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MOTION OF A TWO-DEGREE-OF-FREEDOM STRUCTURE
IN THE PRESENCE OF A FLUIDELASTIC FORCE
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Gérard PORCHER
René-Jean GIBERT
CEMIF
Université d'Evry Val d'Essonne
France

ABSTRACT

The fluidelastic force induced by a confined flow in
a bidimensionnal flow channel, has been determined by
using a method which takes into account the dissipative
effects by a linearising of the pressure losses considered
as boundary conditions. This force has been used to
study the stability of a two-degree-of-freedom structure
for several boundary conditions.

The motion equation of the system can be solved with
an iterative method, and a parametric study has been
carried out. The results obtained show the appearance
of a flutter instability which has been largely influenced
by the position and the value of the pressure losses.

INTRODUCTION

A fluid flowing through a structure induces fluide-
lastic forces which are of pratical importance because
of their destructive effects : the motion of the struc-
ture may be coupled with the force exerced by the
flow and a dynamic instability may causes fatigue fail-
ure. The fluidelastic instabilities are characterized by
large-amplitude vibrations and are assumed to be due
to energizing transfers from the flow to the structure.
These instabilities are often induced by confined flows,
because the more confined is the flow, the stonger is
the fluidelastic force. Furthermore, these instabilities
are largely influenced by the boundary conditions and
by the dissipative effects. Several methods have been
developed to determine the fluidelastic forces : an ap-
proach consists of a potential flow description, see Pai-
doussis (1966), Mateescu (1985), De Langre (1990),

Porcher (1994). Another approach consists of taking
into account the dissipative effects and the boundary-
conditions influences, see Miller (1970), Spurr and Hob-
son (1984), Mulcahy (1988), Inada and Hayama (1988),
Porcher (1994). One of these approach is the model in
which the pressure losses are linearized and considered
as boundary conditions. This method has been gener-
alized to multi-degree-of-freedom structures by Porcher
(1994).

In this paper, we study the stability of a two-degree-
of-freedom structure excited by a fluidelastic force in-
duced by a confined flow. The force is determined by
using the results obtained by Porcher (1994). The mo-
tion equation of the coupled fluid-structure system are
golved with an iterative method and a parametric study
has been carried out to show how the pressure losses af-
fect the stability of the system.

THE TWO-DEGREE-OF-FREEDOM STRUCTURE
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Figure 1 : two-degrec-of-freedom structural model



The fluid-structure system is a bidimensionnal flow
channel as shown in Figure 1. P, is assumed to have two
degree of freedom : a vertical translation in direction ¥,
denoted by X, and a rotation in direction £, denoted
by 8. P, is a motionless plane. The area between P
and P, is the fluid-area, D. The fluid is incompressible
and flows through the fluid-area, D, in direction z. Py
and P are parallel when the fluid is motionless.

The structural parameters

A unit span of the structure P; has mass
m* = 1566/ g/m. The structural stiffness and the damp-
ing are provided by springs and shock absorbers, the
damping constants are C} = Cj = 4400 Ns/m?, the
spring constants are k} = kj = 4.105N/m?,

The struture has length 2L°=0.5m and height
H* = 10~%m, the fitness ratio is € = %1-’:; = 25. The
fluid density is p* = 1000Kg/m3.

When the fluid is motionless, the natural frequency
and the reduced damping are f; = 29Hz and &; = 0.01,
for the translational mode, and f; = 91.3Hz and
€2 = 0.03, for the rotational mode.

The motion equation

The dimensionless motion equations (variables
whithout asterisk, see appendix) of the system shown
in Figure 1, can be put in a matrix form :

[M,)X + [A,)X +[RJX =F (1)

where X = (X¢ ; 0) ; [M,], [A;], [R,] are the dimen-
sionless mass, damping, stiffness matrix of the structure
Py, written in appendix (table 1) ; F is the fluidelastic
force.

The fluidelastic force

To determine the fluidelastic force, the pressure in-
duced by the flow on the structure has to be determined
by solving the momentum equation and the continu-
ity equation. These equations have been rendered non-
dimensionnal, linearized, expressed in terms of modal
components and solved for different boundary condi-
tions by Porcher (1994, 1995). The generalized forces,
for an harmonic motion, can be expressed in a matrix
form, as shown in appendix (table 2 ) :

F = {[Ma]w? - i{As()lw = [Ra()]}X (2

where w is the reduced frequencie, i = /-1 and
X=Xg; 0

The equation (1) becomes :

{=[Ma + M,Jw? + i[Aa(w) + A,Jw + [Ra(w) + R,]}X =0

THE SOLVING METHOD

The eigenvalues problem

In order to study the stability of the system, the di-
mensionless reduced frequencies, of the fluid-structure
system, have to be determined by solving the motion
equation ;

let Y be defined by :
_( Xe \. v _ XG vl X
x= (7 )= (7% )w=(%)

with this substitution the second-order motion equation
becomes a first-order equation :

(iwC+ D)Y =0 (3)

with C and D 4x4-matrix

oo 2)o-(5 )

where : M = [M,] + [My] ; A = [4,] + [Aa(W)] ;
R = [R,] + [Ra(w)]
let iw = —A, equation (3) is substituted into equa-
tion (4) :

(D=-AC)Y =0 (4)

_The eigenvalues problem (4) has four solutions, A;
(7 = {1,2,3,4}), so four reduced frequencies, w; = i}j,
are obtained. The reduced frequencies of the system, w,
(n = {1,2}), are the two solutions with positive real
parts.

The iterative method

Because of the dependance of w upon the dimensional
upstream velocity U; and because of the dependance of
the matrix [4,] and [R4] upon w, an iterative method
has been developed to determine w as a function of U} :

* a velocity step, AU,, is chosen. The reduced fre-
quencies are calculated for the velocities defined by
Ulvsr = U + AU, and for several corrector iterations,

* at a given velocity U}, the values of the reduced

frequencies, wﬁl, corresponding to that velocity are ob-

tained by solving the equation (4).



Next :

e the matrix [Aq(w)] and [R4(w)] are calculated for

W= Wi,

e by using the preceding method, new reduced fre-

quencies wf‘, are calculated,

o if | wk, —wk, |< §, the solutions converge (6 is a
given parameter function of the desired degree of
convergence),

o if |wk, —w*, [> 6, the procedure is repeated until
I wn)"f"- - wni IS 6

* When the solutions converge, the problem is solved

for another velocity Ujuy: = Ul + AU,.

Stability analysis
A complex reduced frequency w, solution of the mo-
tion equation, can be expressed as follows :

w = wo/1 — €2 + itw, (5)

The stability can be directly determined from the
natural reduced frequency, wg, and from the reduced
damping, £, of the fluid-structure system :

e buckling instability is defined for wg =| w |= 0

o flutter instability is defined for £ = %n_;(g)‘l <0

By determining w as a function of the flow velocity,
U;, the critical velocity (i.e. the velocity which causes
the structure to instability) can be predicted.

PARAMETRIC STUDY

We have performed a flow-induced-vibration predic-
tive analysis to study the influence of the position and
of the values of the pressure losses on the appearence
of flutter instabilities for the structure described in Fig-
ure 1. Three boundary conditions have been chosen :

e upstream pressure loss,
o dowmstream pressure loss,
e both upstream and dowmstream pressure losses.

Our aim is first to compare the stability of the three
cases and second to show that for the unstable cases, the
critical velocity is a function of the values of the pressure
loss factor. The reduced damping, ¢, is obtained as
a function of the upstream velocity, U?, by using the
iterative method exposed above. The critical value of
the velocity is obtained from the plot of this function.

Upstream pressure loss

The dependance of £ upon U and upon the upstream
pressure loss factor K is shown on Figure 2 for the
translational mode and on Figure 3 for the rotational
mode.
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Figure 2 : Translational mode, ¢ as a function of U} and as a
function of K
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Figure 3 : rotational mode, ¢ as a function of U7 and as a
function of K '

For a given value of K, note that the reduced damp-
ing increases with the velocity and abruptly goes to zero
and becomes negative. At a certain critical flow veloc-
ity the structure becomes fluidelastically unstable : the
negative damping mechanism extracts energy from the
fluid flow and inputs energy into the structure to en-
courage, initially, vibration, and ultimately flutter. The
critical flutter velocity is identified where the plots, £=0
and £ vs. U], cross. (It should be appreciated that the
instabilities are as sudden as the ones observed on fluid
conveying structures).



These results agree with the stability analysis per-
formed by Porcher (1994) and with the results obtained
by Miller (1970).

Both upstream and downstream pressure losses

The dependance of ¢ upon U] and upon the down-
stream pressure loss factors K; and K3, is shown on
Figure 7 for the translational mode and on Figure 8 for
the rotational mode. On these figures K1=2 and K,
increases.

K1e2, "XK2=1 “o"K2=2 "+"K223
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Figure 7 : translational mode, ¢ as a function of U2 and as a
function of K; and K3
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Figure 8 : rotational mode, £ as a function of U] and as a
function of K; and K,

The translational mode is fluidelastically stable : if
the velocity inceases the reduced damping increases,
even if K1 > K,. The reduced damping evolutions are
close to the ones obtained for only downstream pressure
losses (Figure 5) :

* the stability of the translational mode is not af-
fected by the upstream pressure losses.

The reduced damping of the rotational mode drops to
the negative : the system becomes unstable at velocities
higher than 50m/s, even if K5 > K;. Note that the
drops are not as abrupt as the ones obtained for only
upstream pressure loss (Figure 3), if the downstream
pressure loss factor increases, the drop dicreases :

* the upstream pressure losses cause the system to
flutter, while the downstream pressure losses sta-
bilize it, but the negative damping has stronger
effects than the positive damping.

CONCLUSION

An iterative method has been developed to perform
a stability predictive analysis of a flow channel. This
method used the fluidelastic force obtained with the
“linearizing-of pressure-losses” model. This force was
written, by Porcher (1994), for several boundary condi-
tions. Three of them have been studied.

The parametric study shows that :

* the structure is stable for only downstream pressure
losses (positive damping),

* the structure is unstable for only upstream pressure
losses (negative damping),

o if the flow velocity increases, a flutter instabilitty
affects the two modes,

o if the pressure loss factor increases, the critical ve-
locity dicreases,

* the structure is unstable, for one mode, for both up-
stream and downstreamn pressure losses,

o if the flow velocity increases, the reduced damping
of the rotational mode drops to the negative,

o if the downstream pressure loss factor increases,
the drop dicreases.

The “linearizing-of pressure-losses” model is able to pre-
dict the negative damping mechanism, which causes the
structure to flutter, and the positive damping mecha-
nism, which stabilizes it. This study has shown that the
negative damping has stronger effects than the positive
damping on the stability of the structure.



Pressure loss factor K 1 2 3

Translational mode,

critical velocity (m/s) 26 20 17

Rotational mode,

critical velocity (m/s) 48 37 31

Table 3 : critical velocities

Note that :

* the critical velocity, which causes the system to
flutter, decreases when the pressure loss factor in-
creases,

* the flow velocity required for instability for the
translational mode is higher than that for the ro-
tational mode : the translational mode becomes
unstable before the rotational mode.

These results agree with the stability analysis per-
formed by Porcher (1994), in which only the diagonal
terms of the matrix [A4(w)] were considered. But, in
this study, the flutter instability was found to first af-
fect the rotationnal mode. An analytical investigation
revealed that this difference can be explained by the
nondiagonal terms of the matrix [Aq(w)] which increase
more rapidly than the diagonal terms. For the transla-
tional mode, Figure 4 shows that the matrix coefficient
Aa(1,2) strongly increases if U} increases. In this case,
the stability of the structure is first affected by this
term.

1 “s~Aa(1,1) "omAa(1,2) XTAK2,1) “"Aa(2.2)

5 10 15 20 25 30 5 40 45 50
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Figure 4 : translational mode, K1=2, Aa(i, i) as a
function of Ug

Downstream pressure loss

The dependance of £ upon U; and upon the down-
stream pressure loss factor K is shown on Figure 5 for
the translational mode and on Figure 6 for the rota-
tional mode.
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F igure 5 : translational mode, ¢ as a function of U] and as a
function of K>
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Figure 6 : rotational mode, ¢ as a function of U and as a
function of K3

Note that :

* at a given value of K>3, increasing the velocity in-
creases the reduced damping. The two modes are
fluidelastically stable. A positive damping mecha-
nism stabilizes the system. (On Figure 5, reduced
dampings equal to 100% are obtained! These re-
sults, which have no physical sense, are due to the
relation (5) : if w has no real part, { = 1),

* at a given value of U}, the damping ratio, ¢, in-
creases if the pressure loss factor, K5, increases,

* at a same velocity the structure is stable for down-
strean pressure losses, while it is unstable for up-
stream pressure losses.
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APPENDIX

The dimensionless variables
The variables are rendered non-dimensionnal by us-

ing the following notations :
_ Lw"*

o,
7 7

= U

where L* is the half length of the structure and U} is
the upstream velocity.

The structural matrix

Structural Matrix dimensionless form
1 m* 0
(M.} 7| 0 o
(4] . [ci+C ci-ct
’ PLUS | c3-cr cr+Cy
- L [kl Bk
’ U | ks —kr ky+ky

Table 1 : structural matrix




The fluidelastic force

]
N g

KN\ VAN
VS S S

F:{w2

Ko

[Ma] — iw[da(w)] — [Ra(w)]} ( Xe )

Dimensionless Matrix

(M]

[Aa(w)]

e[2w’ +2K‘1K: +K2 -‘Kl] (Rl +RJ)

2¢[4w? + (R + Ka)? + (K2 - R1)(2w? - 6) + 4 (R? + R} - R1 K)))

4w? + (K1 + Ra)’

3 2¢f4w? + (R + Kq)? + 207 (R, - K,)]
34w + (K, + K3)3]

3 [41.1!2 + (Kl + Rz)’]

2((]?1 + K:)[Zw’ - 3(}?1 - Rg)]
9[4w? + (K, + Ra)?]

[Ra(w)]

_2¢Ry - K3) (R - R+ 2)w?

26(}?1 + f(a)[(f(l - f{g + 8)(4}2 + 3(}?2 - Rl + 2!-(1 I‘(:)]

4wd 4+ (K, + Ka)?

2¢(R? - RNHuw?
3[4w? + (R1 + Ka)?]

3[aw? + (K1 + K2)?]

_ 2¢[(R1 + Ra)* (w? +3) + 6(R1 — Ra + 2)w?]
9[4w? + (R) + R,)1]

Table 2 : the fluidelastic-force matrix for upstream and downstream pressure losses with no

friction through the fluid area




