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ABSTRACT
After (Lizárraga, 2004) it is known that for nonholonomic systems it is impossible
to design a universal controller able to asymptotically stabilize any feasible reference
trajectory. In this paper we present a smooth time-varying controller able to stabi-
lize a wide class of reference trajectories that include converging (parking problem)
and persistently exciting (tracking problem) ones, as well as set-points. To the best
of our knowledge, for the first time in the literature, we establish uniform global
asymptotic stability for the origin of the closed-loop system in the kinematics state
space. We also show that the kinematics controller renders the system robust to per-
turbations in the sense of integral-input-to-state stability. Then, we show that for
the case in which the velocity dynamics equations are also considered (full model),
any velocity-tracking controller with the property that the error velocities are square
integrable may be used to ensure global tracking or stabilization. This modularity
and robustness of our controller, added to the strength of our stability statements,
renders possible the extension of our main results to the difficult scenario of control
under parametric uncertainty.

KEYWORDS
Persistency of excitation, autonomous vehicles, Lyapunov’s method, input-to-state
stability

1. Introduction

In the well-known paper Brockett (1983) necessary conditions for asymptotic set-point
stabilization of nonlinear systems via continuous controllers are given. In particular,
it is showed that nonholonomic systems are not stabilizable to a point via continu-
ous autonomous feedback. The seminal paper Lizárraga (2004) extends the results of
Brockett (1983) for smooth control systems by establishing sufficient conditions for
the non existence of universal continuous stabilizers (even time-varying) of arbitrary
feasible trajectories. A particular but fundamental contribution of Lizárraga (2004)
is that for nonholonomic systems it is beyond reach to design a universal controller
(even time-varying) capable of stabilizing an arbitrary feasible trajectory.
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The results of Brockett (1983) certainly triggered the interest of the research com-
munity on different stabilization and tracking control problems for nonholonomic sys-
tems and, in accordance with Lizárraga (2004), available results apply either to the
set-point control problem —see e.g. Astolfi (1996); Bayat, Mobayen, and Javadi (2016),
to the so-called parking control problem —see e.g. Lee, Song, Lee, and Teng (2001);
Morin and Samson (2003), or to other kinds of restricted time-varying trajectories —
see e.g. Dixon, Dawson, Zergeroglu, and Behal (2001); Kanayama, Kimura, Miyazaki,
and Naguchi (1990); Loŕıa, Dasdemir, and Alvarez-Jarquin (2016). Tracking control
in the sense defined in Kanayama et al. (1990) is addressed, e.g., via nonlinear back-
stepping control in Jiang and Nijmeijer (1997). There also exist several remarkable
works under stringent conditions: for instance, parametric uncertainty is coped with
via adaptive control in Dixon, de Queiroz, Dawson, and Flynn (2004); Fukao, Naka-
gawa, and Adachi (2000); Huang, Wen, Wang, and Jiang (2014), control under input
constraints is addressed e.g. in Consolini, Morbidi, Prattichizzo, and Tosques (2008);
Jiang, Lefeber, and Nijmeijer (2001); Lee et al. (2001).

In Panteley, Lefeber, Loŕıa, and Nijmeijer (1998) a simple linear time-varying con-
troller was proposed and, for the first time in the literature, persistency of excitation
was explicitly imposed as a necessary and sufficient condition for stabilization of a
time-varying trajectory. The underlying ideas, however, are already present in early
work by C. Samson de Wit, Khennouf, Samson, and Sørdalen (1993). Ever since, per-
sistency of excitation has been recurrently used in the literature to design smooth
controllers for autonomous vehicles —see e.g., Dixon, Dawson, Zhang, and Zergeroglu
(2000); Lefeber (2000); Miao and Wang (2015); Wang, Miao, Zhong, and Pan (2015)
to mention a few. However, controllers relying on persistency-of-excitation conditions
on the reference trajectories fail in other stabilization tasks, as for instance, in the
case that the reference velocities tend to zero, as in the case of the parking-control
problem Lee et al. (2001). In the latter, as also in Cao and Tian (2007), nonlinear
time-varying controllers are designed to allow for reference velocity trajectories that
converge to zero. Furthermore, it is worth to emphasize that Lee et al. (2001) covers
the case when both the angular and forward velocity may converge to zero.

For the set-point stabilization problem it is also possible to use persistency of excita-
tion as a stabilization mechanism, but the property needs to be redefined for functions
that are state-dependent. To the best of our knowledge, this was done for the first
time in Loŕıa, Panteley, and Teel (1999) where, inspired by the seminal paper Sam-
son (1995), the so-called δ-persistently-exciting controllers were introduced1. See also
Wang et al. (2015) for more recent references.

Designing a unique controller capable of stabilizing bounded converging or diverging
(i.e., persistently exciting), reference velocity trajectories is not only a major challenge
but, based on Lizárraga (2004), it may not appear as an overstatement to say that
it is close to the broadest solvable control problem for nonholonomic systems. To the
best of our knowledge, it has been addressed only in Dixon et al. (2004); Do, Jiang,
and Pan (2004b); Lee et al. (2001); Miao and Wang (2015); Morin and Samson (2003);
Wang et al. (2015).

The problem is solved for particular cases of the reference velocity trajectories in
Lee et al. (2001), e.g., it is required that either the forward or the angular reference
velocities is separated from zero. In Morin and Samson (2003) the elegant transverse-
functions approach is presented; a unified velocity controller for generic chained-form

1Persistency of excitation in the sense defined in Loŕıa et al. (1999) is also implicitly used in the earlier

reference Samson (1993)
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systems (hence beyond the unicycle particular system) is proposed. A similar result is
presented in Dixon et al. (2004) using an adaptive-control approach. In the latter two
references convergence of the tracking errors in a practical sense is established. The
method of Wang et al. (2015), which is based on the design of δ-persistently exciting
controllers, is appealing in the sense that it consists in using the combination of a
tracking controller and a stabilization controller carefully weighted by a function that
depends on the leader velocities, thereby favoring the action of either controller; a
similar controller, assuming parametric uncertainty, is presented in Miao and Wang
(2015). In Do et al. (2004b) a Lyapunov-based unified controller is proposed in order
to make the tracking error converge to zero in either of the tracking and the parking
scenarios.

In this paper we address the simultaneous tracking-stabilization problem, based on
the approach of Wang et al. (2015). To the best of our knowledge for the first time in
the literature, we establish uniform global asymptotic stability (UGAS), as opposed to
the weaker property of non-uniform convergence. The importance of UGAS for time-
varying systems cannot be overestimated; only this property guarantees robustness of
the system with respect to bounded disturbances in the sense of total stability Malkin
(1944) —a concept better known nowadays as local input-to-state stability.

Furthermore, our proofs of UGAS and iISS rely on Lyapunov’s direct method, which
is fundamental to establish asymptotic tracking in the case when the full model (com-
prising the dynamics and the kinematics equations) is considered. Hence, another
contribution of this paper is to establish that any velocity controller that guarantees
velocity tracking, including under parametric uncertainty, may be easily incorporated.
Such a statement is not possible to obtain without guaranteeing uniform global asymp-
totic stability for the kinematics model.

The design of our Lyapunov functions follows the efficient Mazenc construction
method Mazenc (2003) which, loosely speaking, consists in designing a strict Lya-
punov function upon a preliminary non-strict one —see Malisoff and Mazenc (2009)
for further detail. For the robustness properties that we establish we also appeal to
technical results in Angeli, Ingalls, Sontag, and Wang (2004); Angeli, Sontag, and
Wang (2000). Although Lyapunov’s first method has been used, e.g., in Do et al.
(2004b) the conditions in the latter reference are more conservative.

The rest of the paper is organized as follows. In Section 2 we formulate the control
problem and we present our main theoretical findings. In Section 3 we present the
proofs of our main results. Simulations that illustrate our theoretical findings are
presented in Section 4 and concluding remarks are given in Section 5.

2. Problem formulation and its solution

2.1. Problem statement

Let us consider the following dynamical model of a force-controlled nonholonomic
vehicle: 

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(1)

{
v̇ = f1(t, v, ω, z) + g1(t, v, ω, z)u1

ω̇ = f2(t, v, ω, z) + g2(t, v, ω, z)u2
(2)
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where v and ω denote the forward and angular velocities respectively, the first two
elements of z := [x y θ]> correspond to the Cartesian coordinates of a point on the
robot with respect to a fixed reference frame, and θ denotes the robot’s orientation
with respect to the same frame. The functions f1 and f2 are assumed to possess the
minimal properties for existence and uniqueness of (Caratheodory) solutions, and u1

and u2 correspond to the two control inputs (proportional to wheel torques). Thus,
the equations (1) correspond to the kinematics model while (2) correspond to the
force-balance equations.

The tracking-control problem consists in making the robot follow a fictitious refer-
ence vehicle modeled by

ẋr = vr cos θr (3a)

ẏr = vr sin θr (3b)

θ̇r = ωr, (3c)

that moves about with reference velocities vr(t) and ωr(t). More precisely, it is desired
to steer the differences between the Cartesian coordinates to some values dx, dy, and to
zero the orientation angles and the velocities of the two robots, that is, the quantities

pθ := θr − θ, px := xr − x− dx, py := yr − y − dy.

The distances dx, dy define the position of the robot with respect to the (virtual)
leader and are assumed to be constant. Then, as it is customary, we transform the
error coordinates [pθ px py] of the leader robot from the global coordinate frame to
local coordinates fixed on the robot, that is, we defineeθex

ey

 :=

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

pθpx
py

 . (4)

In these new coordinates, the error kinematics equations become

ėθ = ωr(t)− ω (5a)

ėx = ωey − v + vr(t) cos(eθ) (5b)

ėy = −ωex + vr(t) sin(eθ). (5c)

The complete system also includes Eqs (2).
Generally speaking, the control problem consists in steering the error trajectories

e(t), which are solutions of (5), to zero via the inputs u1 and u2 in (2). A natural
method consists in designing, first, virtual control laws w∗ and v∗ so that,

lim
t→∞

e(t) = 0, e = [eθ ex ey]
>. (6)

Then, to design control inputs u1 and u2 such that

lim
t→∞

(ṽ, w̃) = (0, 0) (7)
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where

ṽ := v − v∗, ω̃ := ω − ω∗. (8)

Depending on the conditions on the reference trajectories vr and ωr we identify the
following mutually-exclusive scenarios:
Tracking scenario (S1): it is assumed that there exist T and µ > 0 such that∫ t+T

t

[
|vr(τ)|2 + |ωr(τ)|2

]
dτ ≥ µ ∀t ≥ 0. (9)

Stabilization scenario (S2): it is assumed that |vr(t)|+ |ωr(t)| → 0 and there exists
β > 0 such that, for all t ≥ t◦:∫ t

t◦

[
|vr(τ)|+ |ωr(τ)|

]
dτ < β, ∀t ≥ t◦. (10)

2.2. Main result

Under the conditions described above, we design a controller that achieves the tra-
jectory tracking objective (6), (7) in either of the two mutually-exclusive scenarios
described above. Our contributions are the following:

• we propose a class of control inputs v∗ and ω∗ that extends the controller pro-
posed in Wang et al. (2015) and we ensure uniform global asymptotic stability
of the origin for (5);
• for the velocity error kinematics in closed loop, we establish integral input-to-

state stability with respect to the error velocities [ṽ, ω̃];
• for any control inputs u1 and u2 ensuring that ṽ → 0 and ω̃ → 0, we estab-

lish global attractivity of the origin provided that the error velocities converge
sufficiently fast (they are square-integrable).

The control laws that ensure the properties above are:

v∗ := vr(t) cos(eθ) + kxex, (11)

ω∗ := ωr + kθeθ + kyeyvrφ(eθ) + ρ(t)kyf(t, ex, ey) (12)

where φ is the so-called ‘sinc’ function defined by

φ(eθ) :=
sin(eθ)

eθ
,

ρ(t) := exp

(
−
∫ t

0

[
|vr(τ)|+ |ωr(τ)|

]
dτ

)
, (13)

and f : R≥0 × R2 → R is a continuously differentiable function defined such that the
following hypotheses hold.
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A1. There exist a non-decreasing function σ1 : R≥0 → R≥0 and σ2 > 0 such that

max

{
∂f

∂t
,
∂f

∂ex
,
∂f

∂ey

}
≤ σ1(| [ex ey] |) (14)

|f(t, ex, ey)| ≤ σ2| [ex ey] |. (15)

A2. For the function

f◦(t, ey) := f(t, 0, ey) (16)

we assume that ∂f◦/∂t is uniform δ−persistently exciting with respect to ey that is,
for any δ > 0 there exist µδ and Tδ > 0 such that

|ey| ≥ δ =⇒
∫ t+Tδ

t

∣∣∣∂f◦
∂t

(τ, ey)
∣∣∣dτ ≥ µδ ∀ t ≥ 0 (17)

—cf. (Loŕıa, Panteley, Popovic, & Teel, 2002, Definition 3). Roughly speaking, the
purpose of the function f is to excite the ey–dynamics as long as |ey| is separated from
zero.

The controller (12), which achieves both the tracking and the stabilization control
goals, is a weighted sum of the tracking controller

ω∗tra := ωr + kθeθ + kyeyvrφ(eθ),

and the stabilization controller

ω∗stab := ωr + kθeθ + kyf(t, ex, ey)

—cf. Miao and Wang (2015); Wang et al. (2015). The weight function ρ(t) promotes
the application of either ω∗tra or ω∗stab, depending on the task scenario S1 or S2. More
precisely, from (13) we see that ρ satisfies

ρ̇ =−
[
|vr(t)|+ |ωr(t)|

]
ρ (18)

and ρ→ 0 exponentially fast if (9) holds. Hence, the tracking scenario S1 is favoured.
If, instead, (10) holds, the reference velocities converge and ρ(t) > exp (−β). Hence,
the action of the stabilization controller is enhanced.

Remark 1. The idea of so merging the two controllers for the two scenarios S1 and
S2 was introduced in Wang et al. (2015). The class of controllers satisfying A1–A2
covers those in Wang et al. (2015); in particular, the function f is not necessarily
globally bounded and may depend only on ey. A more significant contribution with
respect to the literature is that we establish uniform global asymptotic stability for
(5) in closed-loop with (v, ω) = (v∗, ω∗); this is in contrast with Wang et al. (2015)
and Do, Jiang, and Pan (2004a) where it is proved that the convergence property (6)
holds. In addition, we establish integral-input-to-state stability of (5) with respect to
[ṽ, ω̃].

Proposition 1 (Main result). Consider the system (5) with v = ṽ + v∗, ω = ω̃ + ω∗,
and the virtual inputs (11) and (12). Let kx, kθ, and ky > 0. Assume that there exist
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ω̄r, ¯̇ωr, v̄r, ¯̇vr > 0 such that2

|ωr|∞ ≤ ω̄r, |ω̇r|∞ ≤ ¯̇ωr, |vr|∞ ≤ v̄r, |v̇r|∞ ≤ ¯̇vr.

Furthermore, assume that A1-A2 hold.
Then, if either (9) or (10) hold the closed-loop system resulting from (5), (8), (11),

and (12) has the following properties:
(P1) if ṽ = ω̃ = 0, the origin {e = 0} is uniformly globally asymptotically stable;
(P2) the closed-loop system is integral input-to-state stable with respect to η := [ṽ ω̃]>;
(P3) if η → 0 and η ∈ L2, then (6) holds.

The proof is presented in Section 3. Below, we present an example of an adaptive
controller that ensures that ṽ, ω̃ → 0 for any once continuously differentiable v∗, ω∗.

2.3. Example

As in Do (2007), we consider mobile robots modeled by

ż = J(z)ν (19a)

Mν̇ + C(ż)ν = τ (19b)

where z := [x y θ] contains the Cartesian coordinates (x, y) and the orientation θ of
the robot, τ ∈ R2 corresponds to the (torque) control input; ν := [ν1 ν2] stands for the
angular velocities corresponding to the two robot’s wheels, M is the inertia matrix,
which is constant, symmetric and positive definite, and C(ż) is the matrix of Coriolis
forces, which is skew-symmetric. In addition, we use the coordinate transformation
matrix

J(z) =
r

2

cos(θ) cos(θ)
sin(θ) sin(θ)
1/b −1/b


where r is the radius of either steering wheel and b is the distance from the center of
either wheel to the Cartesian point (x, y). The relation between the wheels’ velocities,
ν, and the robot’s velocities in the fixed frame, ż, is given by[

v
ω

]
:=

r

2b

[
b b
1 −1

] [
ν1

ν2

]
⇔

[
ν1

ν2

]
=

1

r

[
1 b
1 −b

] [
v
ω

]
(20)

which may be used in (19a) to obtain the familiar model (1).
We assume that the inertia parameters and the constants contained in C(ż) are

unknown while r and b are considered to be known. Let M̂ and Ĉ denote, respectively,
the estimates of M and C. Furthermore, let ν∗ := [ν∗1 ν

∗
2 ]>,[

ν∗1
ν∗2

]
=

1

r

[
1 b
1 −b

] [
v∗

ω∗

]
, (21)

2For a continuous function t 7→ ϕ we define |ϕ(t)|∞ := supt≥0 |ϕ(t)|.
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and let us introduce the certainty-equivalence control law

τ∗ := M̂ν̇∗ + Ĉ(ż)ν∗ − kdσ(ν̃), kd > 0 (22)

where ν̃ := ν− ν∗ and σ( · ) is a continuous locally linear odd function for which there
exist ε1 and ε2 > 0 such that σ(s)>s ≥ ε1|s|2 for all |s| ≤ ε2 as, for instance, σ(s) = s,
σ(s) = [tanh(s1) · · · tanh(sn)]>, and many other saturation functions.

Then, let us define M̃ := M̂ −M and C̃ := Ĉ − C, so

τ∗ := Mν̇∗ + C(ż)ν∗ − kdσ(ν̃) + M̃ν̇∗ + C̃ν∗ (23)

and, setting τ = τ∗ in (19b), we obtain the closed-loop equation

M ˙̃ν + C(ż)ν̃ + kdσ(ν̃) = Ψ(ż, ν̇∗, ν∗)>Θ̃ (24)

where Θ ∈ Rm is a vector of constant (unknown) lumped parameters in M and C,

Θ̂ denotes the estimate of Θ, Θ̃ := Θ̂ − Θ is the vector of estimation errors, and
Ψ : R3 × R2 × R2 → Rm×2 is a continuous known function. To obtain (24), we used
the property that (19b) is linear in the constant lumped parameters. In addition, we
use the passivity-based adaptation law –cf. Ortega and Spong (1989),

˙̂
Θ = −γΨ(ż, ν̇∗, ν∗)ν̃, γ > 0. (25)

Then, a direct computation shows that the total derivative of

V (ν̃, Θ̃) :=
1

2

[
|ν̃|2 +

1

γ
|Θ̃|2

]
along the trajectories of (24), (25), yields

V̇ (ν̃, Θ̃) ≤ −kdσ(ν̃)>ν̃

which implies that V̇ (ν̃(t), Θ̃(t)) ≤ 0. Integrating the latter from 0 to infinity, we
obtain that Θ̃, ν̃ ∈ L∞. Then, there exists ε2 > 0 such that |ν̃(t)| ≤ ε2 for all t ≥ 0
and, therefore, there also exists ε1(ε2) > 0 such that

V̇ (ν̃(t), Θ̃(t)) ≤ −kd|ν̃(t))|2.

Integrating the latter from 0 to infinity we obtain that ν̃ ∈ L2. It follows, e.g., from
(Ioannou & Sun, 1996, Lemma 3.2.5), that ν̃ → 0 and, in view of (20),

lim
t→∞
|ṽ(t)|+ |ω̃(t)| = 0. (26)

Also, in view of (20), ν̃ ∈ L2 implies that η ∈ L2.

3. Proof of the main result

For each scenario, S1 and S2 we establish uniform global asymptotic stability for the
closed-loop kinematics equation (5) restricted to η = 0 (P1). Then, we establish the
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iISS with respect to η (P2) by showing that the closed-loop trajectories are bounded,
under the condition that η is square integrable —cf. Angeli et al. (2004).

3.1. Under Scenario S1

The proof of Proposition 1 under condition (9) is constructive; we provide a strict
Lyapunov function. To that end, we start by observing that the error system (5), (8),
(11) and (12) takes the form

ė =Avr(t, e)e+B1(t, e)ρ(t) +B2(e)η, (27)

where ρ(t) is defined in (13),

Avr(t, e) :=

 −kθ 0 −vr(t)kyφ(eθ)
0 −kx ϕ(t, e)

vr(t)φ(eθ) −ϕ(t, e) 0

 ,
B1(t, e) :=

 −kyf(t, ex, ey)
kyf(t, ex, ey)ey
−kyf(t, ex, ey)ex

 , B2(e) :=

 0 −1
−1 ey
0 −ex

 (28)

where ϕ(t, e) := ωr(t) + kθeθ + kyeyvr(t)φ(eθ). Writing the closed-loop dynamics as in
(27) is convenient to stress that the “nominal” system ė = Avr(t, e)e has a familiar
structure encountered in model reference adaptive control. Moreover, defining

V1(e) :=
1

2

[
e2
x + e2

y +
1

ky
e2
θ

]
, (29)

we obtain, along the trajectories of ė = Avr(t, e)e,

V̇1(e) ≤ −kxe2
x −

kθ
ky
e2
θ.

This is a fundamental first step for the design of a strict Lyapunov function for the
“perturbed” system (27), using the Mazenc construction method.

Now, to establish the proof in the case of scenario S1, we follow the following steps:
Step 1) We build a strict Lyapunov function V (t, e) for the nominal system ė =

Avr(t, e)e. This establishes P1.
Step 2) We construct a function W (t, e) for the perturbed system ė = Avr(t, e)e+

B1(t, e)ρ.
Step 3) We use W (t, e) to prove integral ISS of (27) with respect to η (i.e., P2)

as well as the boundedness of the trajectories under the assumption that η ∈ L2. This
and the assumption that η → 0 implies (6), i.e., P3.

Step 1. We establish UGAS for the nominal system

ė = Avr(t, e)e (30)

via Lyapunov’s direct method3. Let F[3], S[3] : R≥0 → R≥0, and P[k] : R≥0×R≥0 → R≥0

3This proof of uniform stability replaces the corresponding one proposed in Maghenem, Loŕıa, and Panteley

(2017), which is incorrect.
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be smooth polynomials in V1 with strictly positive and bounded coefficients of degree
3 and k respectively. After (Maghenem, Loŕıa, & Panteley, 2016, Proposition 1), there
exists a positive definite radially unbounded function V : R≥0 ×R3 → R≥0 defined as

V (t, e) := P[2](t, V1)V1(e)− ωr(t)exey
+vr(t)P[1](t, V1)eθey, (31)

and such that

F[3](V1) ≤ V (t, e) ≤ S[3](V1), (32)

where V1 is defined in (29), It is showed in Maghenem et al. (2016) that the total
derivative of V along the trajectories of (30) satisfies

V̇ (t, e) ≤ −µ
T
V1(e)− kxe2

x −
kθ
ky
e2
θ. (33)

Hence uniform global asymptotic stability of the null solution of (30) follows.
Step 2. Now we construct a strict Lyapunov function for the system

ė =Avr(t, e)e+B1(t, e)ρ(t). (34)

To that end, we start by “reshaping” the function V defined in (31) to obtain a
particular negative bound on its time derivative. Let

Z(t, e) := Q[3](V1)V1(e) + V (t, e) (35)

where Q[3](V1) is a third order polynomial of V1, with strictly positive coefficients.
Then, in view of (33), the total derivative of Z along the trajectories of (30) satisfies

Ż(t, e) ≤ −µ
T
V1(e)−Q[3](V1)

[
kxe

2
x +

kθ
ky
e2
θ

]
. (36)

Next, we recall that in view of (9) ρ(t), which satisfies (18) is uniformly integrable.
Therefore, for any γ > 0, there exists c > 0 such that

G(t) := exp

(
−γ
∫ t

0
ρ(s)ds

)
≥ c > 0 ∀t ≥ 0 (37)

and, since Z(t, e) and V (t, e) are positive definite radially unbounded —see (32) and
(35), so is the function

W (t, e) := G(t)Z(t, e); (38)

indeed, we have

exp

(
−γ
∫ ∞

0
ρ(s)ds

)
Z(t, e) ≤W (t, e) ≤ Z(t, e).
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Now, the time derivative of W along trajectories of (34) verifies

Ẇ (t, e) ≤ −Y (t, e) + Ġ(t)Z(t, e)

+G(t)
∂
(
V +Q[3](V1)V1

)
∂e

B1(t, e)ρ(t) (39)

Y (t, e) := G(t)
[µ
T
V1(e) +Q[3](V1)

[
kxe

2
x +

kθ
ky
e2
θ

]]
. (40)

Note that, in view of (37), Y (t, e) is positive definite. We proceed to show that the
rest of the terms bounding Ẇ are negative semi-definite. To that end, we develop
(dropping the arguments of f(t, ex, ey) )

∂V

∂e
B1(t, e) =

∂V

∂V1

∂V1

∂e
B1(t, e)− ωrkyf(·)

[
ex + e2

y

]
− vrP[1](t, V1)kyf(·) [eθex + ey] (41)

and

∂
(
Q[3](V1)V1

)
∂e

B1(t, e) =
∂
(
Q[3](V1)V1

)
∂V1

∂V1

∂e
B1(t, e), (42)

and we decompose B1(t, e) into

B1(t, e) =

−kyf(·)
0
0

+

0 0 0
0 0 kyf(·)
0 −kyf(·) 0

 e.
Then, since

∂V1

∂e

0 0 0
0 0 kyf(·)
0 −kyf(·) 0

 e = 0,

it follows that

∂V1

∂e
B1(t, e) = −∂V1

∂eθ
kyf(·) = −eθf(·).

Thus, using the latter equation, we obtain

Ẇ (t, e) ≤− Y (t, e) + Ġ(t)Z(t, e)

−G(t)ρ(t)f(·)
∂
(
V +Q[3](V1)V1

)
∂V1

eθ

+ vrf(·)G(t)ρ(t)P[1](t, V1) [−kyeθex − kyey]
+ ωrG(t)ρ(t)f(·)

[
−kyex + kye

2
y

]
. (43)

In view of (15) and the boundedness of vr and ωr, there exists a polynomial R[3](V1)

11



with non-negative coefficients, such that

R[3](V1)V1 ≥− f(·)
∂
(
V +Q[3](V1)V1

)
∂V1

eθ

+ ωrf(·)
[
−kyex + kye

2
y

]
+ vrf(·)P[1](t, V1) [−kyeθex − kyey] . (44)

Hence, since V (t, e) ≥ F[3](V1) —see (32), we obtain

Ẇ ≤ −Y (t, e) + Ġ(t)F[3](V1)V1 +G(t)ρ(t)R[3](V1)V1.

On the other hand, in view of (37), Ġ(t) ≤ −γG(t)ρ(t) for any γ > 0 and the coeffi-
cients of F[3](V1) are strictly positive. Therefore, there exists γ > 0 such that

γF[3](V1) ≥ R[3](V1)

and, consequently, Ẇ (t, e) ≤ −Y (t, e) for all t ≥ 0 and all e ∈ R3. Uniform global
asymptotic stability of the null solution of (34) follows.

Step 3. In order to establish iISS with respect to η and boundedness of the closed-
loop trajectories subject to η ∈ L2, we proceed as in (Maghenem et al., 2016, Propo-
sition 4). Let

W1(t, e) := ln (1 +W (t, e)) . (45)

The derivative of W1 along trajectories of (27) satisfies

Ẇ1 ≤ −Gm
µ
T V1(e) +Q[3]

[
kxe

2
x + kθ

ky
e2
θ

]
1 +W (t, e)

+

∣∣∂W
∂e B2η

∣∣
1 +W (t, e)

(46)

with Gm := exp
(
−γ
∫∞

0 ρ(t)dt
)
.

Next, we decompose B2(e)η introduced in (27) into

B2(e)η := B21(η) +B22(η)e

where

B21(η) :=

−ω̃−ṽ
0

 , B22(η) :=

0 0 0
0 0 ω̃
0 −ω̃ 0

 .
Then, we use the fact that ∂V1

∂e B22(η)e = 0 and |G(t)| ≤ 1, and we define

H(e, V1) := Q[3] + P[3] +
∂Q[3]

∂V1
V1 +

∂P[3]

∂V1
V1 + v̄r |eθ| |ey|

∂P[1]

∂V1

12



and

ξ =

[ eθ
ky
ex

]
, (47)

to obtain ∣∣∣∂W
∂e

B2η
∣∣∣ ≤ H(e, V1)|ξ||η|+ ω̄r|ey||η|+ v̄rP[1]|ey||η|

+ ω̄rV1|η|+ v̄rP[1]|eθ||ex||η|

≤ H(e, V1)
[ 1

2ε
|ξ|2 +

ε

2
|η|2
]

+ ω̄r

[ 1

2ε
V1 +

ε

2
V1|η|2

]
+ ω̄r

[ 1

2ε
V1 +

ε

2
|η|2
]

+ v̄r

[ 1

2ε
V1 +

ε

2
P 2

[1]|η|
2
]

+ v̄rP[1]

[ 1

2ε
V1|eθ|2 +

ε

2
|η|2
]

≤
[
H(e, V1) + v̄rP[1]k

2
yV1

] 1

2ε
|ξ|2 + [2ω̄r + v̄r]

1

2ε
V1

+
ε

2
|η|2

[
H(e, V1) + ω̄rV1 + ω̄r + v̄rP

2
[1] + v̄rP[1]

]
.

Next, we choose ε > 0 such that

H + v̄rP[1]k
2
yV1

ε
|ξ|2 ≤ GmQ[3]

[
kxe

2
x +

kθ
ky
e2
θ

]
,

2ω̄r + v̄r
ε

≤ Gm
µ

T
.

Such ε > 0 exists because Q[3] is a third order polynomial of V1 with strictly positive
coefficients. So (46) becomes

Ẇ1 ≤ −Gm
2

µ
T V1(e) +Q[3]

[
kxe

2
x + kθ

ky
e2
θ

]
1 +W (t, e)

+
D[3](V1)

1 +W (t, e)

ε

2
|η|2 (48)

where D[3](V1) is a third order polynomial satisfying

H + ω̄rV1 + ω̄r + v̄rP
2
[1] + v̄rP[1] ≤ D[3].

From the positivity of V , (32), and the definition of W in (38), we have

GmQ[3](V1)V1 ≤W (t, e) ≤ S[3](V1)V1 (49)
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hence,

Ẇ1 ≤ −Gm
2

µ
T V1 +Q[3](V1)

[
kxe

2
x + kθ

ky
e2
θ

]
1 + S[3](V1)

+
D[3](V1)

1 +GmQ[3](V1)V1

ε

2
|η|2 . (50)

This implies the existence of a positive constant c > 0 and a positive definite function
e 7→ α such that

Ẇ1 ≤− α(e) + c |η|2 . (51)

The result follows from Angeli et al. (2000).

3.2. Under the scenario S2:

The proof of Proposition 1 under condition (10) relies on arguments for stability of
cascaded systems as well as on tools tailored for systems with persistency of excitation.
We start by rewriting the closed-loop equations in a convenient form for the analysis
under the conditions of Scenario 2. To that end, to compact the notation, let us
introduce

fρ(t, ex, ey) := ρ(t)f(t, ex, ey) (52)

Φ(t, eθ, ex, ey) = kθeθ + kyfρ(t, ex, ey) (53)

Then, the closed-loop equations become

ė = fe(t, e) + g(t, e)η, η = [ṽ ω̃]>, (54)

where

fe(t, e) :=

 −kθeθ − kyfρ − kyvrφ(eθ)ey
−kxex + Φey +

[
ωr + kyvrφ(eθ)ey

]
ey

−Φex −
[
ωr + kyvrφ(eθ)ey

]
ex + vr sin eθ

 ,
g(t, e) :=

 0 −1
−1 ey
0 −ex

 .
Following the proof-lines of (Panteley & Loŕıa, 2001, Lemma 1) for cascaded systems,
we establish the following for the system (54):
Claim 1. The solutions are uniformly globally bounded subject to η ∈ L2,
Claim 2. The origin of ė = fe(t, e) is uniformly globally asymptotically stable (i.e.,
P1).

After Angeli et al. (2004) the last two claims together imply integral ISS with
respect to η (i.e., P2). Moreover, Claim 1 implies the convergence of the closed-
loop trajectories to the origin provided that the input η tends to zero and is square
integrable (i.e., P3).
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3.2.1. Proof of Claim 1

Let

W (e) := ln(1 + V1(e)), V1(e) :=
1

2

[
e2
x + e2

y

]
. (55)

The total derivative of V1 above along the trajectories of (54) yields

V̇1(e) ≤ −kxe2
x + |ex||ṽ|+ |vr|| sin(eθ)||ey| (56)

hence,

Ẇ (e) ≤ 1

1 + V1

[
− kx

2
e2
x + |vr||ey|+

ṽ2

2kx

]
(57)

≤ |ey|
1 + V1

|vr|+
1

2kx[1 + V1]
ṽ2. (58)

Integrating on both sides of (58) along the trajectories, from 0 to t, and invoking the
integrability of vr and the square integrability of η we see that W (e(t)) is bounded
for all t ≥ 0. Boundedness of ex(t) and ey(t) follows since W is positive definite and
radially unbounded in (ex, ey).

Next, we observe that the ėθ–equation in (54) corresponds to an exponentially stable
system with bounded input u(t) = −kyvr(t)φ(eθ(t))ey(t) − kyfρ(t, ex(t), ey(t)) − ω̃(t)
hence, we also have eθ ∈ L∞.

Remark 2. For further development, we also emphasize that proceeding as above
from Inequality (57) we conclude that ex ∈ L2, uniformly in the initial conditions.

3.2.2. Proof of Claim 2

We split the drift of the nominal system ė = fe(t, e) into the output injection form:

fe(t, e) = F (t, e) +K(t, e) (59)

where

F (t, e) :=

 −kθeθ − kyfρ(t, ex, ey)−kxex + Φ(t, eθ, ex, ey)ey
−Φ(t, eθ, ex, ey)ex


and

K(t, e) :=

 −kyvrφ(eθ)ey[
ωr + kyvrφ(eθ)ey

]
ey

−
[
ωr + kyvrφ(eθ)ey

]
ex + vr sin eθ

 . (60)

Then, to establish UGAS for the origin of ė = fe(t, e) we invoke the output-injection
statement (Panteley, Loŕıa, & Teel, 2001, Proposition 3). According to the latter,
UGAS follows if:
a) there exist: an “output” y, non decreasing functions k1, k2, and β: R≥0 → R≥0, a
class K∞ function k, and a positive definite function γ such that, for all t ≥ 0 and all
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e ∈ R3,

|K(t, e)| ≤ k1(|e|)k(|y|) (61)

|y(t, e)| ≤ k2(|e|) (62)∫ ∞
◦

γ
(
|y(t)|

)
dt ≤ β(|e(0)|); (63)

b) the origin of ė = fe(t, e) is uniformly globally stable;
c) the origin of ė = F (t, e) is UGAS.

Condition a. Using (60), a direct computation shows that there exists c > 0 such
that

|K(t, e)| ≤ c
[
|e|2 + |e|

]
| [vr ωr] |, (64)

so (61) holds with k1(s) := c(s2 + s), k(s) := s, and y := [vr ωr]. Moreover, (62) and
(63) hold with γ(s) = s, since [vr ωr] ∈ L1, for a constant functions β and k2 which,
moreover, are independent of the initial state.

Condition b. Uniform global stability is tantamount to uniform stability and uni-
form global boundedness of the solutions —see Hahn (1967). The latter was established
already for the closed-loop system under the action of the “perturbation” η hence, it
holds all the more in this case, where η = 0.

In order to establish uniform stability, we use Lyapunov’s direct method. Let R > 0
be arbitrary but fixed.

We claim that, for the system ė = F (t, e), there exists a Lyapunov function candi-
date V : R≥0 × R3 → R≥0 and positive constants α1, α2, and α3 such that

α1 |e|2 ≤ V (t, e) ≤ α2 |e|2 ∀t ≥ 0, e ∈ R3 (65)∣∣∣∂V (t,e)
∂e

∣∣∣ ≤ α3 |e| ∀t ≥ 0, e ∈ R3 (66)

∂V
∂t + ∂V

∂e F (t, e) ≤ 0 ∀t ≥ 0, e ∈ BR (67)

where BR := {e ∈ R3 : |e| ≤ R}. Furthermore, from (64) it follows that

|K(t, e)| ≤ c(R+ 1)
[
|vr|+ |ωr|

]
|e| ∀ t ≥ 0, e ∈ BR.

Then, evaluating the time derivative of V along the trajectories of (59), we obtain

V̇ (t, e) ≤ ∂V (t, e)

∂e
K(t, e) ≤ α3c(R+ 1)

[
|vr|+ |ωr|

]
|e|2

≤ α3c[R+ 1]

α1

[
|vr|+ |ωr|

]
V (t, e) ∀ t ≥ 0, e ∈ BR.

Defining v(t) := V (t, e(t)) and invoking the comparison lemma, we conclude that

v(t) ≤ exp

(
cα3[R+ 1]

α1

∫ ∞
t◦

[
|vr(s)|+ |ωr(s)|

]
ds

)
v(t◦)

for all initial conditions t◦ ≥ 0 and e(t◦) generating trajectories e(t) ∈ BR. In view of
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(10), we obtain

|e(t)|2 ≤ α2

α1
exp

(
α3c[R+ 1]

α1
β

)
|e(t◦)|2

so uniform stability of (59) follows.
It is left to construct a Lyapunov function candidate V for the system ė = F (t, e),

that satisfies the conditions (65)-(67). To that end, consider the coordinates

ez = eθ + g(t, ey) (68)

where g : R≥0 × R≥0 → R≥0 defined by

g(t, ey) := e−kθ(t−t◦)g(t◦, ey) +

∫ t

t◦

kye
−kθ(t−s)f(s, 0, ey)ds

and, for further development we observe that

∂g

∂t
(t, ey) = −kθg(t, ey) + kyfρ(t, 0, ey). (69)

Let g(t◦, ey) be such that |g(t◦, ey)| ≤ |ey| which implies, using Assumption A1, that

|g(t, ey)| ≤ (1 + kyσ2) |ey| . (70)

In the new coordinates, we obtain

ėz = −kθez −
∂g

∂ey
Φex − kyf̃(t, ex, ey)

where f̃(t, ex, ey) := fρ(t, ex, ey) − f̃ρ(t, 0, ey). Then, Assumption A1 implies that for
any R > 0 there exists a positive constant cR > 0 such that

max
e∈BR

{
sup
t≥0

∣∣∣f̃ρ(t, ex, ey)∣∣∣ , sup
t≥0

∣∣∣ ∂g
∂ey

Φex

∣∣∣} ≤ cR |ex| .
Thus, consider the following Lyapunov function candidate

V (t, e) :=

[
1

2

c2
R

kθkx
+ (1 + kyσ2)2

] [
e2
x + e2

y

]
+

1

2
e2
z (71)

which trivially satisfies (66). Its total time derivative is

V̇ (t, e) =−
c2
R

kθ
e2
x − ez

[
kθez +

∂g

∂ey
Φex + kyf̃(t, ex, ey)

]
≤−

c2
R

kθ
e2
x − kθe2

z − cR|ez||ex| ≤ 0, ∀e ∈ BR,
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so (67) holds. Using (70) and the inequalities

e2
z ≥ e2

θ − 2|eθ||g(t, ey)|+ |g(t, ey)|2 ≥
1

2
e2
θ − (1 + kyσ2)2|ey|2.

e2
z ≤ e2

θ + 2|eθ||g(t, ey)|+ |g(t, ey)|2 ≤ 2e2
θ + 2(1 + kyσ2)2|ey|2,

we see that the following bounds on V follow

V (t, e) ≥ 1

2

c2
R

kθkx

[
e2
x + e2

y

]
+

1

4
e2
θ

V (t, e) ≤
[

1

2

c2
R

kθkx
+ 2(1 + kyσ2)2

] [
e2
x + e2

y

]
+ e2

θ.

Thus the inequalities in (65) also hold.
Condition c. Since the solutions are uniformly globally bounded, for any r > 0,

there exists R > 0 such that |e(t)| ≤ R := {|e| ≤ R} for all t ≥ t◦, all e◦ ∈ Br, and all
t◦ ≥ 0. It is only left to establish uniform global attractivity. To that end, we observe
that the nominal ė = F (t, e) has the form

ėθ = −kθeθ − kyfρ(t, ex, ey) (72a)[
ėx
ėy

]
=

[
−kx Φθ(t, ex, ey)

−Φθ(t, ex, ey) 0

][
ex
ey

]
(72b)

where, for each eθ ∈ BR, we define the smooth parameterized function Φθ : R≥0×R2 →
R as

Φθ(t, ex, ey) := Φ(t, eθ, ex, ey).

Then, the system (72) may be regarded as a cascaded system —cf. Loŕıa (2008).
Moreover, the system (72a) is input-to-state stable and the perturbation term
kyfρ(t, ex(t), ey(t)) is uniformly bounded. Therefore, in order to apply a statement
for cascaded systems, we must establish that the origin of (72b) is globally asymptot-
ically stable, uniformly in the initial conditions (t◦, ex◦, ey◦) ∈ R≥0 × R2 and in the
“parameter” eθ ∈ BR. For this, we invoke (Loŕıa et al., 2002, Theorem 3) as follows.
Since kx > 0 there is only left to show that Φ◦θ(t, ey)ey, where

Φ◦θ(t, ey) := Φθ(t, 0, ey),

is uniformly δ-persistently exciting with respect to ey, uniformly for any θ ∈ BR —cf.
(Loŕıa et al., 2002, Definition 3). Since Φ◦θ is smooth, it suffices to show that for any
|ey| 6= 0 and r, there exist T and µ such that

|ey| 6= 0 =⇒
∫ t+T

t

∣∣Φ̃◦θ(τ, ey)∣∣dτ ≥ µ ∀ t ≥ 0 (73)

—see (Loŕıa et al., 2002, Lemma 1).
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Remark 3. In general, µ depends both on eθ and on ey, but since eθ ∈ BR and BR
is compact, by continuity, one can always choose the smallest qualifying µ, for each
fixed ey. Therefore, as in Loŕıa et al. (2002), µ may be chosen as a class K function
dependent of |ey| only.

Now, we show that (73) holds under Assumption A2. To that end, we remark that

Φ◦θ(t, ey) = kθeθ + kyρ(t)f◦(t, ey)

–cf. Eq. (53), satisfies

Φ̇◦θ = −kθΦ + kyρ̇f◦ + kyρ
∂f◦
∂t
− kyρ

∂f◦
∂ey

Φex

where we used ėθ = −Φ and ėy = Φex. Therefore, defining

KΦ(t, e) := kθ[Φ
◦
θ − Φ]− kyρ

∂f◦
∂ey

Φex

we obtain

Φ̇◦θ = −kθΦ◦θ − kyρ
∂f◦
∂t

+ kyρ̇f◦ +KΦ(t, e).

The latter equation corresponds to that of a linear filter with state Φ◦θ and input

Ψ(t, ey) := −kyρ(t)
∂f◦
∂t

(t, ey) + kyρ̇(t)f◦(t, ey) +KΦ(t, e(t));

therefore, Φ◦θ is uniformly δ-PE with respect to ey, if so is Ψ (see e.g. Ioannou and Sun
(1996)). Now, from Assumption A1 and uniform global boundedness of the solutions,
for any r there exists c > 0 such that∣∣kyρ̇(t)f◦(t, ey(t)) +KΦ(t, e(t))

∣∣ ≤ c(r)[ |ex(t)|+ |ρ̇(t)|
]

Therefore, uniform δ-PE with respect to ey of Ψ follows from Assumption A2 and the
fact that ρ̇ and ex are uniformly square integrable. That ρ̇ ∈ L2, with a bound uniform
in the initial times, follows from (18) because vr, ωr, and ρ are bounded and |vr|+ |ωr|
is uniformly integrable. That ex is uniformly L2 follows from (57) —see Remark 2.

This concludes the proof of UGAS for the nominal system ė = fe(t, e) hence, Claim
2. is proved.

This completes the proof of Proposition 1. �

4. Simulations

To illustrate our main theoretical results we performed some simulation tests under
SimulinkTM of MatlabTM, according to the two scenarios described previously.

The robot’s physical parameters are taken from Fukao et al. (2000):

M =

[
m1 m2

m2 m1

]
, C(ż) =

[
0 cω
−cω 0

]
,
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with m1 = 0.6227, m2 = −0.2577, c = 0.2025, r = 0.15, and b = 0.5. We used the
control law (22) with σ(ν̃) = [tanh(ν̃1) tanh(ν̃2)]>.

For the purpose of the first scenario, we define the reference velocities vr and ωr
as periodic functions (hence persistently exciting) —see Figure 1. Such references
generate a “staircase-shappe” path that is asymptotically followed by the vehicle —
see Figure 5, where we show the simulation results for two different values of the
vehicle’s initial conditions. The initial conditions for the reference vehicle are set to
[xr(0), yr(0), θr(0)] = [0, 0, 0] and those for the adaptation law (25) are set to Θ̂(0) =
(m̂1, m̂2, ĉ) = (0, 0, 0).

The desired distance between the actual vehicle and the reference is obtained by
setting the desired orientation offset to zero and defining [dxr , dyr ] := [0, 0]. The control
gains are set to kx = 1, ky = .2, kθ = 0.1, kd = 20, and γ = 1× 10−5. The function f
which verifies the assumptions A1 and A2 is defined as f(t, ex, ey) := p(t)|exy| with
p(t) = 50 sin(0.5t) + 5; we notice that both p(t) and ṗ are persistently exciting signals.
Therefore, the conditions (14), (15) and (17) hold.

The tracking position errors are depicted in Figure 2 while in Figure 3 are showed
the vehicle’s and the reference velocities. The input torques at the wheels are depicted
in Figure 4. To avoid graphical saturation we provide the curves only for the case in
which the initial conditions are x(0) = 2, y(0) = 1 and θ(0) = 0.

For the stabilization scenario S2, we use exponentially-fast decaying reference tra-
jectories —see Figure 6 and the control gains kd = 30, ky = 1. In Figure 10 we show
the path followed by vehicle starting from two different points in the plane, as well as
the reference path generated by the fictitious vehicle, which comes to a full stop. The
tracking position and velocity errors are depicted in Figures 7 and 8 respectively, the
input torques at the wheels are depicted in Figure 9 for the case in which the initial
conditions of the vehicle are x(0) = 1, y(0) = 1 and θ(0) = 0.

The controller’s performance may be compared, for instance, to that of the con-
trollers in Do et al. (2004b); Lee et al. (2001).
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Figure 1. Persistently-exciting reference velocities vr and ωr for the scenario S1
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Figure 2. Tracking errors under the scenario S1
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Figure 3. Vehicle’s and reference velocities under the scenario S1
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Figure 4. Input torques under the scenario S1

5. Conclusion

We presented a unique controller for nonholonomic vehicles with a generic dynamic
model that achieves uniform global asymptotic stability in closed loop, for a large
variety of reference trajectories. The simplicity and modularity of our design seems
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Figure 5. Path followed under the scenario S1 considering two different sets of initial conditions
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Figure 6. Exponentially-fast decaying reference velocities vr and ωr for the scenario S2
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Figure 7. Tracking errors under the scenario S2

promising to broach other scenarios such as control under input constraints.
Our proofs are constructive for the tracking-control scenario; moreover, the con-

struction of strict Lyapunov functions makes it possible to extend our designs to the
cases of output feedback and parametric uncertainty. While an example of the latter
is given, the former is under study. Furthermore, current research is being carried

22



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

0 10 20 30 40 50 60 70 80 90 100
-0.6

0.4

1.4

2.4

Figure 8. Vehicle and reference velocities under the scenario S2
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Figure 10. Path followed under the scenario S2 under different initial conditions

out to relax the standing assumption of integrability of the reference velocities in the
stabilization scenario, to allow for slowly-converging reference velocities.
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Loŕıa, A., Panteley, E., & Teel, A. (1999). A new persistency-of-excitation condition for
UGAS of NLTV systems: Application to stabilization of nonholonomic systems. In Proc.
5th. european contr. conf. (pp. 1363–1368). Karlsrühe, Germany.

Maghenem, M., Loŕıa, A., & Panteley, E. (2016). iISS formation tracking control of au-
tonomous vehicles (Tech. Rep.). Gif sur Yvette, France: CentraleSupelec. (Available online:
https://hal.archives-ouvertes.fr/hal-01364791)
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Panteley, E., Lefeber, E., Loŕıa, A., & Nijmeijer, H. (1998). Exponential tracking of a mobile
car using a cascaded approach. In Ifac workshop on motion control (p. 221-226). Grenoble,
France.
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