if µR > 0, follows trivially by evaluating
the total derivative of V (z) = |z|2 along the trajectories of Equation (1) linearized
around the origin, i.e., ż = µz. Indeed, locally, V̇ = µRV .

Next, to analyze the stability of the limit cycle W1, we introduce the Lyapunov
function candidate

V (z) =
1

4νR

[
|z|2 − α

]2
, (6)

where α = µR/νR. Notice that V (z) = 0 for all z ∈ W1 and it is positive otherwise.
Furthermore, evaluating the total derivative of V , along the solutions of (1), we obtain

V̇ (z) =
1

2νR

[
|z|2 − α

][
˙̄zz + z̄ż

]
= −

[
|z|2 − α

]2|z|2.
1That is, the poles of the linearized system have all positive real parts.
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We conclude that V̇ is negative definite with respect to W1 that is, V̇ < 0 for all
z 6∈ W1 and V̇ = 0 for all z ∈ W1. Since the origin is an anti-stable equilibrium point2,
W1 is almost globally asymptotically stable.

It also follows that for any r(0) > 0, r(t) →
√
µR/νR hence, after Equation (2b)

and the relation ω = ϕ̇, we have ω → µI − (νIµR)/νR. �

3. Synchronization of networked Stuart-Landau oscillators

Let us consider now a network composed of N heterogeneous Stuart-Landau oscillators
that is, N dynamical systems

żi = f(zi, µi) + ui, i ∈ I := {1, . . . , N} (7)

f(zi, µi) := −|zi|2zi + µizi

where zi, ui ∈ C are, respectively, the state and the input of ith oscillator, µi =
µRi + iµIi ∈ C is a complex parameter that defines the asymptotic behavior of the ith
oscillator. Heterogeneity of the network is due to the parameters µi ∈ C being different
for each oscillator.

We assume that the oscillators are interconnected via diffusive coupling, which rep-
resents a static interaction between inputs and states of the oscillators, i.e., for the
ith oscillator the input is given by

ui = −γ
[
di1(zi − z1) + di2(zi − z2) . . .+ diN (zi − zN )

]
, dij ≥ 0, (8)

where the scalar parameter γ > 0 corresponds to the coupling strength.

In the particular case when oscillators are completely decoupled (i.e., γ = 0), all the
oscillators in the network rotate at their individual (natural) frequencies with their
own amplitudes. Actually, it was shown in Franci et al. (2012) that this individual
behavior persists in the case of weak coupling (i.e., for small values of γ). The effect
of network synchronization, which appears in the case of strong coupling may be of
two types:

• Frequency synchronization: for sufficiently large values of γ all the units tend
asymptotically to oscillate at the same frequency, see e.g., Matthews et al. (1991).
• Phase locking: in addition to frequency synchronization the phase differences

between the oscillators tend to be constant and are independent of the initial
conditions.

In the case of a homogeneous and symmetric network, i.e., in which case µi = µj for
all i, j ∈ I and L = L>, all of the systems tend to oscillate at the same frequency and
with zero phase differences if the coupling is strong. This effect, which is called complete
network synchronization, is often described in terms of the asymptotically identical
evolution of the units’ motions. In other words, synchronization may be formulated as
a problem of asymptotic stability of the synchronization manifold

S = {zi ∈ C : z1 = z2 = . . . = zN}. (9)

2Solutions starting arbitrarily close to it, are repelled away.
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This problem may be broached using analysis tools developed for semi-passive, incre-
mentally passive or incrementally input-output stable systems Franci et al. (2011);
Jouffroy and Slotine (2004); Lohmiller and Slotine (2005); Pogromsky et al. (1999);
Pogromsky and Nijmeijer (2001); Scardovi et al. (2009), among others.

The behavior of networks of systems with non-identical models, which is of concern
here, is more complex due to the fact that the synchronization manifold S does not
necessarily exist, but heterogeneous networks can exhibit some type of synchronization
and collective behavior. In such case, it is natural to consider practical synchronization
that is, to admit that, asymptotically, the differences between the units’ motions are
bounded and become smaller for larger values of the interconnection gain γ.

In Panteley and Loria (2017) was laid the basis of a framework for the study of
practical synchronization of heterogeneous networks. In this paper, we pursue further
the approach introduced in Panteley and Loria (2017) and extend it to obtain a better
estimation of the synchronized system behavior. According to the latter, the behavior
of interconnected heterogeneous systems coupled via diffusive coupling, may be studied
via two separate properties: the stability of what we call the emergent dynamics and
the synchronization errors of each of the units’ motions relative to an averaged system,
also called “mean-field” system. The emergent dynamics is an averaged model of the
systems’ dynamics regardless of the inputs while the mean-field oscillator’s motion
corresponds to the average of the units’ motions and, as we shall see, its “steady-
state” corresponds to the motion described by the emergent dynamics. For instance,
in the classical paradigm of consensus of a collection of integrators,

żi = ui, (10)

which is a particular case of our framework, the emergent dynamics is null while
the mean field trajectory corresponds to the average zm(t) = (1/N)

∑N
i=1 zi(t). For

a balanced graph, we know that all units reach consensus and the steady-state value
is an equilibrium point corresponding to the average of the initial conditions –see
Ren et al. (2007). In the framework introduced in Panteley and Loria (2017), the
emergent dynamics possesses a stable attractor, in contrast to (the particular case of)
an equilibrium point as is the case of (10). For Stuart-Landau oscillators, as we show,
such attractor is a limit cycle.

Thus, the systems’ behaviors over the network may be completely characterized
via the stability of (the attractor of) the emergent dynamics and the asymptotic
convergence of each unit’s motion to the mean field’s. More precisely, we shall show
that in the case of general heterogeneous networks, with arbitrarily large values of
the coupling gain γ, the analysis of the network behavior may be decomposed in two
parts: the first relates to the dynamic behavior of the mean-field solutions zm(t). This
is implemented by studying input to state stability of the average system dynamics
with respect to a decomposable compact invariant set. The second part relates to
the synchronization errors, the differences between each unit’s trajectories, zi(t), and
zm(t). This is captured by the stability of the synchronization errors manifold

S = {e ∈ CN : e1 = e2 = . . . = eN = 0} (11)

where ei = zi − zm.

To analyze stability properties of the set S we introduce the following definition of
practical stability of a set, which is similar to that of practical stability of an equi-
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librium point –see Teel et al. (1999). Consider a parameterized system of differential
equations

ẋ = f(x, ε), (12)

where x ∈ Rn is the state, ε ∈ [ε∗,∞) with ε∗ > 0 is a scalar parameter, and the
function f : Rn × [ε∗,∞) → Rn is locally Lipschitz uniformly in ε. For such systems
we recall the property of global practical uniform asymptotic stability with respect to
closed, not necessarily compact, sets —cf. Panteley and Loria (2017).

Definition 3.1. For the system (12), we say that the closed set A ⊂ Rn is practically
uniformly asymptotically stable if there exists a closed set D such that A ⊂ D ⊂ Rn
and:

(1) the system is forward complete for all x◦ ∈ D;
(2) for any given δ > 0 and R > 0, there exist ε∗ ∈ [ε∗,∞) such that, for all

ε ∈ [ε∗,∞), there exists a class KL function βε such that, for all x◦ ∈ D satisfying
|x◦|A ≤ R, we have

|x(t,x◦, ε)|A ≤ δ + βε
(
|x◦|A, t

)
. (13)

If D = Rn then the set A is uniformly globally practically asymptotically stable.

4. Network model transformation

We assume that the network’s graph is connected and undirected, in which case the in-
terconnections between the nodes are defined by the adjacency matrix D := [dij ]i,j∈IN
where dij = dji for all i, j ∈ IN . For simplicity we assume that the interconnections
weights are real, i.e., dij ∈ R for all i, j ∈ IN . Then, the corresponding Laplacian
matrix is defined as

L =


∑N

i=2 d1i −d12 . . . −d1N

−d21
∑N

i=1,i 6=2 d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . .
∑N−1

i=1 dNi,

 (14)

where all row sums are equal to zero. Since the the network is connected and undirected
L has exactly one eigenvalue (say, λ1) equal to zero, while others are positive, i.e.,
0 = λ1 < λ2 ≤ . . . ≤ λN . Therefore, denoting by z ∈ CN the overall network’s
state, that is z = [z1, . . . , zN ]>, using (7) and the expression for the diffusive coupling,
(8), we see that the overall network dynamics can be described by the N differential
equations

ż = F (z)− γLz, (15)

where the function F : CN → CN is given by

F (z) = [f(zi, µi)]i∈I . (16)
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In order to analyze the behavior of the solutions of (15) and according with the
framework of Panteley and Loria (2017) we proceed to rewrite the system dynamics
in new coordinates which exhibit the network emergent dynamics. We show that the
synchronization properties may be deduced via an eigenvalue analysis of the linear part
on the right-hand side of (15). To that end, we proceed to underline several structural
properties of the networked system (15).

To start with, let

C(z) :=


|z1|2 0 . . . 0

0 |z2|2 . . . 0
...

. . .
. . .

...
0 0 . . . |zN |2

 and M :=


µ1 0 . . . 0
0 µ2 . . . 0
...

. . .
. . .

...
0 . . . 0 µN


then, we may rewrite the system (15) as

ż = Aγz − C(z)z, (17a)

Aγ := M− γL. (17b)

The interest of representing the network dynamics as in (17) is that it enables us to
study the behavior of the networked oscillators, following relatively simple arguments
which rely on matrix and graph theories. Note that the eigenvalues of Aγ approach
those of L (in absolute value) for large values of the interconnection gain γ. To see
this, we express the matrix Aγ as a “perturbed version” of the Laplacian, i.e.,

Aγ = γ (−L+ εM) , ε :=
1

γ

in which the parameter ε = 1/γ may be rendered arbitrarily small by design. That
is, for sufficiently large values of γ, we may use results on perturbation theory for
matrices (see, e.g., Horn and Johnson (1985); Moro et al. (1997)) to characterize the
eigenvalues and eigenvectors of Aγ in terms of ε and the eigenvalues and eigenvectors
of the Laplacian L. In particular, (Moro et al., 1997, Theorem 2.1) as well as Horn and
Johnson (1985), Wilkinson (1965) allow to estimate the eigenvalues of Aγ in terms of
those of L,M and ε. In general, a small perturbation of a generic matrix A is denoted
by

Aε = A0 + εA1, ε→ 0 (18)

so, if we denote by λ1(A0) a simple eigenvalue of A0 and by λ1ε its induced perturba-
tion, then, for sufficiently small ε, we may use the convergent power series represen-
tation

λε = λ1 + c1ε+ o(ε), (19)

where the coefficient of the first-order term, c1ε, may be characterized as

c1 =
w>A1v

w>v
(20)
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where w and v are normalized left and right eigenvectors of the unperturbed matrix
A0 associated to λ1 hence, |w| = |v| = 1. The statement also applies if the multiplicity
of λ1 is larger than one, provided that there exists a complete set of eigenvectors for
the associated eigenspace Moro et al. (1997), Wilkinson (1965).

Now, for the system (17a) the Laplacian matrix L is symmetric and corresponds to
a connected graph hence, it is diagonalizable and there exists a real orthogonal matrix
U such that

L = U

 λ1(L)
. . .

λN (L)

U> (21)

where, we recall that λ1(L) = 0. Moreover, since L is symmetric its left and right
eigenvectors corresponding to λ1(L) = 0 coincide and are given by

w = v =
1

N
1, 1 := [1 · · · 1]>.

Thus, by assimilating Aε in (18) to (−L+ εM) hence, A0 to −L and A1 toM, we see
from (20), that

c1 =
1

N
1>M1 =

1

N

N∑
i=1

µi

and we deduce that the eigenvalues of Aγ may be approximated, via (19), as

λ1(Aγ) = γ
[
− λ1(L) + c1ε+ o(ε)

]
= γ

[
c1

1

γ
+ o
(1

γ

)]
=

1

N

N∑
i=1

µi +O
(1

γ

)
. (22)

We conclude that λ1(Aγ) is bounded as a function of γ and it converges to 1
N

∑N
i=1 µi

as the coupling strength γ →∞. Moreover, for all j ∈ {2, . . . , N} we have

λj(Aγ) = −γλj(L) + c1 +O(ε), (23)

where c1 was defined in (20), hence, the eigenvalues of Aj are proportional to γ and,
since <e[λj(L)] > 0, we have <e

[
λj(Aγ)

]
→ −∞ as γ →∞.

On the other hand, we underline that Aγ ∈ CN×N is complex symmetric, i.e.,
Aγ = A>γ and for any symmetric complex matrix M there exists a complex orthogonal
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matrix T , i.e., satisfying3 T−1 = T>, such that T>MT has the block-diagonal form
M1 0 0 . . .
0 M2 0 . . .
0 0 M3 . . .
. . . . . . . . . . . .


where each block Mk is either scalar, if the eigenvalue is simple, or Mk = λkI + M̃
where M̃ ∈ Cq×q, if the eigenvalue has multiplicity q, and the eigenvalues of M̃k equal
to zero (see e.g., Craven (1969); Horn and Johnson (1985)).

In view of the above, the following assumption is little restrictive. The first part
follows by construction as well as from the properties of the Laplacian for undirected
graphs, which satisfies (21). The second part, that the largest eigenvalue of Aγ is
simple, follows after the observation that for large values of the interconnection gains,
the eigenvalues of Aγ approach those of L.

Assumption 1. There exists a number γ∗ > 0 and, for each γ ≥ γ∗, a diagonal
matrix Λγ ∈ CN×N , whose elements corresponds to the eigenvalues of Aγ , and a
complex orthogonal matrix Vγ ∈ CN×N , i.e., such that

V >γ Vγ = IN , (24)

and the matrix Aγ defined in (17b) may be factorized as

Aγ = VγΛγV
−1
γ . (25)

Moreover, there exists k ≤ N such that <e[λk] > max
j∈I ∩ j 6=k

<e[λj ].

Without loss of generality, in what follows we assume that the eigenvalues of Aγ
are ordered in decreasing order, that is, λ1(Aγ) has the largest real part and <e[λ1] >
<e[λ2] ≥ . . . ≥ <e[λN ].

We remark that the ith column of the matrix Vγ corresponds to the right eigen-
vector, denoted ϑri , associated to the ith eigenvalue of Aγ . Correspondingly, we denote
by ϑ`i the ith left eigen-vector, which corresponds to the ith row of V >γ . Therefore,
we have

Aγϑri = λi(Aγ)ϑri ,

ϑ`iAγ = λi(Aγ)ϑ`i

Moreover, due to the complex-orthogonality of Vγ , expressed by Equation (24), we
have

[ϑr]
2 := ϑ>r ϑr = 1, ϑ`i = ϑ̄ri . (26)

Another crucial feature of (17) is that it leads to a new representation of the dynam-
ics, which is reminiscent of that of a homogeneous network. A fundamental fact that
we shall exhibit is that Aγ possesses properties similar to those of the Laplacian L. To

3We stress the difference between complex orthogonal matrices, which satisfy T−1 = T>, and unitary matrices

satisfying T−1 = T ∗.
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see this, we proceed to decompose the matrix Aγ as follows. According to Assumption
1 the matrix matrix Λγ is diagonal hence, we may introduce Λ1, Λ2 such that

Λ = Λ1 + Λ2, Λ1 := λ1(Aγ)I (27a)

Λ2 :=


0 0 · · · 0
... λ2(Aγ)− λ1(Aγ) 0

...

0 0
. . . 0

0 · · · 0 λN (Aγ)− λ1(Aγ)

 (27b)

Notice that since γ > γ∗, (N − 1) non-zero eigenvalues of the matrix Λ2 have negative
real parts and, moreover, for all i ∈ {2, . . . , N} we have <e[λi(Λ2)]→ −∞ as γ → +∞
—see (22) and (23).

Using these notations we can rewrite the matrix Aγ as

Aγ = VγΛ1V
>
γ + VγΛ2V

>
γ = λ1(Aγ)I +D, (28)

where D = VγΛ2V
>
γ . The interest of the matrix D is that it depends on the systems’

parameters µi but it inherits the properties of the Laplacian matrix; indeed, in view of
the definition of Λ2 and Assumption 1 we have D ≤ 0 and, moreover, it has one zero
eigenvalue and N − 1 eigenvalues of this matrix have negative real parts. As a matter
of fact, for all i ∈ {2, . . . , N}, we have

λi(D) = λi(Λ2), <e[λi(Λ2)]→ −∞ as γ → +∞.

Moreover, the right eigenvectors ϑri associated to the eigenvalues λi(Aγ) of Aγ are
also the respective right eigenvectors associated to the eigenvalues of D and λi(D) =
λi(Aγ) − λ1(Aγ). Indeed, we have, for each i ∈ I, Dϑri = VγΛ2V

>
γ ϑri . On the other

hand, since ϑ>riϑrj = 0 for all i 6= j and ϑ>riϑri = 1, we have Dϑri = ϑriλi(D). Clearly,
since λ1(D) = 0 we also have Dϑr1 = 0.

The overall conclusion is that the networked system (17a) may be expressed in the
alternative form

ż =
[
λ1I − C(z)

]
z +Dz (29)

which is no more than an alternative manner of writing the equations of motion of
the interconnected heterogeneous oscillators, (15). The interest of this representation
is that it is reminiscent of a network in which the oscillators have equal parameters
µi. Indeed, notice that the dynamics equation for a network (7), (8) with µi = µj = µ
for all i, j ∈ I takes the form

ż =
[
µI − C(z)

]
z − γLz

Thus, the fact that D inherits the properties of the Laplacian matrix enables us, to
some extent, to interpret the original network of heterogeneous oscillators as a network
where all the nodes have identical dynamics.
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5. Network dynamics

5.1. Coordinate transformation

Even though the diagonalizability of Aγ allows us to reinterpret the network’s equation
of motion as that of a homogeneous network, the significance of this property is well
beyond pure analytic interest. As we show next, it also allows to exhibit the emergent
dynamics, which is at the core of the networked systems behavior and, therefore, at
the basis the analysis framework Panteley and Loria (2017).

To see this clearer, we proceed to represent the system (17) in a coordinates frame
whose first coordinate corresponds to a certain “average” of all the units’ states. The
rest of the coordinates, which stem naturally from this representation, correspond to
the synchronization errors. Such coordinate transformation, which is defined upon the
transformation matrix Vγ simplifies considerably the analysis of the networked system.
Let

z̃ = V >γ z (30)

and let Ṽγ :=
[
ϑr2 · · ·ϑrn

]
then,

z̃ =

[
z̃1

z̃2

]
=

[
ϑ>r1

Ṽ >γ

]
z.

From Section 4 we know that λ1(Aγ)→ λ1(L) as γ →∞ and, ϑr1 , which corresponds
to the first right eigenvector of both, Aγ and D, satisfies ϑr1 → 1, as γ →∞. It follows
that in the limit the coordinate z̃1 converges to the vector

ze =
1

N

N∑
i=1

zi

which in the literature on nonlinear oscillators is referred to as the state of the averaged
or mean-field oscillator –see Belhaq and Houssni (2000); Rosenblum and Pikovsky
(2004). In other words, z̃1 may be regarded as a weighted average of the units’ states
zi.

Next, let us consider the rest of the coordinates in z̃, i.e., the vector z̃2 = Ṽ >γ z.

From (24) we have V >γ = V −1
γ , so

Ṽγ Ṽ
>
γ = IN − ϑr1ϑ>r1 (31)

and, pre-multiplying z̃2 by Ṽγ and using (31) we see that z̄2 equals to zero if and
only if z = ϑr1 z̃1 or, equivalently, if the synchronization error e ∈ CN defined as
e = z − ϑr1 z̃1 equals to zero. That is, z̃2 constitutes a natural measure of synchrony
among the oscillators in the network; it corresponds to the synchrony between each
oscillator and the network mean-field.

Thus, the behavior of the networked systems interconnected via diffusive coupling
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is naturally and completely captured by the states

zm := ϑ>r1z (32a)

e := z − ϑr1zm. (32b)

By using these coordinates we decompose the analysis of the network behavior in two
distinct parts: the first, pertains to the “average” behavior of the network and the
second, to the synchronization of the units. Notice that due to the definition of ϑr1
here, in contrast to Panteley and Loria (2017), the definition of the average behavior
state zm depends explicitly on the coupling strength γ. For heterogeneous networks
we have that zm → ze asymptotically, as γ → ∞, while for homogeneous networks
zm = ze. Moreover, in view of the heterogeneity of the network, one can only expect
that the synchronization errors become arbitrarily small for arbitrarily large values of
the interconnection gain γ.

Remark 1. The vector e corresponds to the errors between each oscillator with state
zi and the scaled and rotated mean-field oscillator, with state zm. In general, the vector
ϑr1 does not necessarily have only rotational components since some of its coefficients
may be different from one. However, in the limit, as γ → ∞, we have ϑr1 → 1 so for
sufficiently large values of γ, the elements of ϑr1 converge to eiϕj where ϕj ∈ R. Thus,
for sufficiently large values of γ, the right eigen-vector ϑr1 may be approximated as a
vector of rotations which correspond to the phase difference between the interconnected
oscillators and the average oscillator.

In what follows, we derive the dynamics equations corresponding to zm and e.

5.2. Dynamics of the averaged oscillator

We differentiate on both sides of (32a) and use the network dynamics equation (29)
to obtain

żm = ϑ>r1
[(
λ1(Aγ)I − C(z)

)
z +Dz

]
= λ1(Aγ)zm − ϑ>r1C(z)z + ϑ>r1Dz (33)

however, since ϑr1 is an eigen-vector (also) associated to λ1(D), the last term on the
right-hand side of (33) equals to zero. We proceed to rewrite the rest of the right-hand
side of (33) in terms of zm and e. From (32b), we have C(z)z = C(z)[e + ϑr1zm].
Next let us introduce the operator Γ defined as

Γ(z) :=


z1 0 . . . 0
0 z2 . . . 0
...

. . .
. . .

...
0 . . . 0 zN

 ;
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notice that IN = Γ(1), Γ(x)y = Γ(y)x and Γ(x)−Γ(y) = Γ(x−y) for all x, y ∈ CN .
Also, C(z) = Γ(z)∗Γ(z) where Γ∗ denotes the conjugate transpose of Γ, hence,

C(z)z = C(z)e + Γ(z)∗Γ(z)ϑr1zm ± Γ(z)∗
[
Γ(ϑr1zm)ϑr1zm

]
= C(z)e + Γ(z)∗

[
Γ(z − ϑr1zm)ϑr1zm + Γ(ϑr1zm)ϑr1zm

]
= C(z)e + Γ(z)∗Γ(ϑr1zm)e + Γ(z)∗Γ(ϑr1zm)ϑr1zm ± Γ(ϑr1zm)Γ(ϑr1zm)ϑr1zm

where ϑr1zm =
[
ϑr11zm · · · ϑr1nzm

]>
and we used Γ(z)∗ = Γ(z̄). Therefore, using

ē = z̄ − ϑr1zm, the linearity of Γ and |zm|2 = z̄mzm, we obtain

C(z)z =
[
C(z) + Γ(z)∗Γ(ϑr1zm)

]
e + Γ(ē)Γ(ϑr1zm)ϑr1zm + Γ(ϑr1)Γ(ϑr1)ϑr1 |zm|2zm

=
[
C(z) + Γ(z)∗Γ(ϑr1zm)

]
e + Γ

(
[ϑ2

r11 · · · ϑ
2
r1n ]>

)
(zm)2ē + Γ(ϑr1)Γ(ϑr1)ϑr1 |zm|2zm.

Using the latter in (33), we obtain

żm = λ1zm − α|zm|2zm − ϑ>r1
[
C(z) + Γ(z)∗Γ(ϑr1zm)

]
e− ϑ>r1Γ

(
[ϑ2

r11 · · · ϑ
2
r1n ]>

)
(zm)2ē

where

α = ϑ>r1Γ(ϑr1)Γ(ϑr1)ϑr1 (34)

hence,

żm =
[
λ1 − α|zm|2

]
zm + fm(zm, e) (35a)

fm(zm, e) := −ϑ>r1
[
C(z) + Γ(z)∗Γ(ϑr1zm)

]
e− ϑ>r1Γ

(
[ϑ2

r11 · · · ϑ
2
r1n ]>

)
(zm)2ē. (35b)

Notice that fm ≡ 0 if |e|2 = ē>e = 0 that is, if synchronization is achieved asymp-
totically the dynamics of the average unit, (35), converges to the emergent dynamics

że =
[
λ1 − α|ze|2

]
ze. (36)

Hence, a reasonably good measure of stability of the solutions of (35a) is that with
respect to invariant sets for the solutions of (36).

Remark 2. We stress that even though the interconnection gain γ does not appear
explicitly in the right-hand side of (35), we see from (22) that λ1(Aγ) = c+O( 1

γ ), where
the constant c depends only on the matrix M. That is, in contrast to Panteley and
Loria (2017), the emergent dynamics equation (36) depends on the coupling strength
γ hence, it better approximates the network’s synchronized behavior.

5.3. Dynamics of the synchronization errors

Next, we derive the dynamics equation corresponding to the synchronization error
(32b). To that end, let us start by introducing the matrix

P :=
(
I − ϑr1ϑ>r1

)
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hence, we have e = Pz. Next, differentiating on both sides of the latter and using (29)
we obtain the error dynamics of e,

ė = PDz + P
[
λ1(Aγ)I − C(z)

]
z. (37)

Now, since ϑr1 is a right eigen-vector associated to λ1(D) = 0, it follows that DP =
D = PD. Indeed, on one hand, D and P are both symmetric and, on the other,
DP = D −Dϑr1ϑ>r1 and Dϑr1 = 0. Therefore, PDz = PDPz and, since e = Pz, we
obtain PDz = PDe. It follows from this and (37) that

ė =
[
PD + λ1(Aγ)I

]
e− PC(z)z.

=
[
D + λ1(Aγ)I

]
e− PC(e + ϑr1zm)[e + ϑr1zm]. (38)

Thus, Equations (35) and (38) completely define the dynamics of the networked
oscillators interconnected via diffusive coupling and in coordinates meaningful for our
purposes of analysis. The next section is devoted to the stability analysis of the solu-
tions of these equations, which we regroup for convenience:

żm =
[
λ1 − α|zm|2

]
zm + fm(zm, e), (39a)

ė = [D + λ1I]e− PC(e + ϑr1zm)[e + ϑr1zm]. (39b)

We investigate two different properties. Firstly, we establish a bound on the synchro-
nization errors e. Then, the second part relates to the stability of the natural attractor
of the emergent dynamics (36), which corresponds to the nominal part of (39a). Notice
that this is tantamount to studying the robust stability of an isolated unforced Stuart-
Landau equation; more precisely, input-to-state stability with respect to invariant sets
of (36) and the input e. In other words, in a first stage, we analyze the behavior of
the solutions of (39b) and in a second stage, those of (39a).

6. Networked systems’ stability

6.1. Ultimate boundedness of solutions

As a preliminary but fundamental step in the analysis of Equations (39) we formu-
late conditions that ensure that the trajectories of the networked diffusively-coupled
Stuart-Landau oscillators, as described by (15) and equivalently by (39), are globally
ultimately bounded that is there exists a positive constant T such that, for all z◦ ∈ C

|z(t, z◦)| ≤ c ∀t ≥ T.

This property may be established for any interconnection gain γ > 0, using simple
Lyapunov arguments –cf. Matthews et al. (1991); Pham and Slotine (2007). In a
general context, conditions for ultimate boundedness are given, e.g., in (Khalil, 2002,
Theorem 4.18).

Proposition 6.1. Consider the system (15), (16) and let the graph of the network be
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undirected and connected. Then, the solutions are globally ultimately bounded and

|z(t, z◦)| ≤
√

2µ̄N, ∀ t ≥ T
µ̄ = max

i∈I
{µRi, 0}. (40)

Proof. Consider the Lyapunov function candidate V (z) = z∗z; it is clear that V is
positive definite, decrescent and radially unbounded.

Now, evaluating the total derivative of V along the system’s trajectories, using the
symmetry of the Laplacian L and the fact that all the eigenvalues of the latter are
non-negative, we obtain

V̇ (z) ≤ z∗F (z) + F (z)∗z.

where

F (z) = −C(z)z +Mz, F (z)∗ = −z∗C(z) + z∗M∗.

Therefore,

V̇ (z) ≤ −2z∗C(z)z + z∗
[
M+M∗

]
z

≤ −2

N∑
i=1

|zi|4 + 2µ̄

N∑
i=1

|zi|2

≤ −2

N∑
i=1

|zi|4 + 2µ̄|z|2. (41)

On the other hand, notice that

N∑
i=1

|zi|4 ≥
1

N
|z|4. (42)

Indeed, we have

|z|4 =

[
N∑
i=1

|zi|2
]2

=

[
N∑
i=1

|zi|2
]
|z1|2 + · · ·+

[
N∑
i=1

|zi|2
]
|zN |2

so using the triangle inequality we see that, for each j ≤ N ,[
N∑
i=1

|zi|2
]
|zj |2 ≤

N

2
|zj |4 +

1

2

N∑
i=1

|zi|4

hence adding up the latter from j = 1 to N , we obtain[
N∑
i=1

|zi|2
]2

≤ N

N∑
j=1

|zj |4.
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Therefore, substituting (42) in (41) we obtain

V̇ (z) ≤ − 2

N
|z|4 + 2µ̄|z|2

= − 1

N
|z|4 − 1

N

[
|z|2 − 2µ̄N

]
|z|2.

Thus, from the last inequality, we conclude that V̇ (z) ≤ − 1
N |z|

4 for all z such that
|z| ≥

√
2µ̄N . It follows, from Theorem (Khalil, 2002, Theorem 4.18), that the solutions

are globally ultimately bounded and for any R > 0 there exists a T (R) such that for
all initial conditions such that |z◦| ≤ R, the system’s trajectories satisfy

|z(t, z◦)| ≤
√

2µ̄N ∀t ≥ T. �

6.2. Practical asymptotic stability of the synchronization errors manifold

In this section we formulate conditions that ensure practical global asymptotic stability
of the (not necessarily invariant) set

S = {e ∈ CN : e1 = e2 = . . . = eN = 0}. (43)

We show that for large values of the interconnection gain γ the norm of the error e(t)
is small and inversely proportional to γ. More precisely, we establish that the set S is
globally practically asymptotically stable for the system (39b). Our analysis relies on
the following statement, which is reminiscent of results found in Corless and Leitmann
(1981) for stability of an equilibrium.

Lemma 6.2. Consider the system ẋ = f(x), where x ∈ Rn and f : Rn → Rn is
continuous, locally Lipschitz. Assume that the system is forward complete and that
there exist a closed set A ⊂ Rn, a C1 function V : Rn → R+, functions α1, α2 ∈ K∞,
α3 ∈ K and a constant c > 0 such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A)

V̇ ≤ −α3(|x|A) + c.

Then for any R, ε > 0 there exists a T = T (R, ε) such that for all t ≥ T and all
x◦ ∈ Rn such that |x◦|A ≤ R

|x(t,x◦)|A ≤ r + ε,

where r = α−1
1 ◦ α2 ◦ α−1

3 (c).

Our main statement in this section is the following.

Theorem 6.3. Consider the system (15), (16) and let Assumption 1 be satisfied. Let
γ∗ be such that <e[λ2(Aγ∗)] < 0. Then, the set S is uniformly globally practically
asymptotically stable for all γ ≥ γ∗. Moreover, there exist T ∗ > 0, c1, c2 > 0, inde-
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pendent of γ, such that synchronization errors e(t) satisfy

|e(t)|2 ≤ c

| <e[λ2(Aγ∗)] |
∀ t ≥ T ∗. (44)

The previous statement relies mostly upon two properties of the networked system,
namely, the negative definiteness of the second smallest eigenvalue of the Laplacian
matrix L and uniform boundedness of the trajectories of the network. For a network
of the Stuart-Landau oscillators with coupling gain γ it establishes that, for a given
arbitrary large ball of initial conditions BR = {z◦ ∈ CN : |z◦| ≤ R} and an arbitrarily
small constant δ > 0, we can always find constants γ(R, δ) and T ∗(R, δ) such that the
synchronization errors e(t, z◦) satisfy

|e(t, z◦)| ≤ δ for all t ≥ T ∗.

Proof of Theorem 6.3. Let z◦ ∈ C be initial conditions such that |z◦| ≤ R, where the
constant R > 0 is arbitrary. Let Assumption 1 generate a complex orthogonal matrix
Vγ and define

ev := V >γ e. (45)

From the latter, (39b) and D = VγΛ2V
>
γ , we have

ėv = V >γ VγΛ2V
>
γ e + λ1ev − V >γ PC(z)z,

which, in view of the orthogonality of Vγ , is equivalent to

ėv = Λev − V >γ PC(z)z. (46)

where Λ is defined in (27). However, by construction, the first among the N equations
in (46) is redundant. Indeed, on one hand, we have ev = V >γ z − V >γ ϑr1zm so, using

the identity V >γ ϑr1 = [ 1 0 · · · 0 ]>, we obtain

ev =


ϑ>r1z

...

ϑ>rnz

−


zm
0
...

0

 =:

[
0
ẽv

]
. (47)

On the other hand, the first element of V >γ PC(z)z equals to zero since the first row

of V >γ P is entirely constituted of zeros. To see this, we observe that

V >γ P =

[
ϑ>r1

Ṽ >γ

] [
I − ϑr1ϑ>r1

]
and recall that, by definition, ϑ>r1ϑr1 = 1.

Then, let us consider the Lyapunov function candidate V (ev) = |ev|2 = |ẽv|2
which is positive definite relative to the set S. To see this, we refer to (47) and observe
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that V (ev) is positive definite with respect to the set {ẽv = 0}. Evaluating the total
derivative of V along the trajectories of (46), we obtain

V̇ (ev) = e∗v

(
Λev − V >γ PC(z)z

)
+
(
e∗vΛ

∗ − z∗C(z)P ∗Vγ

)
ev

= e∗v
[
Λ + Λ∗

]
ev + g(ev, z)

where

g(ev, z) = −e∗vV >γ PC(z)z − z∗C(z)P ∗Vγev.

Now, since ev = [0 ẽ>v ]> and the first element of z∗C(z)P ∗Vγ equals to zero, we obtain,
along the systems’ trajectories z(t),

V̇ (ev) ≤ ẽ∗v<e[λ2(Aγ∗)]ẽv + g(ev, z(t)) (48)

where we used the fact that <e[λ2(Aγ)] ≥ <e[λi(Aγ)] for all i > 2 and, by assumption,
0 > <e[λ2(Aγ)] for all γ ≥ γ∗, that is, the eigenvalues of D are non-positive.

Next, we observe that Proposition 6.1 implies that the solutions of (39a) are globally
ultimately bounded hence, for any R > 0 and any initial conditions such that |z◦| ≤ R
there exists a constant T > 0 such that

|z(t, z◦)| ≤
√

2µ̄N ∀ t ≥ T.

In turn, it follows from (32) and (45), that zm(t) and the synchronization errors e(t),
hence ev(t), are also uniformly globally ultimately bounded. Moreover, the bound
depends only on µ̄ and N . Furthermore, the eigenvalues and eigenvectors of Aγ are
uniformly bounded in γ hence, there exists a constant c > 0, which depends on µ̄ and
N only, such that

|g(ev, z(t))| ≤ c.

From this and (48) it follows that

V̇ (ev(t)) ≤ −|<e[λ2(Aγ∗)] ||ẽv(t)|2 + c.

By direct integration and invoking the comparison theorem, it follows that there exists
T ∗ > 0 such that

|ẽv(t)|2 ≤
c

| <e[λ2(Aγ∗)] |
∀ t ≥ T ∗

so, from (45), (47) and the orthogonality of Vγ we obtain (44). Global practical asymp-
totic stability of S follows from the fact that lim

γ∗→∞
<e[λ2(Aγ∗)] = −∞.

6.3. Practical asymptotic stability of the invariant set of the averaged
oscillator

To complete our analysis, we consider the behavior of the solutions zm(t) of (39a).
Notice that this equation may be regarded as that of a single Stuart-Landau oscillator
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with a perturbation, that is,

żm = (λ1 − α|zm|2)zm + u, (49)

with u = fm(zm, e). This equation has exactly the form (1) (with additive input).
Therefore, generally speaking, we may use stability theory for perturbed systems with
respect to decomposable sets Angeli and Efimov (2013); Panteley, Loŕıa, and El Ati

(2015). Indeed, the origin is an invariant set, but so is the orbit |zm| =
√
λ1R/αR,

where α is defined in (34), which is determined by the complex parameters of the
systems in the network, µi. More precisely, the invariant is given by

W :=

{
z ∈ C : |z| =

√
λ1R

αR

}
∪
{
z = 0

}
.

Theorem 6.4. Consider the network of Stuart-Landau oscillators defined by Equa-
tions (15), (16) with an undirected interconnections-graph and the averaged oscillator
of the network defined by (32a), whose dynamics is given by equation (49). Let As-
sumption 1 be satisfied. Then, the system (49) has the asymptotic gain property and
moreover for any ε > 0 there exists a gain γ ≥ γ∗ such that

lim sup
t→+∞

|zm(t, z◦)|W ≤ ε.

Proof. Let γ ≥ γ∗ and R > 0 be arbitrary and consider the system (15), (16) with
initial conditions z◦ ∈ C such that |z◦| ≤ R. From Proposition 6.1 it follows that
the solutions of the system (15), (16) are ultimately bounded hence, there exists a
T = T (R) such that (40) holds for all t ≥ T .

Now, let us consider the dynamics of the averaged oscillator, (49), given by

żm = (λ1 − α|zm|2)zm + fm(zm, e),

where fm(zm, e) is defined in (35b). From the latter, we see that fm(zm, · ) is Lipschitz
on compacts of zm. Moreover, due to the ultimate boundedness of solutions, zm(t) is
uniformly bounded; therefore, there exists a constant c3 > 0 such that, for all t ≥ T ,
we have

|fm(zm(t), e(t))| ≤ c3|e(t)|.

Thus, invoking Theorem 3 of Panteley, Loŕıa, and El Ati (2015) with u(t) =
fm(zm(t), e(t)) and t ≥ T , and using (6), we see that the solutions of Equation (49)
satisfy the bound

lim sup
t→+∞

|zm(t, z◦)|W ≤ η
(
|e|∞

)
where

|e|∞ = sup
t≥0
|e(t)|
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Furthermore, from Theorem 6.3, there exist constants T ∗ > T and c > 0, independent
of γ, such that for all t ≥ T ∗, the synchronization errors e(t) satisfy (44). It follows
that

lim sup
t→+∞

|zm(t, z◦) |W ≤ η

([
c

| <e[λ2(Aγ∗)] |

]1/2
)

∀ t ≥ T ∗

and, by repeating the same argument as before, i.e., observing that

lim
γ∗→∞

<e[λ2(Aγ∗)] = −∞,

and using the fact that η ∈ K∞, we obtain that, for any ε > 0, there exists a γ > γ∗

such that

η

([
c

| <e[λ2(Aγ∗)] |

]1/2
)
≤ ε.

We conclude that

lim sup
t→+∞

|zm(t, z◦) |W ≤ ε.

That is, the invariant set W is practically asymptotically stable, in the sense that,
by increasing the interconnection gain γ, we can make solutions zm(t, z◦) converge
arbitrarily close to W. �

7. Simulations

To illustrate our theoretical findings, we have performed some numerical simulations,
based on the case-study presented in Bergner et al. (2012). We consider a group of
four Stuart-Landau oscillators with natural frequencies ωi ∈ {2.5, 0.975, 0.992, 1.008},
unitary amplitude, and interconnected in a star topololgy defined by the following
Laplacian

L =


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 .
We performed several numerical simulations for different values of the interconnection
gain γ. In Figure 2 are showed some of these results in terms of the trajecories of ziR(t);
one may appreciate the synchronized behaviour of the oscillators as γ is increased.

Furthermore, we have proceeded to compute the synchronization frequency for each
value of the interconnection gain using both, the numirecal data obtained from the
simulations and the analyitycal formula (5) applied to the emergent-dynamics oscil-
lator (36). In the latter λ1 corresponds to the eigen-value of Aγ , as defined in (17b),
with the largest real part and α is defined in (34). In Figure 3 we show the spline-
interpolated values of the estimated synchronization frequencies, in function of γ. It
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Figure 2. Systems’ responses in terms of ziR(t) for different values of the interconnection gain γ

may be appreciated that this frequency is in the neighbourhood of 1.3685 rad/s for
large values of the interconnection strength.

8. Conclusions

We have established that a network of heterogeneous nonlinear oscillators achieve
practical dynamic consensus under diffusive coupling. The synchronization errors are
ultimately bounded and may be diminished by enlarging the coupling strength. These
are, however, preliminary analysis results. Important control design problems are com-
pletely open. For instance, under which circumstances, one may control the emergent
dynamics and, hence, the collective behavior of the networked systems. Furthermore,

0.1 2.1 4.1 6.1 8.1
0.95

1.25

1.55

1.85

2.15

sy
nc

hr
on

iz
at

io
n 

fr
eq

ue
nc

y

interconnection strength γ

 

 

x

o

numerical estimation
analytical estimation

Figure 3. Comparison of the synchronization frequencies for different values of the interconnection gain based
on numerical simulations and the analytical value
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we established dynamic consensus only in a practical sense, that is, we proved that
the systems’ trajectories remain within a neighbourhood of the emergent dynamics at-
tractor. Establishing asymptotic dynamic consensus for heterogeneous systems that is,
that all the systems’ trajectories tend asymptotically to the attractor, is a challenging
problem under investigation.
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