
HAL Id: hal-02367635
https://hal.science/hal-02367635

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hard multidimensional multiple choice knapsack
problems, an empirical study

Bing Han, Jimmy Leblet, Gwendal Simon

To cite this version:
Bing Han, Jimmy Leblet, Gwendal Simon. Hard multidimensional multiple choice knapsack prob-
lems, an empirical study. Computers and Operations Research, 2009, 37 (1), pp.172 - 181.
�10.1016/j.cor.2009.04.006�. �hal-02367635�

https://hal.science/hal-02367635
https://hal.archives-ouvertes.fr

Hard Multidimensional Multiple Choice Knapsack
Problems, an Empirical Study

Bing Han∗,a,b, Jimmy Lebleta, Gwendal Simona

aDepartment of Computer Science, Institut Telecom - Telecom Bretagne,
Technople Brest-Iroise, 29238 Brest, France

bDepartment of Computers and Networks, Institut Telecom - Telecom ParisTech,
37/39, rue Dareau, 75014 Paris, France

Abstract

Recent advances in algorithms for the multidimensional multiple choice knap-

sack problems have enabled us to solve rather large problem instances. How-

ever, these algorithms are evaluated with very limited benchmark instances.

In this study, we propose new methods to systematically generate comprehen-

sive benchmark instances. Some instances with special correlation properties

between parameters are found to be several orders of magnitude harder than

those currently used for benchmarking the algorithms. Experiments on an exist-

ing exact algorithm and two generic solvers show that instances whose weights

are uncorrelated with the profits are easier compared with weakly or strongly

correlated cases. Instances with classes containing similar set of profits for items

and with weights strongly correlated to the profits are the hardest among all

instance groups investigated. These hard instances deserve further study and

understanding their properties may shed light to better algorithms.

Key words: multidimensional, multiple choice, knapsack problem, algorithm,

performance evaluation

∗Corresponding author.
Email addresses: bing.han@telecom-bretagne.eu (Bing Han),

jimmy.leblet@telecom-bretagne.eu (Jimmy Leblet), gwendal.simon@telecom-bretagne.eu
(Gwendal Simon)

Preprint submitted to Elsevier April 10, 2009

1. Introduction

Multidimensional Multiple choice Knapsack Problem (MMKP) is one of the

most complex members of the Knapsack Problem (KP) family. It could be

stated as follows: We are given m classes with each class i containing ni items.

The jth item of class i has profit pij . Each item has l dimensions of weight, and

the weight at dimension k is denoted as wijk. The knapsack has capacity ck on

each dimension k. The goal is to select one item in each class to maximize the

sum of their profits and to keep the total weight on each dimension no more than

the corresponding capacity. It is generally considered that the profits, weights

and the knapsack capacities take non-negative values, thus we will not explicitly

state this constraint in the formulation. Formally, MMKP could be expressed

with an integer programming model:

(MMKP) maximize
m∑

i=1

ni∑
j=1

pijxij (1)

subject to
m∑

i=1

ni∑
j=1

wijkxij ≤ ck, k = 1, . . . , l (2)

ni∑
j=1

xij = 1, i = 1, . . . ,m (3)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ni (4)

where the binary variable xij indicates the jth item of class i is selected or not.

For clarity, we assume all classes have the same number of items in this study,

i.e. n1 = · · · = nm = n.

MMKP has many applications. It has been used to model the Quality of

Service (QoS) management problem in computer networks [1] and the admission

control problem in the adaptive multimedia systems [2, 3, 4]. Various other

resource allocation problems can also be mapped directly to MMKP, please

refer to [5, 6] and the references wherein.

Most academic efforts related with MMKP have been put on finding heuristic

algorithms due to the NP-hard nature of the problem [4, 7, 8, 9]. However,

2

computing exact MMKP solutions can also be of interest when the computation

time constraint is not critical, e.g. exact solution is the most valuable benchmark

for the heuristic algorithms. More important, when the exact algorithms can

solve most problem instances quickly and only fall into exponential time in rare

cases, they can be applied to some practical problems. Thus, for any exact

algorithm, it is important to know how often it falls into the trap.

Great efforts have been taken in analyzing the structure of many KP family

members, e.g. simple KP, Bounded KP (BKP), Multiple KP (MKP), Multiple

Choice KP (MCKP), Multidimensional KP (MDKP) etc. Comprehensive dis-

cussions on these problems could be found in [10, 5]. It has been demonstrated

that all of them are highly structured. Exploiting their special structural prop-

erties usually leads to efficient algorithms that are able to solve certain category

of problem instances in reasonable time, although the problems are NP-hard.

Moreover, it appears that some instances are particularly hard to solve not be-

cause of the size of the problem (number of input variables or the magnitude of

the variable values), but because of the special combination of variable values,

i.e. even a small problem instance can require a long time to solve. Gener-

ally, the relationship between the profits and weights of the items plays a very

important role in the solution time of certain problem instances. Besides, a

very important observation has been made on simple KP that the relationship

between the capacity and the weight also has great impact on the hardness of

the instances [11].

In contrast, little work has been done on MMKP in analyzing its structure.

To the best of our knowledge, besides many proposed algorithms, the only

theoretical analysis is presented in [12]. The authors show that the proportion

of the dominated variables can be estimated as a probability function of the

number of dimensions and the number of items in each class. The results could

be used to reduce the problem size during the pre-process stage. However, it

is still unclear how the parameters such as profit, weight and capacity interact

in making the problem difficult. Furthermore, almost all MMKP algorithms

proposed in the literature are evaluated against very limited problem instances

3

which may belong to special easy cases.

In this paper, we study the relationship between various parameters of the

MMKP such as profit, weight and capacity in order to identify the key fac-

tors that make a hard instance. Furthermore, uncorrelated, weakly correlated

and strongly correlated cases for items within each class, between classes and

across multiple dimensions are investigated. To the best of our knowledge, no

such work has been reported in the current literature. A systematic method to

generate comprehensive MMKP test instances is proposed. Several groups of

instances generated with the proposed methods are evaluated with the BBLP

algorithm [3, 4] and two integer programming solvers, ILOG CPLEX [13] and

GLPK [14]. The experiments show that many instances are several orders of

magnitude harder than traditionally used ones in terms of the computing time.

These hard MMKP instances usually have medium knapsack capacity and high

correlation between weights and profits. The experiments also suggest that in-

stances with similar set of profits across classes and with strong correlations

between weights and profits are hard to solve.

In the rest of this paper, we first give a brief survey of existing MMKP

algorithms and benchmarking methods in Section 2 and Section 3, respectively.

Then in Section 4, we propose new methods to generate MMKP benchmark

instances. Section 5 is dedicated to evaluating the difficulty of these instances

using the existing exact algorithm and solvers. Finally, we draw conclusion and

propose important future works in Section 6.

2. Existing MMKP Algorithms

Several heuristic algorithms have been proposed for MMKP. The first heuris-

tic is proposed by Moser et al. [7] based on Lagrange multiplier method. Then

HEU is proposed by Khan et al. [3, 4]. Later, Hifi et al. proposed MGLS in [15]

and MRLS in [8]. A convex hull based method was proposed by Akbar et

al. [9]. Two algorithms based on the column generation method have been pro-

posed recently by Cherfi and Hifi [16]. These heuristics are able to obtain fairly

4

good solutions for large MMKP instances. In comparison, exact algorithms have

not received a lot of attention. Indeed, only two exact algorithms have been

proposed in the literature, both are based on the branch-and-bound principle.

A straightforward extension of the branch-and-bound method for KP to

MMKP is the BBLP algorithm [3, 4]. BBLP starts from a state that all variables

are undecided. At each round, BBLP selects a class i and generates branches

with each item in the class. This step corresponds to assigning value 1 to

the binary variable of the selected item and assigning value 0 for the others.

As a result, ni partial solutions will be generated. Infeasible partial solutions

are dropped immediately while feasible ones, including those obtained from all

previous rounds, are examined and the one with the maximum upper bound is

selected for branching in the next round. The upper bound is obtained by solving

the LP relaxation of a sub-problem containing only the undecided variables. If

at a certain round, the best solution selected has all variables fixed, an optimal

solution is obtained.

Another exact algorithm is the EMKP algorithm [17]. EMKP initially sorts

the items in each class in descending order of their profits. A tie between items

is resolved by comparing the relative aggregated resource consumption of the

items which is obtained by summing up the weight-capacity ratios across all

dimensions. Then it starts the branch-and-bound procedure from the first item

in the first class. Based on the current node, two nodes are further developed if

they exist: a son node corresponding to selecting the first item of the next class

and a brother node corresponding to selecting the next item in the same class.

The bounding procedure employs an upper bound obtained with an auxiliary

MCKP problem and a supplementary KP. The auxiliary MCKP is formed with

weight and capacity in the original problem aggregated across multiple dimen-

sions, and the supplementary KP is formed with all items not selected and the

aggregated residual capacity. In order to further trim the branches of the search

tree, a feasible solution obtained by the MRLS heuristic [8] is used as a lower

bound. A node with a solution upper bound below the lower bound is dropped.

However, we have identified some fundamental problems of the EMKP al-

5

gorithm [17]. First of all, the EMKP algorithm employs basically a sequential

search strategy, i.e. the development of a certain node depends on its previous

brother nodes. This prevents pruning the infeasible nodes effectively as some

feasible nodes may have to be developed from them. Secondly, the EMKP al-

gorithm selects the best node to develop at each round, but the paper does not

state how the selection is made. A common way is to select the node with the

highest upper bound. However, for the infeasible nodes which are kept in the

search tree, there is no natural way to calculate an upper bound. Finally, the

sequential search strategy implicitly requires generating the brother node for

every node who has a brother. This is true even for the unpromising nodes

whose upper bound is below the lower bound. However, EMKP tries to reduce

the search space by pruning these unpromising nodes (line 17 of the algorithm

in [17]). This will break the searching process and the algorithm will not be

able to find the optimal solution which have to be reached through the pruned

node. Even worse, the better the quality of the lower bound is (approaching the

optimal from below), the more often the improper prune may happen.

As a result, we will consider only the BBLP algorithm and two generic MIP

solvers GLPK and CPLEX in this study.

3. Existing Methods to Generate Benchmark Instances

It is very important to test the algorithms with problem instances in order to

know their performance in practice. When algorithms are tackling a particular

problem, ideal instances for performance evaluation are those from traces of the

real world. However, as MMKPs usually originate from a diverse applicative

background, typical instances from a certain domain may hardly be reasonable

for another. Moreover, there is no systematic report on real world MMKP

problem instances in the literature. In contrast, test instances can be generated

to cover a much wider range of instance types. As a result, generated instances

play an important role in benchmarking the algorithms and have been used

in most KP and MMKP related researches. In the following, we first describe

6

how the KP instances are usually generated, then we give a brief review on

the current method to generate the MMKP instances. The latter is basically a

straightforward extension of the former.

3.1. Generating KP instances

In order to generate a KP instance with certain number of items, the idea

is to first assign values to both profit and weight of each item, then to set the

capacity of the knapsack. Several groups of instances have been identified for

KP considering the correlation between the profits and weights [18].

• uncorrelated instances. For this category, the profit of an item is indepen-

dent to its weight. A commonly used method is to select profits (pj) and

weights (wj) randomly in a certain interval, e.g. [1, R]. These instances

are generally easy to solve.

• weakly correlated instances. In weakly correlated instances, the profit of

an item is related with its weight, e.g. to select wj randomly in [1, R] and

pj in [wj −R/10, wj +R/10] while ensuring pj ≥ 1.

• strongly correlated instances. For these instances, the profit of an item

is a linear function of its weight plus a certain shift, e.g. to select wj

randomly in [1, R], but let pj = wj +R/10. This category of KP instances

are generally hard to solve.

• sub-set sum instances. For this category of instances, the profit of an item

is a linear function of its weight. As a result, only weight need to be

considered when packing the knapsack.

Instances with other types of correlation can be defined similarly [18].

Finally, the capacity of the knapsack is set to a certain percentage of the

sum weight. However, this has been shown to be inadequate as it generates

the easiest KP instances under certain situations [11]. Thus the idea consists of

generating a series of S test instances with the capacity c of the hth instance

7

selected as:

c =
h

S + 1

n∑
j=1

wj . (5)

3.2. Generating MMKP instances

To generate an MMKP instance with a given number of classes, a given

number of items in each class and a given number of dimensions, the problem

is to assign a profit value to each item, a weight value to each item at each

dimension, and finally, a capacity value to each dimension of the knapsack.

This can be done in various ways.

In [4], weights of items are uniformly selected in the interval [0, R] indifferent

to the dimensions or which class the item belongs to, where R denotes the

maximum resource consumption by an item. Let P denote the maximum cost

of unit resource, then the value R×P could be considered as the maximum cost

(weight) of an item. Then uncorrelated instances are generated with profits

assigned according to the item index in the class:

pij = U
(

0, l × R

2
× P

2

)
× j + 1

ni
. (6)

For correlated instances, the profit is a linear function of the sum weight:

pij =
l∑

k=1

Pkwijk × U
(

0, l × 3× R

10
× P

10

)
, (7)

where Pk = U(0, P) is a uniform random number between 0 and P .

Finally, the capacity of dimension k is set to half of the maximum possible

resource consumption:

ck =
1
2
×m×R. (8)

The same set of instances have been used in [3, 6, 9, 19]. Instances generated

with the same principle have been used in [15, 8, 16]. These instances are

available at the OR Benchmark Library [20].

In [17], test instances are generated as follows: pij and wij are randomly

selected in intervals [0, 150] and [0, 50], respectively. Capacities are set as:

ck =
1
2

m∑
i=1

(
wmin

ik + wmax
ik

)
, (9)

8

where

wmin
ik = min

1≤j≤n
{wijk}, (10)

wmax
ik = max

1≤j≤n
{wijk}. (11)

In [21], domain related values are considered in the test instances. The

number of classes, items in each class and dimensions are set according to a

typical Video on Demand (VoD) system. The variable values are also set with

respect to the typical values of a VoD system. For example, the weight of each

item is set to the typical resource consumption of a session. The value is then

scaled by a random number chosen from the interval [0.75, 1.25] to mimic system

dynamics. Similarly, the capacities are set to typical available resources scaled

by a random value chosen from the interval [0.95, 1.05].

Although these instances have been widely used in the literature, our compu-

tational results show that they are insufficient in demonstrating the performance

of the algorithms. Table 1 presents the time used to solve the first few instances

in the OR benchmark library with CPLEX, GLPK and the BBLP algorithm.

Here we emphasize on the relative solution time across the instances. Notably,

instances I3 and I4 take much more time than I5 and I6, despite they are smaller

than the latter. This actually implies that not only the size of the instance, but

also the structure play very important role in the solution time.

4. New Methods to Generate MMKP Problem Instances

Experiences from KP suggest that the correlation between profits and weights

is critical to the hardness of an instance. Extending this idea to MMKP, we

need to handle the correlation between the profits and multiple dimensions of

weights. One direct way is to select the profit for each item then select the

weights according to the profits. Given the number of classes (m), the number

of items in each class (n, assuming all classes have the same number of items),

and the number of dimensions (l), the MMKP is denoted as P (m,n, l). We

will also refer to a mapping from a class of n items to n values informally as a

generating function.

9

4.1. Generating the Profits

In order to select the profits for items in each class i, we first bound the

profits with two parameters pmin
i and pmax

i and select profit values within the

interval. This could be done in various ways and here we define some generating

functions for the profits.

Uniform Generating Function. Uniform random profits are natural in many

real world problems and are widely used in the literature. In uniform generating

function, we draw profit uniformly and randomly within the interval. We denote

the uniform generating function as:

pij = U
(
pmin

i , pmax
i

)
. (12)

Linear Generating Function. Items with linear profits are less studied in the

literature. However, this kind of profit value assignment is actually quite com-

mon. For example in the QoS adaption problem [21], the QoS levels are usually

mapped to the profit of items and their values are often consecutive integers.

Also in the multi-hop query allocation problem [22], the query range is mapped

to the profit and is measured in hop numbers which take also consecutive integer

values.

In the linear generating function, we assign pij with a linear function of the

item index j, i.e.

pij =
j − 1
ni − 1

(
pmax

i − pmin
i

)
+ pmin

i . (13)

For clarity, we use a short hand notation for this linear generating function as

follows:

pij = L
(
pmin

i , pmax
i

)
. (14)

Applying the Profit Generating Functions. The generating functions should be

applied on each single class to generate the profits. Obviously, one can apply

the same function to all classes or change the functions for each class. For

the uniform generating function, even when it is applied to all classes with the

same parameters, the random nature of the function will give different values

10

for profits in different classes. On the contrary, when the linear generating func-

tion is applied to all classes with the same parameters, all classes will have the

same profit vector for their items. Therefore, besides applying the same gener-

ating function to all classes, we further propose two ways to use the generating

functions. The first one is to reproduce the random profit vector generated by

a uniform generating function on all classes. This is typically the case when

several users (classes) can access the same set of objects (items) with varying

quality of service (profits) but the cost of accessing them differs (weights). We

explicitly denote the profits generated via this way as:

pij = R
(
U
(
pmin
1 , pmax

1

))
. (15)

Here, R signifies Reproducing the first generated profit vector for other classes.

The second way to apply the generating functions is to take into account the

class index i when deciding the interval from which the values are taken for each

class, e.g. U(10(i − 1), 10i) or L(10(i − 1), 10i). When the uniform generating

function is applied this way, the resulting profits in each class is still randomly

selected but profits of different classes are dispersed into different intervals.

While the linear generating function is applied, the profits are linearly assigned

in different intervals. We denote this special application of generating functions

as:

pij = C(F), (16)

where F is a generating function with different parameters for different classes

and C signifies that the generating function is Class-dependent.

4.2. Generating the Weights

To generate the weights, we can apply a certain correlation on the generating

function for each dimension. In particular, we define the following generating

functions.

Uncorrelated Generating Function. In uncorrelated generating function, we sim-

ply assign weights with values uniformly and randomly selected within a certain

11

interval:

wijk = U
(
wmin

ik , wmax
ik

)
. (17)

Weakly Correlated Generating Function. This generating function is motivated

by previous results on KP instances [18]. The motivation is to slightly associate

profits to weights, but still with a degree of freedom for each dimension. In our

proposal, weights are assigned according to:

wijk = U
(

max
(

0, pij −
pmax

i

δ

)
, pij +

pmax
i

δ

)
. (18)

We will use the following shorthand notation:

wijk =W(δ). (19)

Strongly Correlated Generating Function. Strongly correlated generating func-

tion is also motivated by previous results where the correlation between profits

and weights is strong:

wijk = pij +
pmax

i

δ
. (20)

We use the following short hand notation for this function:

wijk = S(δ). (21)

Inversed Strongly Correlated Generating Function. For inversed strongly corre-

lated generating function, weights are assigned according to:

wijk = pmax
i − pij

δ
, (22)

and will be referred to as:

wijk = I(δ). (23)

Note that the inversed strongly correlated generating function is not interest-

ing to be used alone. Interesting cases occur when both strongly correlation and

inversed strongly correlation coexist on different weight dimensions. Intuitively,

these instances are hard to solve because careful trade-off between weights across

dimensions has to be made. Although we are not aware of any realistic MMKP

problems of this type, they are still interesting from a theoretical point of view.

12

Note also that the weights should always be non-negative, so we propose to

build strongly and inversed strongly generating functions with different patterns.

One drawback in these two definitions is that they do not represent a perfect

symmetric case, i.e. the strongly and inversed strongly generating functions may

not generate increasing and descending weights, respectively, with the same step

length when δ is set to the same value. Other definitions are possible and it

would be interesting to explore their properties, however, we leave them for

future study.

Applying the Weight Generating Functions. Similar to the profit generating

functions, one could apply the same generating function with the same param-

eter to all dimensions. But it is also possible to apply the same function with

different parameters or even different generating functions for dimensions. In

addition to simply applying the same generating function with the same param-

eters on all dimensions, here we propose two ways to apply the weight generating

functions. The first one is to include the dimension index k as a parameter of

the generating function so that the weight for a dimension k can be chosen in a

range that depends on k for the uniform generating function, or the parameter

δ can be a function of k for weakly, strongly and inversed strongly correlated

generating functions. It is convenient to use a shorthand as follows:

wijk = D(F), (24)

where F can be, for example, U(1, 10k) for the uniform generating function, or

W(k + 5) and S(k + 5) for weakly correlated and strongly correlated generat-

ing functions, respectively. Here, D signifies that the generating functions are

Dimension-dependent. We could also apply different generating functions to

different dimensions, for example, we will generate instances with the inversed

strongly correlated generating functions on some dimensions and strongly cor-

related generating function on others. Under this case, we denote:

wijk = D(F1F2 . . .), (25)

where F1, F2, . . . are the generating functions in used.

13

4.3. Generating the Knapsack Capacities

Finally, knapsack capacities are generated by extending (5) to multiple

classes and multiple dimensions. We generate a series of the S instances and the

capacity of the kth dimension of the hth generated instance (h = 1, 2, . . . , S),

denoted as chk , is dispersed from the minimum possible weight to the maximum

possible weight:

chk =
h

S + 1

(
m∑

i=1

wmax
ik −

m∑
i=1

wmin
ik

)
+

m∑
i=1

wmin
ik . (26)

The parameter h will also be referred to as the capacity level of the instance in

the series. Note that all the S instances do not need to have the same items

(profit and weight assignment). However, in order to investigate the impact of

the capacity level on the solution time in this paper, we let all S instances in

the same series have the same profit and weight values. As a result, instances

in a series differ from each other only by their capacities.

4.4. Summary of Instance Notations

We denote G-x-y a group of instances. The parameter x indicates the gen-

erating function that is chosen to allocate the profits, so in this paper x should

be picked in {U ,L,R, C(U), C(L)}. In the same idea, the parameter y indicates

how the weights are computed. The set of generating functions considered in

this paper is {U ,W,S,D(U),D(W),D(S),D(SU),D(SI),D(SUI)}. And for

the group names, we use the corresponding normal fonts instead of the calli-

graphic fonts used for the generating functions. For example G-U-W stands for

the group of instances with profits generated with the uniform generating func-

tion U and weights generated with the weakly generating function W. Among

all combinations, we focus on the instances that either exhibit an interesting

behavior, or appear to be standard families of instances. This subset of in-

stance families are detailed in Table 2. Note in particular that we create two

groups of instances using the I generating function for some dimensions. These

two combinations have been chosen because, as we will show later, they exhibit

14

especially interesting hardness nature. Other combinations are obviously pos-

sible and hard instances other than those discussed in this study must exist.

Discovering such instances could be an interesting future work.

5. Experiment Study

5.1. Experiment Setup

We implemented the BBLP algorithm with C++ programming language

and built the binary with GNU g++ version 4.3.0. For the standard solvers,

we employed the ILOG CPLEX version 11.2.0 1 and GNU GLPK version 4.31.

For both solvers, we keep the default parameters related with the algorithms.

All experiments have been carried out on the same computation platform,

which is a Fedora 7 running on an IBM Thinkpad with an Intel Pentium M

processor at 1.86GHz and with 1GB memory and 1GB swap space on the hard

disk.

We generate the instances described in Table 2 with the proposed method,

then we challenge the algorithms with these instances. In particular, we generate

instances for P (10, 5, 5), which are of the same size as I2 from the OR benchmark

library. We have similar results for P (5, 5, 5) and P (15, 10, 10) which correspond

to I1 and I3, respectively. However, the former is so easy that the differences are

too small, while for the latter, most instances we generated can not be solved in

reasonable time. Therefor, only results for P (10, 5, 5) are presented in the paper.

Since both the number of input variables and the values that the variables take

have impact on the solution time of an instance, we select the variable values

within the same range as I2 so the effects of different variable values are mini-

mized. Notice also that some of the generating functions previously defined have

random factors. For groups using these generating functions, we generate 20 se-

ries for each group to account for the random effects. For the groups that contain

1The CPLEX is licensed to “AMPL Student Edition”, which is able to solve problems with

up to 300 variables and this is enough for our example problems.

15

only the deterministic generating functions, e.g. linear profits with strongly

correlated weights, the parameters of the generating functions determine the

uniqueness of the instance, so only one series is evaluated. For each series, we

generate 100 instances, i.e. S = 100. The instance generating program and the

instances are available at http://enstb.org/~gsimon/Resources/MMKP/.

Some generated instances may be infeasible while others may be too hard

to be solved to optimal in reasonable time. For the latter case, the execution

time of the algorithm is limited to 600 seconds. As a result, the solution time

that will be presented in the following part of this section could be the time for

either obtaining the optimal solution, or asserting infeasibility, or the time used

when the algorithm is aborted.

5.2. Average Solution Time

We first give an overview of the solution time of the generated instances to

highlight the existence of hard instances. In Table 3, both average and maximum

solution time is presented where the average is taken across capacity levels and

across multiple series, and the maximum is taken from the average values across

multiple series. Comparing with the solution time of I2 presented in Table 1,

we find that certain groups of instances such as G-L-W, G-L-S, G-L-D(W) and

G-L-D(S), etc. are much harder.

We can roughly classify these instances into three categories as indicated in

the three separated parts in Table 3. From top to bottom, results for instances

generated with uncorrelated, weakly correlated and strongly correlated gener-

ating functions are listed and a clear trend of increasing solution time could be

observed. We conclude that high correlation between weights and profits gener-

ally makes an instance harder. If the profits are chosen according to the linear

generating function, instances with weakly and strongly correlated weights be-

come very hard even for the advanced solvers such as CPLEX and GLPK.

5.3. Capacity Level and Solution Time

Now we show the relationship between capacity level and solution time of

the instances.

16

Figure 1 presents the solution time of G-U-∗ instances according to the

capacity level. We can observe that for uncorrelated cases, instances with lower

capacity levels are generally very easy while hardest instances emerge at capacity

levels between 40 and 50. The easiest uncorrelated instances with lower capacity

level are due to their infeasibility while those with highest capacity level are

trivial. While on the other hand, for weakly and strongly correlated cases shown

in the middle and right most plots in Figure 1, respectively, the hardest instances

usually appear at the center of the capacity level. Similar observations could be

made from the G-L-∗ cases in Figure 2. However, when the linear generating

function is used, the weakly and strongly correlated instances become harder.

Figure 2 demonstrates also high variability of relative hardness within one

series. This is especially obvious for the G-L-W/S instances. Some non-trivial

strongly correlated instance could be extremely easy for CPLEX, GLPK and

sometimes also for BBLP. The very special combination of capacity level, profit

and weight admits very efficient branch-and-bound operation. Furthermore,

thanks to the special mechanisms employed by GLPK and CPLEX, these in-

stances can be solved even faster. These mechanisms consist of pre-process that

may possibly reduce the number of variables, various branching heuristics and

various cutting algorithms. By applying the default parameters of CPLEX and

GLPK, these advanced algorithms are enabled and both solvers apply them dy-

namically during the search process. However, it is quite surprising that BBLP

is generally faster than GLPK on strongly correlated instances, and it even

achieves similar performance as CPLEX does on weakly correlated instances.

Both imply that the additional efforts taken by CPLEX or GLPK do not help

much in solving these instances.

The positions of hard instances are hard to predict when certain correlations

exist. Notably, the G-U-W/S, G-L-W/S and G-R-W/S (shown in Figure 3) gen-

erally have similar properties that the hardest instances appear at 50% capacity

and the advanced algorithms could solve certain instances very quickly. However

experiments on G-R-D(∗) and G-L-D(∗) (in Figure 4 and Figure 5, respectively)

show different properties. For example, the inversed strongly correlated dimen-

17

sion gives a clear cut on the feasible instances, making the hardest ones appear

at a shifted position. The hardest instances of G-R-D(SU) and G-L-D(SU) ap-

pear also at positions shifted to the higher capacity levels, as shown in the left

most figures of Figure 4 and Figure 5. Therefore, a rule of thumb is to use the

whole series to benchmark the algorithms, instead of with only a few samples.

5.4. Non-trivial Infeasible Instances

The instances may be infeasible and they appear often in uncorrelated cases.

As we show in Figure 7, if an instance is infeasible, it is generally easy for all

the three algorithms to detect this fact, partially due to the fact that the LP

relaxation for these instances are also infeasible. However, there exist infeasible

instances that are non-trivial to detect. The same observation has also been

claimed in [5]. These hard infeasible instances usually appear at intermediate

capacity levels at which both infeasible and feasible instances exist.

5.5. The Critical Dimension

In Figure 8(a), we could see that the solution time increases linearly with the

number of dimensions for the considered P (10, 5, ∗) G-L-U instances. However,

if the dimensions have mixed correlation properties, one generating function can

be dominant, and reduce the impact of the number of dimensions on the hard-

ness of the instance. Actually, instances generated with the strongly correlated

generating function are the hardest to solve. Figure 6 presents the solution time

of instances with a single weight dimension and the results are very similar to

that of the multidimensional cases shown in Figure 2. Especially for the strongly

correlated cases, the similarity implies that multiple strongly correlated weight

dimensions may not be necessary for a hard instance. Now we create instances

where one dimension is strongly correlated and other dimensions are uncorre-

lated. We observe that the impact of the hardness of the strongly correlated

dimension diminishes when the number of uncorrelated dimensions increases.

The explanation is that the number of items that are decided by the uncorre-

lated dimensions increases with the number of these uncorrelated dimensions,

18

so these items do not require to be decided by the strongly correlated dimen-

sion. Actually, it also means that the number of dimensions required to make

the instance easy depends also on the capacity of these additional dimensions.

The more constraining are the capacities of the additional uncorrelated dimen-

sions, the fewer dimensions are probably required to make the instances easy.

As extreme cases, adding unbounded dimensions on which the knapsack has

unlimited capacity does not help at all while adding infeasible dimensions on

which the knapsack has very limited capacity renders the instance infeasible

regardless of the contributions from other dimensions.

6. Conclusion

We have proposed systematic methods to generate more comprehensive

MMKP instances for benchmarking the algorithms. Several categories of MMKP

instances have been produced to demonstrate that some MMKP instances are

hard. Experiments on these hard instances with present exact algorithm and

solvers also revealed some special structure of the problem. Briefly, the in-

stance is hard to solve when all classes contain the same profit vector and the

weights are correlated with the profits. Certain categories of instances are very

hard for all considered algorithm and solvers: BBLP, GLPK and CPLEX, even

though many advanced branching and cutting algorithms are employed by the

two generic solvers. These instances contain classes with exactly the same set

of items, making the instance symmetrical. It is known that symmetry makes

integer linear programming hard. While many studies exist trying to break the

symmetry, for example [23, 24, 25], they have not been applied to the MMKP.

It could be an interesting direction for our future works.

Acknowledgement

We thank the anonymous reviewers for their constructive comments that

helped us a lot in substantially improving this study.

19

References

[1] C. Lee, J. Lehoczky, R. R. Rajkumar, D. Siewiorek, On quality of service

optimization with discrete QoS options, in: RTAS’99: Proceedings of the

Fifth IEEE Real-Time Technology and Applications Symposium, IEEE

Computer Society, Washington, DC, USA, 1999, p. 276.

[2] M. W. H. Sadid, M. R. Islam, S. M. K. Hasan, A new strategy for solving

multiple-choice multiple-dimension knapsack problem in pram model, in:

Asian Applied Computing Conference, 2005.

[3] S. Khan, Quality adaptation in a multisession multimedia system: Model,

algorithms and architecture, Ph.D. thesis, University of Victoria (1998).

[4] S. Khan, K. F. Li, E. G. Manning, M. M. Akbar, Solving the knapsack

problem for adaptive multimedia systems., Stud. Inform. Univ. 2 (1) (2002)

157–178.

[5] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, 2004.

[6] R. Parra-Hernandez, N. Dimopoulos, A new heuristic for solving the multi-

choice multidimensional knapsack problem, Systems, Man and Cybernetics,

Part A, IEEE Transactions on 35 (5) (2005) 708–717.

[7] M. Moser, D. P. Jokanović, N. Shiratori, An algorithm for the multidi-

mensional multiple-choice knapsack problem, IEICE transactions on fun-

damentals of electronics, communications and computer sciences 80 (3)

(1997) 582–589.

[8] M. Hifi, M. Michrafy, A. Sbihi, A reactive local search-based algorithm for

the multiple-choice multi-dimensional knapsack problem, Computational

Optimization and Applications 33 (2-3) (2006) 271–285.

[9] M. M. Akbar, M. S. Rahman, M. Kaykobad, E. G. Manning, G. C. Shoja,

Solving the multidimensional multiple-choice knapsack problem by con-

structing convex hulls, Comput. Oper. Res. 33 (5) (2006) 1259–1273.

20

[10] C. A. D. K. Harvey M. Salkin, The knapsack problem: A survey, Naval

Research Logistics Quarterly 22 (1) (1975) 127–144.

[11] D. Pisinger, Core problems in knapsack algorithms, Oper. Res. 47 (4) (1999)

570–575.

[12] M. E. Dyer, J. Walker, Dominance in multi-dimensional multiple-choice

knapsack problems, Asia-Pacific Journal of Operational Research 15 (2)

(1998) 159–168.

[13] http://www.ilog.com/products/cplex/.

[14] http://www.gnu.org/software/glpk/.

[15] M. Hifi, M. Michrafy, A. Sbihi, Heuristic algorithms for the multiple-choice

multi-dimensional knapsack problem, J Operat Res Soc 55 (12) (2004)

1323–1332.

[16] N. Cherfi, M. Hifi, A column generation method for the multiple-choice

multi-dimensional knapsack problem, Comput. Optim. App. online first,

Springer Netherlands (2008).

[17] A. Sbihi, A best first search exact algorithm for the multiple-choice mul-

tidimensional knapsack problem, Journal of Combinatorial Optimization

13 (4) (2007) 337–351.

[18] D. Pisinger, Where are the hard knapsack problems?, Comput. Oper. Res.

32 (9) (2005) 2271–2284.

[19] M. Chantzara, M. E. Anagnostou, Mvrc heuristic for solving the multi-

choice multi-constraint knapsack problem, in: International Conference on

Computational Science (1), 2006, pp. 579–587.

[20] ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/OR-Benchmark.

html.

21

[21] S. Alam, M. Hasan, M. Hossain, A. Sohail, Heuristic solution of mmkp in

different distributed admission control and QoS adaptation architectures

for video on demand service, Broadband Networks, 2005 2nd International

Conference on (2005) 896–903 Vol. 2.

[22] B. Han, J. Leblet, G. Simon, Query range problem in wireless sensor net-

works, to appear in IEEE communications letters.

[23] V. Kaibel, M. Pfetsch, Packing and partitioning orbitopes, Math. Program.

114 (1) (2008) 1–36.

[24] V. Kaibel, M. Peinhardt, M. E. Pfetsch, Orbitopal fixing, in: Proc. of

the 12th Integer Programming and Combinatorial Optimization conference

(IPCO), 2007.

[25] F. Margot, Exploiting orbits in symmetric ILP, Mathematical Program-

ming, Series B 98 (1-3) (2003) 3–21.

22

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Uncorrelated

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

Weakly

 0 10 20 30 40 50 60 70 80 90 100

Strongly

Figure 1: Solution time of G-U-∗ instances.

Table 1: Solution time (second) of OR benchmark library instances I1 to I6.

Inst m n l CPLEX GLPK BBLP

I1 5 5 5 0.005 0.028 0.016

I2 10 5 5 0.006 0.029 0.033

I3 15 10 10 1.983 16.036 67.260

I4 20 10 10 31.045 1383.251 1532.059

I5 25 10 10 0.018 0.046 0.660

I6 30 10 10 0.204 0.190 2.369

Table 2: Generating Functions for Instances P (10, 5, 5)

Group Profits (pij)
Weights (wijk)

Uncorr. Weakly Corr. Strongly Corr.

G-U-∗ U(1, 50)
U(1, 10) W(10) S(10)

G-L-∗ L(1, 50)

G-U-D(∗) U(1, 50)
U(1, 10k) W(k + 5) S(k + 5)

G-L-D(∗) L(1, 50)

G-C(U)-∗ U(10(i− 1), 10i)
U(1, 10) W(10) S(10)

G-C(L)-∗ L(10(i− 1), 10i)

G-C(U)-D(∗) U(10(i− 1), 10i)
U(1, 10k) W(k + 5) S(k + 5)

G-C(L)-D(∗) L(10(i− 1), 10i)

G-R-∗ R(U(1, 50)) U(1, 10) W(10) S(10)

G-R-D(SU) R(U(1, 50)) S(10),∀k = 1; U(1, 10), ∀k ∈ {2, 3, 4, 5}

G-R-D(SI) R(U(1, 50)) S(10), ∀k ∈ {1, 2}; I(10),∀k ∈ {3, 4, 5}

G-L-D(SU) L(1, 50) S(10),∀k = 1; U(1, 10), ∀k ∈ {2, 3, 4, 5}

G-L-D(SI) L(1, 50) S(10), ∀k ∈ {1, 2}; I(10),∀k ∈ {3, 4, 5}

G-L-D(SUI) L(1, 50) S(10), ∀k ∈ {1, 2}; U(1, 10), k = 3; I(10), ∀k ∈ {4, 5}

23

Table 3: Solution Time (second) of Instances.

Group
CPLEX GLPK BBLP

Avg. Max. Avg. Max. Avg. Max.

G-U-U 0.0051 0.0400 0.0124 0.0770 0.0168 0.2180

G-U-D(U) 0.0068 0.1190 0.0148 0.1820 0.0220 0.5179

G-C(U)-U 0.0047 0.0380 0.0130 0.0810 0.0180 0.3090

G-C(L)-U 0.0046 0.0430 0.0124 0.1470 0.0173 0.3210

G-C(U)-D(U) 0.0053 0.0580 0.0141 0.1140 0.0251 0.2690

G-C(L)-D(U) 0.0058 0.0700 0.0139 0.1040 0.0213 0.2620

G-R-U 0.0052 0.0410 0.0126 0.1130 0.0157 0.1930

G-L-U 0.0056 0.0500 0.0134 0.1020 0.0194 0.3350

G-L-D(U) 0.0070 0.0670 0.0143 0.1700 0.0241 0.6559

G-U-W 0.0243 0.2510 0.0789 0.5049 0.2277 1.6068

G-U-D(W) 0.0282 0.1940 0.0788 0.7339 0.2382 2.4456

G-C(U)-W 0.0105 0.0310 0.0269 0.1560 0.3069 4.6063

G-C(U)-D(W) 0.0101 0.0390 0.0242 0.1840 0.2420 2.6426

G-C(L)-W 0.0121 0.0460 0.0310 0.2150 0.3371 4.8203

G-C(L)-D(W) 0.0118 0.0420 0.0304 0.2270 0.3295 4.7473

G-R-W 0.0437 0.7389 0.1239 1.3708 0.2940 6.9169

G-L-W 0.6814 23.6984 20.5166 598.0341 3.8108 61.2037

G-L-D(W) 0.3460 10.9843 4.2153 587.2337 2.0304 35.4606

G-U-S 0.0051 0.0360 0.0203 0.1130 1.5901 63.4574

G-U-D(S) 0.0094 0.0710 0.0268 0.1470 0.9968 31.5992

G-C(U)-S 0.0025 0.0100 0.0112 0.0350 2.4810 49.7544

G-C(U)-D(S) 0.0042 0.0130 0.0130 0.0810 1.1158 84.2942

G-R-S 0.0252 0.2810 1.1301 51.5342 56.0733 184.0700

G-R-D(SU) 0.0086 0.1770 0.0418 0.8419 35.0805 161.3765

G-R-D(SI) 0.0036 0.0220 0.3080 29.4125 45.3696 169.8772

G-L-S 0.0963 0.6049 227.6951 600.0000 44.0825 186.1967

G-L-D(S) 0.0386 0.7069 300.3657 598.0401 50.9872 186.3017

G-L-D(SU) 7.1919 117.7880 113.2350 594.3146 13.5551 101.1256

G-L-D(SI) 0.0503 0.6669 80.9059 555.7105 14.1198 152.3548

G-L-D(SUI) 9.4867 235.9370 79.9511 592.1970 12.6077 137.0432

G-C(L)-S 35.7737 384.3760 154.1470 597.6111 68.4683 209.6621

G-C(L)-D(S) 25.6856 422.6000 158.5421 598.0471 60.3072 209.4772

24

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Uncorrelated

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

Weakly

 0 10 20 30 40 50 60 70 80 90 100

Strongly

Figure 2: Solution time of G-L-∗ instances

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Uncorrelated

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

Weakly

 0 10 20 30 40 50 60 70 80 90 100

Strongly

Figure 3: Solution time of G-R-∗ instances.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

Capacity Level

G-R-D(SU)

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

G-R-D(SI)

Figure 4: Solution time of G-R-D(∗) instances.

25

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

G-L-D(SU)

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

G-L-D(SI)

 0 10 20 30 40 50 60 70 80 90 100

G-L-D(SUI)

Figure 5: Solution time of G-L-D(∗) instances.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

d)

G-L-U

BBLP
GLPK

CPLEX

 0 10 20 30 40 50 60 70 80 90 100

Capacity Level

G-L-W

 0 10 20 30 40 50 60 70 80 90 100

G-L-S

Figure 6: Solution time of single dimensional G-L-∗ instances.

1e-03

1e-02

1e-01

1e+00

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

d)

BBLP

 0 5 10 15 20 25 30 35

Capacity Level

GLPK

 0 5 10 15 20 25 30 35

CPLEX

Uncorrelated
Weakly correlated

Strongly correlated
I2

Figure 7: Nontrivial infeasible instances, G-C(U)-D(∗) as an example.

26

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

d)

Number of Dimensions

BBLP
GLPK

CPLEX

(a) G-L-U instances

 0
 100
 200
 300
 400
 500
 600

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

d)

Number of Dimensions

BBLP
GLPK

CPLEX

(b) G-L-D(SU) instances, with a single strongly correlated dimension.

Figure 8: Solution Time vs. Number of Dimensions for P (10, 5, ∗) instances.

27

