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it is known that for nonholonomic systems it is impossible to design a universal controller able to asymptotically stabilize any feasible reference trajectory. In this paper we present a smooth time-varying controller able to stabilize a wide class of reference trajectories that include converging (parking problem) and persistently exciting (tracking problem) ones, as well as set-points. To the best of our knowledge, for the first time in the literature, we establish uniform global asymptotic stability for the origin of the closed-loop system in the kinematics state space. We also show that the kinematics controller renders the system robust to perturbations in the sense of integral-input-to-state stability. Then, we show that for the case in which the velocity dynamics equations are also considered (full model), any velocity-tracking controller with the property that the error velocities are square integrable may be used to ensure global tracking or stabilization. This modularity and robustness of our controller, added to the strength of our stability statements, renders possible the extension of our main results to the difficult scenario of control under parametric uncertainty.

Introduction

In the well-known paper [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] necessary conditions for asymptotic set-point stabilization of nonlinear systems via continuous controllers are given. In particular, it is showed that nonholonomic systems are not stabilizable to a point via continuous autonomous feedback. The seminal paper [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF] extends the results of [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] for smooth control systems by establishing sufficient conditions for the non existence of universal continuous stabilizers (even time-varying) of arbitrary feasible trajectories. A particular but fundamental contribution of [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF] is that for nonholonomic systems it is beyond reach to design a universal controller (even time-varying) capable of stabilizing an arbitrary feasible trajectory.

The results of [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] certainly triggered the interest of the research community on different stabilization and tracking control problems for nonholonomic systems and, in accordance with [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF], available results apply either to the set-point control problem -see e.g. [START_REF] Astolfi | Discontinuous control of nonholonomic systems[END_REF]; [START_REF] Bayat | Finite-time tracking control of nth-order chainedform non-holonomic systems in the presence of disturbances[END_REF], to the so-called parking control problem -see e.g. [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF]; [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF], or to other kinds of restricted time-varying trajectoriessee e.g. [START_REF] Dixon | Nonlinear control of wheeled mobile robots[END_REF]; [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF]; [START_REF] Loría | Leader-follower formation and tracking control of mobile robots along straight paths[END_REF]. Tracking control in the sense defined in [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF] is addressed, e.g., via nonlinear backstepping control in [START_REF] Jiang | Tracking control of mobile robots: A case study in backstepping[END_REF]. There also exist several remarkable works under stringent conditions: for instance, parametric uncertainty is coped with via adaptive control in [START_REF] Dixon | Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity[END_REF]; [START_REF] Fukao | Adaptive tracking control of a nonholonomic mobile robot[END_REF]; [START_REF] Huang | Adaptive output feedback tracking control of a nonholonomic mobile robot[END_REF], control under input constraints is addressed e.g. in [START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF]; [START_REF] Jiang | Saturated stabilization and tracking of a nonholonomic mobile robot[END_REF]; [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF].

In [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] a simple linear time-varying controller was proposed and, for the first time in the literature, persistency of excitation was explicitly imposed as a necessary and sufficient condition for stabilization of a time-varying trajectory. The underlying ideas, however, are already present in early work by C. [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF]. Ever since, persistency of excitation has been recurrently used in the literature to design smooth controllers for autonomous vehicles -see e.g., [START_REF] Dixon | Global exponential tracking control of mobile robot system via a pe condition[END_REF]; [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF]; [START_REF] Miao | Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots[END_REF]; [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] to mention a few. However, controllers relying on persistency-of-excitation conditions on the reference trajectories fail in other stabilization tasks, as for instance, in the case that the reference velocities tend to zero, as in the case of the parking-control problem [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF]. In the latter, as also in [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF], nonlinear time-varying controllers are designed to allow for reference velocity trajectories that converge to zero. Furthermore, it is worth to emphasize that [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF] covers the case when both the angular and forward velocity may converge to zero.

For the set-point stabilization problem it is also possible to use persistency of excitation as a stabilization mechanism, but the property needs to be redefined for functions that are state-dependent. To the best of our knowledge, this was done for the first time in [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] where, inspired by the seminal paper [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF], the so-called δ-persistently-exciting controllers were introduced1 . See also [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] for more recent references.

Designing a unique controller capable of stabilizing bounded converging or diverging (i.e., persistently exciting), reference velocity trajectories is not only a major challenge but, based on [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF], it may not appear as an overstatement to say that it is close to the broadest solvable control problem for nonholonomic systems. To the best of our knowledge, it has been addressed only in [START_REF] Dixon | Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity[END_REF]; [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF]; [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF]; [START_REF] Miao | Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots[END_REF]; [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF]; [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF].

The problem is solved for particular cases of the reference velocity trajectories in [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF], e.g., it is required that either the forward or the angular reference velocities is separated from zero. In [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF] the elegant transversefunctions approach is presented; a unified velocity controller for generic chained-form systems (hence beyond the unicycle particular system) is proposed. A similar result is presented in [START_REF] Dixon | Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity[END_REF] using an adaptive-control approach. In the latter two references convergence of the tracking errors in a practical sense is established. The method of [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF], which is based on the design of δ-persistently exciting controllers, is appealing in the sense that it consists in using the combination of a tracking controller and a stabilization controller carefully weighted by a function that depends on the leader velocities, thereby favoring the action of either controller; a similar controller, assuming parametric uncertainty, is presented in [START_REF] Miao | Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots[END_REF]. In [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF] a Lyapunov-based unified controller is proposed in order to make the tracking error converge to zero in either of the tracking and the parking scenarios.

In this paper we address the simultaneous tracking-stabilization problem, based on the approach of [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF]. To the best of our knowledge for the first time in the literature, we establish uniform global asymptotic stability (UGAS), as opposed to the weaker property of non-uniform convergence. The importance of UGAS for timevarying systems cannot be overestimated; only this property guarantees robustness of the system with respect to bounded disturbances in the sense of total stability Malkin (1944) -a concept better known nowadays as local input-to-state stability.

Furthermore, our proofs of UGAS and iISS rely on Lyapunov's direct method, which is fundamental to establish asymptotic tracking in the case when the full model (comprising the dynamics and the kinematics equations) is considered. Hence, another contribution of this paper is to establish that any velocity controller that guarantees velocity tracking, including under parametric uncertainty, may be easily incorporated. Such a statement is not possible to obtain without guaranteeing uniform global asymptotic stability for the kinematics model.

The design of our Lyapunov functions follows the efficient Mazenc construction method [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF] which, loosely speaking, consists in designing a strict Lyapunov function upon a preliminary non-strict one -see [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF] for further detail. For the robustness properties that we establish we also appeal to technical results in [START_REF] Angeli | Separation principles for inputoutput and integral-input-to-state stability[END_REF]; [START_REF] Angeli | A characterization of integral input-to-state stability[END_REF]. Although Lyapunov's first method has been used, e.g., in [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF] the conditions in the latter reference are more conservative.

The rest of the paper is organized as follows. In Section 2 we formulate the control problem and we present our main theoretical findings. In Section 3 we present the proofs of our main results. Simulations that illustrate our theoretical findings are presented in Section 4 and concluding remarks are given in Section 5.

Problem formulation and its solution

Problem statement

Let us consider the following dynamical model of a force-controlled nonholonomic vehicle:

   ẋ = v cos θ ẏ = v sin θ θ = ω (1) v = f 1 (t, v, ω, z) + g 1 (t, v, ω, z)u 1 ω = f 2 (t, v, ω, z) + g 2 (t, v, ω, z)u 2 (2)
where v and ω denote the forward and angular velocities respectively, the first two elements of z := [x y θ] correspond to the Cartesian coordinates of a point on the robot with respect to a fixed reference frame, and θ denotes the robot's orientation with respect to the same frame. The functions f 1 and f 2 are assumed to possess the minimal properties for existence and uniqueness of (Caratheodory) solutions, and u 1 and u 2 correspond to the two control inputs (proportional to wheel torques). Thus, the equations (1) correspond to the kinematics model while (2) correspond to the force-balance equations.

The tracking-control problem consists in making the robot follow a fictitious reference vehicle modeled by

ẋr = v r cos θ r (3a) ẏr = v r sin θ r (3b) θr = ω r , (3c) 
that moves about with reference velocities v r (t) and ω r (t). More precisely, it is desired to steer the differences between the Cartesian coordinates to some values d x , d y , and to zero the orientation angles and the velocities of the two robots, that is, the quantities

p θ := θ r -θ, p x := x r -x -d x , p y := y r -y -d y .
The distances d x , d y define the position of the robot with respect to the (virtual) leader and are assumed to be constant. Then, as it is customary, we transform the error coordinates [p θ p x p y ] of the leader robot from the global coordinate frame to local coordinates fixed on the robot, that is, we define (4)

In these new coordinates, the error kinematics equations become ėθ = ω r (t) -ω (5a) ėx = ωe y -v + v r (t) cos(e θ ) (5b) ėy = -ωe x + v r (t) sin(e θ ).

(5c)

The complete system also includes Eqs (2). Generally speaking, the control problem consists in steering the error trajectories e(t), which are solutions of (5), to zero via the inputs u 1 and u 2 in (2). A natural method consists in designing, first, virtual control laws w * and v * so that,

lim t→∞ e(t) = 0, e = [e θ e x e y ] . (6) 
Then, to design control inputs u 1 and u 2 such that lim t→∞ (ṽ, w) = (0, 0)

where

ṽ := v -v * , ω := ω -ω * . (8)
Depending on the conditions on the reference trajectories v r and ω r we identify the following mutually-exclusive scenarios: Tracking scenario (S1): it is assumed that there exist T and µ > 0 such that

t+T t |v r (τ )| 2 + |ω r (τ )| 2 dτ ≥ µ ∀t ≥ 0. ( 9 
)
Stabilization scenario (S2): it is assumed that |v r (t)| + |ω r (t)| → 0 and there exists β > 0 such that, for all t ≥ t • :

t t• |v r (τ )| + |ω r (τ )| dτ < β, ∀t ≥ t • . (10) 

Main result

Under the conditions described above, we design a controller that achieves the trajectory tracking objective ( 6), ( 7) in either of the two mutually-exclusive scenarios described above. Our contributions are the following:

• we propose a class of control inputs v * and ω * that extends the controller proposed in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] and we ensure uniform global asymptotic stability of the origin for (5); • for the velocity error kinematics in closed loop, we establish integral input-tostate stability with respect to the error velocities [ṽ, ω]; • for any control inputs u 1 and u 2 ensuring that ṽ → 0 and ω → 0, we establish global attractivity of the origin provided that the error velocities converge sufficiently fast (they are square-integrable).

The control laws that ensure the properties above are:

v * := v r (t) cos(e θ ) + k x e x , (11) ω 
* := ω r + k θ e θ + k y e y v r φ(e θ ) + ρ(t)k y f (t, e x , e y ) ( 12 
)
where φ is the so-called 'sinc' function defined by

φ(e θ ) := sin(e θ ) e θ , ρ(t) := exp - t 0 |v r (τ )| + |ω r (τ )| dτ , (13) 
and f : R ≥0 × R 2 → R is a continuously differentiable function defined such that the following hypotheses hold.

A1. There exist a non-decreasing function σ

1 : R ≥0 → R ≥0 and σ 2 > 0 such that max ∂f ∂t , ∂f ∂e x , ∂f ∂e y ≤ σ 1 (| [e x e y ] |) (14) |f (t, e x , e y )| ≤ σ 2 | [e x e y ] |. (15) 
A2. For the function

f • (t, e y ) := f (t, 0, e y ) ( 16 
)
we assume that ∂f • /∂t is uniform δ-persistently exciting with respect to e y that is, for any δ > 0 there exist µ δ and T δ > 0 such that

|e y | ≥ δ =⇒ t+Tδ t ∂f • ∂t (τ, e y ) dτ ≥ µ δ ∀ t ≥ 0 (17) 
-cf. (Loría, Panteley, Popovic, & Teel, 2002, Definition 3). Roughly speaking, the purpose of the function f is to excite the e y -dynamics as long as |e y | is separated from zero.

The controller ( 12), which achieves both the tracking and the stabilization control goals, is a weighted sum of the tracking controller

ω * tra := ω r + k θ e θ + k y e y v r φ(e θ ),
and the stabilization controller

ω * stab := ω r + k θ e θ + k y f (t, e x , e y )
-cf. [START_REF] Miao | Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots[END_REF]; [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF]. The weight function ρ(t) promotes the application of either ω * tra or ω * stab , depending on the task scenario S1 or S2. More precisely, from (13) we see that ρ satisfies

ρ = -|v r (t)| + |ω r (t)| ρ (18)
and ρ → 0 exponentially fast if (9) holds. Hence, the tracking scenario S1 is favoured. If, instead, (10) holds, the reference velocities converge and ρ(t) > exp (-β). Hence, the action of the stabilization controller is enhanced.

Remark 1. The idea of so merging the two controllers for the two scenarios S1 and S2 was introduced in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF]. The class of controllers satisfying A1-A2 covers those in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF]; in particular, the function f is not necessarily globally bounded and may depend only on e y . A more significant contribution with respect to the literature is that we establish uniform global asymptotic stability for (5) in closed-loop with (v, ω) = (v * , ω * ); this is in contrast with [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] and Do, Jiang, and Pan (2004a) where it is proved that the convergence property (6) holds. In addition, we establish integral-input-to-state stability of (5) with respect to [ṽ, ω].

Proposition 1 (Main result). Consider the system (5) with v = ṽ + v * , ω = ω + ω * , and the virtual inputs (11) and (12). Let k x , k θ , and k y > 0. Assume that there exist

ωr , ωr , vr , vr > 0 such that 2 |ω r | ∞ ≤ ωr , | ωr | ∞ ≤ ωr , |v r | ∞ ≤ vr , | vr | ∞ ≤ vr .
Furthermore, assume that A1-A2 hold. Then, if either (9) or (10) hold the closed-loop system resulting from (5), ( 8), (11), and (12) has the following properties: (P1) if ṽ = ω = 0, the origin {e = 0} is uniformly globally asymptotically stable; (P2) the closed-loop system is integral input-to-state stable with respect to η := [ṽ ω] ; (P3) if η → 0 and η ∈ L 2 , then (6) holds.

The proof is presented in Section 3. Below, we present an example of an adaptive controller that ensures that ṽ, ω → 0 for any once continuously differentiable v * , ω * .

Example

As in [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], we consider mobile robots modeled by

ż = J(z)ν (19a) M ν + C( ż)ν = τ (19b)
where z := [x y θ] contains the Cartesian coordinates (x, y) and the orientation θ of the robot, τ ∈ R2 corresponds to the (torque) control input; ν := [ν 1 ν 2 ] stands for the angular velocities corresponding to the two robot's wheels, M is the inertia matrix, which is constant, symmetric and positive definite, and C( ż) is the matrix of Coriolis forces, which is skew-symmetric. In addition, we use the coordinate transformation matrix

J(z) = r 2   cos(θ) cos(θ) sin(θ) sin(θ) 1/b -1/b  
where r is the radius of either steering wheel and b is the distance from the center of either wheel to the Cartesian point (x, y). The relation between the wheels' velocities, ν, and the robot's velocities in the fixed frame, ż, is given by

v ω := r 2b b b 1 -1 ν 1 ν 2 ⇔ ν 1 ν 2 = 1 r 1 b 1 -b v ω (20) 
which may be used in (19a) to obtain the familiar model (1). We assume that the inertia parameters and the constants contained in C( ż) are unknown while r and b are considered to be known. Let M and Ĉ denote, respectively, the estimates of M and C. Furthermore, let ν

* := [ν * 1 ν * 2 ] , ν * 1 ν * 2 = 1 r 1 b 1 -b v * ω * , (21) 
and let us introduce the certainty-equivalence control law

τ * := M ν * + Ĉ( ż)ν * -k d σ(ν), k d > 0 (22)
where ν := ν -ν * and σ( • ) is a continuous locally linear odd function for which there exist 1 and 2 > 0 such that σ(s) s ≥ 1 |s| 2 for all |s| ≤ 2 as, for instance, σ(s

) = s, σ(s) = [tanh(s 1 ) • • • tanh(s n )]
, and many other saturation functions.

Then, let us define M := M -M and C := Ĉ -C, so

τ * := M ν * + C( ż)ν * -k d σ(ν) + M ν * + Cν * (23)
and, setting τ = τ * in (19b), we obtain the closed-loop equation

M ν + C( ż)ν + k d σ(ν) = Ψ( ż, ν * , ν * ) Θ ( 24 
)
where Θ ∈ R m is a vector of constant (unknown) lumped parameters in M and C, Θ denotes the estimate of Θ, Θ := Θ -Θ is the vector of estimation errors, and

Ψ : R 3 × R 2 × R 2 → R m×2 is a continuous known function.
To obtain (24), we used the property that (19b) is linear in the constant lumped parameters. In addition, we use the passivity-based adaptation law -cf. [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF],

Θ = -γΨ( ż, ν * , ν * )ν, γ > 0. (25) 
Then, a direct computation shows that the total derivative of

V (ν, Θ) := 1 2 |ν| 2 + 1 γ | Θ| 2
along the trajectories of ( 24), (25), yields

V (ν, Θ) ≤ -k d σ(ν) ν
which implies that V (ν(t), Θ(t)) ≤ 0. Integrating the latter from 0 to infinity, we obtain that Θ, ν ∈ L ∞ . Then, there exists 2 > 0 such that |ν(t)| ≤ 2 for all t ≥ 0 and, therefore, there also exists

1 ( 2 ) > 0 such that V (ν(t), Θ(t)) ≤ -k d |ν(t))| 2 .
Integrating the latter from 0 to infinity we obtain that ν ∈ L 2 . It follows, e.g., from (Ioannou & Sun, 1996, Lemma 3.2.5), that ν → 0 and, in view of (20),

lim t→∞ |ṽ(t)| + |ω(t)| = 0. ( 26 
)
Also, in view of (20), ν ∈ L 2 implies that η ∈ L 2 .

Proof of the main result

For each scenario, S1 and S2 we establish uniform global asymptotic stability for the closed-loop kinematics equation ( 5) restricted to η = 0 (P1). Then, we establish the iISS with respect to η (P2) by showing that the closed-loop trajectories are bounded, under the condition that η is square integrable -cf. [START_REF] Angeli | Separation principles for inputoutput and integral-input-to-state stability[END_REF].

Under Scenario S1

The proof of Proposition 1 under condition ( 9) is constructive; we provide a strict Lyapunov function. To that end, we start by observing that the error system ( 5), ( 8), ( 11) and ( 12) takes the form ė =A vr (t, e)e + B 1 (t, e)ρ(t)

+ B 2 (e)η, (27) 
where ρ(t) is defined in (13), 

A vr (t, e) :=   -k θ 0 -v r (t)k y φ(e θ ) 0 -k x ϕ(t, e) v r (t)φ(e θ ) -ϕ(t, e) 0   , B 1 (t, e) :=   -k y f (t,
  0 -1 -1 e y 0 -e x   (28) 
where ϕ(t, e) := ω r (t) + k θ e θ + k y e y v r (t)φ(e θ ). Writing the closed-loop dynamics as in ( 27) is convenient to stress that the "nominal" system ė = A vr (t, e)e has a familiar structure encountered in model reference adaptive control. Moreover, defining

V 1 (e) := 1 2 e 2 x + e 2 y + 1 k y e 2 θ , (29) 
we obtain, along the trajectories of ė = A vr (t, e)e,

V1 (e) ≤ -k x e 2 x - k θ k y e 2 θ .
This is a fundamental first step for the design of a strict Lyapunov function for the "perturbed" system (27), using the Mazenc construction method. Now, to establish the proof in the case of scenario S1, we follow the following steps:

Step 1) We build a strict Lyapunov function V (t, e) for the nominal system ė = A vr (t, e)e. This establishes P1.

Step 2) We construct a function W (t, e) for the perturbed system ė = A vr (t, e)e + B 1 (t, e)ρ.

Step 3) We use W (t, e) to prove integral ISS of ( 27) with respect to η (i.e., P2) as well as the boundedness of the trajectories under the assumption that η ∈ L 2 . This and the assumption that η → 0 implies (6), i.e., P3.

Step 1. We establish UGAS for the nominal system be smooth polynomials in V 1 with strictly positive and bounded coefficients of degree 3 and k respectively. After [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF], Proposition 1), there exists a positive definite radially unbounded function V : R ≥0 × R 3 → R ≥0 defined as

V (t, e) := P [2] (t, V 1 )V 1 (e) -ω r (t)e x e y +v r (t)P [1] (t, V 1 )e θ e y , (31) 
and such that

F [3] (V 1 ) ≤ V (t, e) ≤ S [3] (V 1 ), (32) 
where V 1 is defined in (29), It is showed in [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF] that the total derivative of V along the trajectories of (30) satisfies

V (t, e) ≤ - µ T V 1 (e) -k x e 2 x - k θ k y e 2 θ . (33) 
Hence uniform global asymptotic stability of the null solution of (30) follows.

Step 2. Now we construct a strict Lyapunov function for the system ė =A vr (t, e)e + B 1 (t, e)ρ(t).

To that end, we start by "reshaping" the function V defined in (31) to obtain a particular negative bound on its time derivative. Let

Z(t, e) := Q [3] (V 1 )V 1 (e) + V (t, e) (35) 
where

Q [3] (V 1
) is a third order polynomial of V 1 , with strictly positive coefficients. Then, in view of (33), the total derivative of Z along the trajectories of (30) satisfies

Ż(t, e) ≤ - µ T V 1 (e) -Q [3] (V 1 ) k x e 2 x + k θ k y e 2 θ . (36) 
Next, we recall that in view of ( 9) ρ(t), which satisfies ( 18) is uniformly integrable. Therefore, for any γ > 0, there exists c > 0 such that

G(t) := exp -γ t 0 ρ(s)ds ≥ c > 0 ∀t ≥ 0 (37)
and, since Z(t, e) and V (t, e) are positive definite radially unbounded -see ( 32) and ( 35), so is the function 

W (t, e) := G(t)Z(t,
+ G(t) ∂ V + Q [3] (V 1 )V 1 ∂e B 1 (t, e)ρ(t) (39) Y (t, e) := G(t) µ T V 1 (e) + Q [3] (V 1 ) k x e 2 x + k θ k y e 2 θ . (40) 
Note that, in view of (37), Y (t, e) is positive definite. We proceed to show that the rest of the terms bounding Ẇ are negative semi-definite. To that end, we develop (dropping the arguments of f (t, e x , e y ) )

∂V ∂e B 1 (t, e) = ∂V ∂V 1 ∂V 1 ∂e B 1 (t, e) -ω r k y f (•) e x + e 2 y -v r P [1] (t, V 1 )k y f (•) [e θ e x + e y ] (41) 
and

∂ Q [3] (V 1 )V 1 ∂e B 1 (t, e) = ∂ Q [3] (V 1 )V 1 ∂V 1 ∂V 1 ∂e B 1 (t, e), (42) 
and we decompose B 1 (t, e) into

B 1 (t, e) =   -k y f (•) 0 0   +   0 0 0 0 0 k y f (•) 0 -k y f (•) 0   e.
Then, since

∂V 1 ∂e   0 0 0 0 0 k y f (•) 0 -k y f (•) 0   e = 0, it follows that ∂V 1 ∂e B 1 (t, e) = - ∂V 1 ∂e θ k y f (•) = -e θ f (•).
Thus, using the latter equation, we obtain

Ẇ (t, e) ≤ -Y (t, e) + Ġ(t)Z(t, e) -G(t)ρ(t)f (•) ∂ V + Q [3] (V 1 )V 1 ∂V 1 e θ + v r f (•)G(t)ρ(t)P [1] (t, V 1 ) [-k y e θ e x -k y e y ] + ω r G(t)ρ(t)f (•) -k y e x + k y e 2 y . (43) 
In view of ( 15) and the boundedness of v r and ω r , there exists a polynomial

R [3] (V 1 )
with non-negative coefficients, such that

R [3] (V 1 )V 1 ≥ -f (•) ∂ V + Q [3] (V 1 )V 1 ∂V 1 e θ + ω r f (•) -k y e x + k y e 2 y + v r f (•)P [1] (t, V 1 ) [-k y e θ e x -k y e y ] . (44) 
Hence, since

V (t, e) ≥ F [3] (V 1 ) -see (32), we obtain Ẇ ≤ -Y (t, e) + Ġ(t)F [3] (V 1 )V 1 + G(t)ρ(t)R [3] (V 1 )V 1 .
On the other hand, in view of (37), Ġ(t) ≤ -γG(t)ρ(t) for any γ > 0 and the coefficients of F [3] (V 1 ) are strictly positive. Therefore, there exists γ > 0 such that

γF [3] (V 1 ) ≥ R [3] (V 1 )
and, consequently, Ẇ (t, e) ≤ -Y (t, e) for all t ≥ 0 and all e ∈ R 3 . Uniform global asymptotic stability of the null solution of (34) follows.

Step 3. In order to establish iISS with respect to η and boundedness of the closedloop trajectories subject to η ∈ L 2 , we proceed as in (Maghenem et al., 2016, Proposition 4). Let

W 1 (t, e) := ln (1 + W (t, e)) . (45) 
The derivative of W 1 along trajectories of ( 27) satisfies 

Ẇ1 ≤ -G m µ T V 1 (e) + Q [3] k x e 2 x + kθ ky e 2 θ 1 + W (t, e) + ∂W ∂e B 2 η 1 + W (t, e) (46 
+ ωr V 1 |η| + vr P [1] |e θ ||e x ||η| ≤ H(e, V 1 ) 1 2 |ξ| 2 + 2 |η| 2 + ωr 1 2 V 1 + 2 V 1 |η| 2 + ωr 1 2 V 1 + 2 |η| 2 + vr 1 2 V 1 + 2 P 2 [1] |η| 2 + vr P [1] 1 2 V 1 |e θ | 2 + 2 |η| 2 ≤ H(e, V 1 ) + vr P [1] k 2 y V 1 1 2 |ξ| 2 + [2ω r + vr ] 1 2 V 1 + 2 |η| 2 H(e, V 1 ) + ωr V 1 + ωr + vr P 2 [1] + vr P [1] .
Next, we choose > 0 such that

H + vr P [1] k 2 y V 1 |ξ| 2 ≤ G m Q [3] k x e 2 x + k θ k y e 2 θ , 2ω r + vr ≤ G m µ T . Such > 0 exists because Q [3] is a third order polynomial of V 1 with strictly positive coefficients. So (46) becomes Ẇ1 ≤ - G m 2 µ T V 1 (e) + Q [3] k x e 2 x + kθ ky e 2 θ 1 + W (t, e) + D [3] (V 1 ) 1 + W (t, e) 2 |η| 2 (48)
where

D [3] (V 1
) is a third order polynomial satisfying

H + ωr V 1 + ωr + vr P 2 [1] + vr P [1] ≤ D [3] .
From the positivity of V , (32), and the definition of W in (38), we have

G m Q [3] (V 1 )V 1 ≤ W (t, e) ≤ S [3] (V 1 )V 1 (49) hence, Ẇ1 ≤ - G m 2 µ T V 1 + Q [3] (V 1 ) k x e 2 x + kθ ky e 2 θ 1 + S [3] (V 1 ) + D [3] (V 1 ) 1 + G m Q [3] (V 1 )V 1 2 |η| 2 . ( 50 
)
This implies the existence of a positive constant c > 0 and a positive definite function e → α such that

Ẇ1 ≤ -α(e) + c |η| 2 . ( 51 
)
The result follows from [START_REF] Angeli | A characterization of integral input-to-state stability[END_REF].

Under the scenario S2:

The proof of Proposition 1 under condition (10) relies on arguments for stability of cascaded systems as well as on tools tailored for systems with persistency of excitation. We start by rewriting the closed-loop equations in a convenient form for the analysis under the conditions of Scenario 2. To that end, to compact the notation, let us introduce

f ρ (t, e x , e y ) := ρ(t)f (t, e x , e y ) (52) Φ(t, e θ , e x , e y ) = k θ e θ + k y f ρ (t, e x , e y ) (53) 
Then, the closed-loop equations become ė = f e (t, e) + g(t, e)η, η = [ṽ ω] ,

where

f e (t, e) :=   -k θ e θ -k y f ρ -k y v r φ(e θ )e y -k x e x + Φe y + ω r + k y v r φ(e θ )e y e y -Φe x -ω r + k y v r φ(e θ )e y e x + v r sin e θ   , g(t, e) :=   0 -1 -1 e y 0 -e x   .
Following the proof-lines of (Panteley & Loría, 2001, Lemma 1) for cascaded systems, we establish the following for the system (54): Claim 1. The solutions are uniformly globally bounded subject to η ∈ L 2 , Claim 2. The origin of ė = f e (t, e) is uniformly globally asymptotically stable (i.e., P1).

After [START_REF] Angeli | Separation principles for inputoutput and integral-input-to-state stability[END_REF] the last two claims together imply integral ISS with respect to η (i.e., P2). Moreover, Claim 1 implies the convergence of the closedloop trajectories to the origin provided that the input η tends to zero and is square integrable (i.e., P3).

Proof of Claim 1

Let

W (e) := ln(1 + V 1 (e)), V 1 (e) := 1 2 e 2 x + e 2 y . (55) 
The total derivative of V 1 above along the trajectories of (54) yields

V1 (e) ≤ -k x e 2 x + |e x ||ṽ| + |v r || sin(e θ )||e y | (56) hence, Ẇ (e) ≤ 1 1 + V 1 - k x 2 e 2 x + |v r ||e y | + ṽ2 2k x (57) 
≤ |e y | 1 + V 1 |v r | + 1 2k x [1 + V 1 ] ṽ2 . (58) 
Integrating on both sides of (58) along the trajectories, from 0 to t, and invoking the integrability of v r and the square integrability of η we see that W (e(t)) is bounded for all t ≥ 0. Boundedness of e x (t) and e y (t) follows since W is positive definite and radially unbounded in (e x , e y ).

Next, we observe that the ėθ -equation in (54) corresponds to an exponentially stable system with bounded input u(t) = -k y v r (t)φ(e θ (t))e y (t) -k y f ρ (t, e x (t), e y (t)) -ω(t) hence, we also have e θ ∈ L ∞ .

Remark 2. For further development, we also emphasize that proceeding as above from Inequality (57) we conclude that e x ∈ L 2 , uniformly in the initial conditions.

Proof of Claim 2

We split the drift of the nominal system ė = f e (t, e) into the output injection form:

f e (t, e) = F (t, e) + K(t, e) (59) 
where (60)

F (t, e) :=   -k θ e θ -k y f ρ (t,
Then, to establish UGAS for the origin of ė = f e (t, e) we invoke the output-injection statement (Panteley, Loría, & Teel, 2001, Proposition 3). According to the latter, UGAS follows if: a) there exist: an "output" y, non decreasing functions k 1 , k 2 , and β: R ≥0 → R ≥0 , a class K ∞ function k, and a positive definite function γ such that, for all t ≥ 0 and all Uniform global stability is tantamount to uniform stability and uniform global boundedness of the solutions -see [START_REF] Hahn | Stability of motion[END_REF]. The latter was established already for the closed-loop system under the action of the "perturbation" η hence, it holds all the more in this case, where η = 0.

e ∈ R 3 , |K(t, e)| ≤ k 1 (|e|)k(|y|) (61) |y(t, e)| ≤ k 2 (|e|) (62) 
In order to establish uniform stability, we use Lyapunov's direct method. Let R > 0 be arbitrary but fixed.

We claim that, for the system ė = F (t, e), there exists a Lyapunov function candidate V : R ≥0 × R 3 → R ≥0 and positive constants α 1 , α 2 , and α 3 such that

α 1 |e| 2 ≤ V (t, e) ≤ α 2 |e| 2 ∀t ≥ 0, e ∈ R 3 (65) 
∂V (t,e) ∂e ≤ α 3 |e| ∀t ≥ 0, e ∈ R 3 (66)

∂V ∂t + ∂V ∂e F (t, e) ≤ 0 ∀t ≥ 0, e ∈ B R (67) 
where B R := {e ∈ R 3 : |e| ≤ R}. Furthermore, from (64) it follows that

|K(t, e)| ≤ c(R + 1) |v r | + |ω r | |e| ∀ t ≥ 0, e ∈ B R .
Then, evaluating the time derivative of V along the trajectories of (59), we obtain

V (t, e) ≤ ∂V (t, e) ∂e K(t, e) ≤ α 3 c(R + 1) |v r | + |ω r | |e| 2 ≤ α 3 c[R + 1] α 1 |v r | + |ω r | V (t, e) ∀ t ≥ 0, e ∈ B R .
Defining v(t) := V (t, e(t)) and invoking the comparison lemma, we conclude that

v(t) ≤ exp cα 3 [R + 1] α 1 ∞ t• |v r (s)| + |ω r (s)| ds v(t • )
for all initial conditions t • ≥ 0 and e(t • ) generating trajectories e(t) ∈ B R . In view of (10), we obtain

|e(t)| 2 ≤ α 2 α 1 exp α 3 c[R + 1] α 1 β |e(t • )| 2
so uniform stability of (59) follows.

It is left to construct a Lyapunov function candidate V for the system ė = F (t, e), that satisfies the conditions ( 65)-(67). To that end, consider the coordinates e z = e θ + g(t, e y ) (68)

where g : R ≥0 × R ≥0 → R ≥0 defined by g(t, e y ) := e -kθ(t-t•) g(t Thus, consider the following Lyapunov function candidate

V (t, e) := 1 2 c 2 R k θ k x + (1 + k y σ 2 ) 2 e 2 x + e 2 y + 1 2 e 2 z ( 71 
)
which trivially satisfies (66). Its total time derivative is 

V (t, e) = - c 2 R k θ e 2 x -e z k θ e z + ∂g ∂e y Φe x + k y f (t, e x , e y ) ≤ - c 2 R k θ e 2 x -k θ e 2 z -c R |e z ||e x | ≤ 0, ∀e ∈ B R , so ( 
+ 2(1 + k y σ 2 ) 2 |e y | 2 ,
we see that the following bounds on V follow

V (t, e) ≥ 1 2 c 2 R k θ k x e 2 x e 2 y + 1 4 e 2 θ V (t, e) ≤ 1 2 c 2 R k θ k x + 2(1 + k y σ 2 ) 2 e 2 x + e 2 y + e 2 θ .
Thus the inequalities in (65) also hold. Condition c. Since the solutions are uniformly globally bounded, for any r > 0, there exists R > 0 such that |e(t)| ≤ R := {|e| ≤ R} for all t ≥ t • , all e • ∈ B r , and all t • ≥ 0. It is only left to establish uniform global attractivity. To that end, we observe that the nominal ė = F (t, e) has the form ėθ

= -k θ e θ -k y f ρ (t, e x , e y ) (72a) ėx ėy = -k x Φ θ (t, e x , e y ) -Φ θ (t, e x , e y ) 0 e x e y (72b) 
where, for each e θ ∈ B R , we define the smooth parameterized function Φ θ : R ≥0 ×R 2 → R as Φ θ (t, e x , e y ) := Φ(t, e θ , e x , e y ).

Then, the system (72) may be regarded as a cascaded system -cf. [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. Moreover, the system (72a) is input-to-state stable and the perturbation term k y f ρ (t, e x (t), e y (t)) is uniformly bounded. Therefore, in order to apply a statement for cascaded systems, we must establish that the origin of (72b) is globally asymptotically stable, uniformly in the initial conditions (t • , e x• , e y• ) ∈ R ≥0 × R 2 and in the "parameter" e θ ∈ B R . For this, we invoke (Loría et al., 2002, Theorem 3) as follows.

Since k x > 0 there is only left to show that Φ • θ (t, e y )e y , where

Φ • θ (t, e y ) := Φ θ (t, 0, e y ),
is uniformly δ-persistently exciting with respect to e y , uniformly for any θ ∈ B R -cf. (Loría et al., 2002, Definition 3). Since Φ • θ is smooth, it suffices to show that for any |e y | = 0 and r, there exist T and µ such that

|e y | = 0 =⇒ t+T t Φ• θ (τ, e y ) dτ ≥ µ ∀ t ≥ 0 (73) 
-see [START_REF] Loría | δ-persistency of excitation: a necessary and sufficient condition for uniform attractivity[END_REF], Lemma 1).

Remark 3. In general, µ depends both on e θ and on e y , but since e θ ∈ B R and B R is compact, by continuity, one can always choose the smallest qualifying µ, for each fixed e y . Therefore, as in [START_REF] Loría | δ-persistency of excitation: a necessary and sufficient condition for uniform attractivity[END_REF], µ may be chosen as a class K function dependent of |e y | only. Now, we show that (73) holds under Assumption A2. To that end, we remark that

Φ • θ (t, e y ) = k θ e θ + k y ρ(t)f • (t, e y )
-cf. Eq. ( 53), satisfies

Φ• θ = -k θ Φ + k y ρf • + k y ρ ∂f • ∂t -k y ρ ∂f • ∂e y Φe x
where we used ėθ = -Φ and ėy = Φe x . Therefore, defining

K Φ (t, e) := k θ [Φ • θ -Φ] -k y ρ ∂f • ∂e y Φe x we obtain Φ• θ = -k θ Φ • θ -k y ρ ∂f • ∂t + k y ρf • + K Φ (t, e).
The latter equation corresponds to that of a linear filter with state Φ (1996)). Now, from Assumption A1 and uniform global boundedness of the solutions, for any r there exists c > 0 such that k y ρ(t)f • (t, e y (t)) + K Φ (t, e(t)) ≤ c(r) |e x (t)| + | ρ(t)| Therefore, uniform δ-PE with respect to e y of Ψ follows from Assumption A2 and the fact that ρ and e x are uniformly square integrable. That ρ ∈ L 2 , with a bound uniform in the initial times, follows from (18) because v r , ω r , and ρ are bounded and |v r | + |ω r | is uniformly integrable. That e x is uniformly L 2 follows from (57) -see Remark 2.

This concludes the proof of UGAS for the nominal system ė = f e (t, e) hence, Claim 2. is proved.

This completes the proof of Proposition 1.

Simulations

To illustrate our main theoretical results we performed some simulation tests under Simulink TM of Matlab TM , according to the two scenarios described previously. The robot's physical parameters are taken from [START_REF] Fukao | Adaptive tracking control of a nonholonomic mobile robot[END_REF]: 

M = m 1 m 2 m 2 m 1 , C( ż) = 0 cω -cω 0 ,

Conclusion

We presented a unique controller for nonholonomic vehicles with a generic dynamic model that achieves uniform global asymptotic stability in closed loop, for a large variety of reference trajectories. The simplicity and modularity of our design seems promising to broach other scenarios such as control under input constraints.

Our proofs are constructive for the tracking-control scenario; moreover, the construction of strict Lyapunov functions makes it possible to extend our designs to the cases of output feedback and parametric uncertainty. While an example of the latter is given, the former is under study. Furthermore, current research is being carried out to relax the standing assumption of integrability of the reference velocities in the stabilization scenario, to allow for slowly-converging reference velocities.
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  origin of ė = f e (t, e) is uniformly globally stable; c) the origin of ė = F (t, e) is UGAS.Condition a. Using (60), a direct computation shows that there exists c > 0 such that|K(t, e)| ≤ c |e| 2 + |e| | [v r ω r ] |,(64)so (61) holds with k 1 (s) := c(s 2 + s), k(s) := s, and y := [v r ω r ]. Moreover, (62) and (63) hold with γ(s) = s, since [v r ω r ] ∈ L 1 , for a constant functions β and k 2 which, moreover, are independent of the initial state. Condition b.
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 810 Figure 8. Vehicle and reference velocities under the scenario S2
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					t
					k y e -kθ(t-s) f (s, 0, e y )ds
					t•
	and, for further development we observe that
		∂g ∂t	(t, e y (70)
	In the new coordinates, we obtain
		ėz = -k θ e z -	∂g ∂e y
	max e∈BR	sup t≥0	fρ (t, e x , e y ) , sup t≥0	∂g ∂e y

  67) holds. Using (70) and the inequalities e 2 z ≥ e 2 θ -2|e θ ||g(t, e y )| + |g(t, e y )| 2 ≥ (1 + k y σ 2 ) 2 |e y | 2 .

	1 2 θ -e 2 e 2 z ≤ e 2 θ + 2|e θ ||g(t, e y )| + |g(t, e y )| 2 ≤ 2e 2 θ

Persistency of excitation in the sense defined in[START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] is also implicitly used in the earlier reference[START_REF] Samson | Time-varying feedback stabilization of car-like wheeled mobile robots[END_REF] 

For a continuous function t → ϕ we define |ϕ(t)|∞ := sup t≥0 |ϕ(t)|.

This proof of uniform stability replaces the corresponding one proposed in[START_REF] Maghenem | Global tracking-stabilization control of mobile robots with parametric uncertainty[END_REF], which is incorrect.
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with m 1 = 0.6227, m 2 = -0.2577, c = 0.2025, r = 0.15, and b = 0.5. We used the control law (22) with σ(ν) = [tanh(ν 1 ) tanh(ν 2 )] .

For the purpose of the first scenario, we define the reference velocities v r and ω r as periodic functions (hence persistently exciting) -see Figure 1. Such references generate a "staircase-shappe" path that is asymptotically followed by the vehiclesee Figure 5, where we show the simulation results for two different values of the vehicle's initial conditions. The initial conditions for the reference vehicle are set to [x r (0), y r (0), θ r (0)] = [0, 0, 0] and those for the adaptation law (25) are set to Θ(0) = ( m1 , m2 , ĉ) = (0, 0, 0).

The desired distance between the actual vehicle and the reference is obtained by setting the desired orientation offset to zero and defining [d xr , d yr ] := [0, 0]. The control gains are set to k x = 1, k y = .2, k θ = 0.1, k d = 20, and γ = 1 × 10 -5 . The function f which verifies the assumptions A1 and A2 is defined as f (t, e x , e y ) := p(t)|e xy | with p(t) = 50 sin(0.5t) + 5; we notice that both p(t) and ṗ are persistently exciting signals. Therefore, the conditions ( 14), ( 15) and ( 17) hold.

The tracking position errors are depicted in Figure 2 while in Figure 3 are showed the vehicle's and the reference velocities. The input torques at the wheels are depicted in Figure 4. To avoid graphical saturation we provide the curves only for the case in which the initial conditions are x(0) = 2, y(0) = 1 and θ(0) = 0.

For the stabilization scenario S2, we use exponentially-fast decaying reference trajectories -see Figure 6 and the control gains k d = 30, k y = 1. In Figure 10 we show the path followed by vehicle starting from two different points in the plane, as well as the reference path generated by the fictitious vehicle, which comes to a full stop. The tracking position and velocity errors are depicted in Figures 7 and8 respectively, the input torques at the wheels are depicted in Figure 9 for the case in which the initial conditions of the vehicle are x(0) = 1, y(0) = 1 and θ(0) = 0.

The controller's performance may be compared, for instance, to that of the controllers in [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF]; [START_REF] Lee | Tracking control of unicyclemodeled mobile robots using a saturation feedback controller[END_REF].