
HAL Id: hal-02367632
https://hal.science/hal-02367632

Submitted on 25 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surfing peer-to-peer IPTV: distributed channel
switching

Anne-Marie Kermarrec, Erwan Le Merrer, Yaning Liu, Gwendal Simon

To cite this version:
Anne-Marie Kermarrec, Erwan Le Merrer, Yaning Liu, Gwendal Simon. Surfing peer-to-peer IPTV:
distributed channel switching. European Conference on Parallel Processing, Aug 2009, Delft, Nether-
lands. pp.574 - 586, �10.1007/978-3-642-03869-3_54�. �hal-02367632�

https://hal.science/hal-02367632
https://hal.archives-ouvertes.fr

Surfing Peer-to-Peer IPTV:

Distributed Channel Switching

A.-M. Kermarrec1, E. Le Merrer1⋆, Y. Liu23⋆ and G. Simon2

1 INRIA Centre Rennes - Bretagne Atlantique, France
2 Institut TELECOM - TELECOM Bretagne, France

3 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, China

Abstract. It is now common for IPTV systems attracting millions of
users to be based on a peer-to-peer (P2P) architecture. In such sys-
tems, each channel is typically associated with one P2P overlay network
connecting the users. This significantly enhances the user experience by
relieving the source from dealing with all connections. Yet, the joining
process resulting in a peer to be integrated in channel overlay usually
requires a significant amount of time. As a consequence, switching from
one channel to another is far to be as fast as in IPTV solutions provided
by telco operators. In this paper, we tackle the issue of efficient channel
switching in P2P IPTV system. This is to the best of our knowledge
the first study on this topic. First, we conducted and analyzed a set of
measurements of one of the most popular P2P systems (PPlive). These
measurements reveal that the set of contacts that a joining peer receives
from the central server are of the utmost importance in the start-up
process. On those neigbors, depends the speed to acquire the first video
frames to play. We then formulate the switching problem, and propose
a simple distributed algorithm, as an illustration of the concept, which
aims at leveraging the presence of peers in the network to fasten the
switch process. The principle is that each peer maintains as neighbors
peers involved in other channels, providing peers with good contacts upon
channel switching. Finally, simulations show that our approach leads to
substantial improvements on the channel switching time. As our algorith-
mic solution does not have any prerequisite on the overlays, it appears
to be an appealing add-on for existing P2P IPTV systems.

1 Introduction

The diffusion of television over Internet, known as IPTV, has fostered a huge
amount of works. Among the most studied architectures, P2P systems have pro-
duced not only theoretical proposals (see [16] for an overview of the main theo-
retical challenges) but also practical applications used by millions of users (e.g.,
PPlive, sopcast, PPStream). For instance, the number of visitors of PPlive [1]
website reached 50 millions for the opening celebration of Olympics (source:

⋆ Supported by project P2Pim@ges, of the French Media & Networks cluster

Data Center of China Internet) while the dedicated Olympic channel attracted
221 million of users in only two weeks. However, these implementations do not
provide efficient channel switching features, while this is well-known as a natural
TV watcher behavior. Typically, the time interval from when one new channel
is selected until actual playback starts on the screen can be prohibitively long
in current P2P streaming systems. More specifically, the only work that has, to
the best of our knowledge, evaluated this start-up delay reports that it requires
from 10 to 20 seconds to switch to a popular channel and up to 2 minutes for
less popular channels [10]. Should these recent measurements highlighting the
high frequency of switching system be confirmed [5,6], this could be a burden
for the success of P2P IPTV systems.

In multicast-based IPTV (networks controlled by telco operators), a set of
solutions has been designed to reduce the start-up delay [7] upon channel switch-
ing. They mostly consist in sending data of some adjacent channels along with
the current channel data. Two channels C1 and C2 are called adjacent if when
a user watches C1, if (s)he switches channels, the probability that C2 is chosen
is high. For example, it has been shown that a user watching a sport channel,
has a high probability to switch to another sport channel [5]. Thus, should the
user switch from a channel to one in the adjacent channel set, the corresponding
multicast traffic is received without suffering from any network delay. Several
works have extended this technique in order to maximize the probability that
the target channels are within the set of adjacent channels [13,3].

Yet, in P2P IPTV systems, receiving simultaneously several multimedia flows,
even degraded, remains too expensive (important overhead of applicative mul-
ticast over IP, compared to lower layer multicast). However, users switching
patterns being similar [5], we leverage the fact that switching channels mostly
involve adjacent channels. In this paper, we make an initial step to analyze and
solve the channel switching issue in P2P IPTV with a simple approach that could
be potentially implemented over all existing P2P systems. The other works re-
lated with multi-channel systems, concurrent to this study, have not addressed
the neighborhood discovery problem [18,19]. Our contributions are threefold.

First, in an attempt to characterize the criticity of joining a new channel for
the playback delay, we measure and analyze the PPlive system [1] focusing on the
so-called bootstrap time: the time between the reception of the P2P contacts, i.e.,
a peerlist (a list of supposedly active peers given by a central server for a given
channel) and the time at which the first video packet is received. A joining peer
is expected to be able to discover new peers from this initial contact lists through
request propagation in its new channel overlay. However, our measures show that
in PPlive, most of the initial video content is actually provided by those contacts
given by the server. Our study demonstrates their importance as well as shows
that the ratio of peers effectively active in the peerlist is particularly low.

Second, we define the distributed channel switching problem and describe a
simple yet efficient solution in which a peer watching a given channel also keeps
some links to few peers in specific channels, typically adjacent channels. The
peers with which a peer exchanges video content related with its channel are

called overlay neighbors. The peers maintained from other channels are called
contact peers. When a peer x has a contact peer in the channel c, x is a switcher
for c. Obviously a peer cannot be a switcher for all channels as the traffic gen-
erated for the maintaining of contact peers can not be neglected. Instead, peers
may leverage their overlay neighbors to find switchers for more channels. Our
goal is to ensure that, in a given overlay neighborhood, the number of adjacent
channels covered by switchers is maximized. We show that an implementation
solution of the switching responsibility distribution over a given overlay network
is closely related with a (r, k)-configuration problem [8], a NP-hard problem.
From a theoretical side, no exact solution can be computed in a reasonable time,
even if one could have a global view of the system. Therefore, we provide a
practical solution approximating the optimal solution. Our algorithm is simple,
local, efficient and able to cope with dynamic behavior of P2P systems.

Although, this algorithm has been designed for channel switching, its ap-
plicability goes beyond. More generally, the problem addressed in this paper
consists of switching from a highly connected clusters of peers to another highly
connected clusters within a giant overlay network. Typically, switching from one
chapter to another chapter in a P2P VoD streaming system admits a very close
problem formulation, and solutions are unsurprisingly related with prefetching
of most probable seeking positions [20,9].

Finally, we provide a comprehensive set of simulations. Actually, it is difficult
to compare our proposal to other existing implemented solutions because, to the
best of our knowledge, only centralized algorithms are used by current systems.
Yet, we show that our proposal significantly improves the quality of peers that
are given to a joining peer in a channel, and then in practice reduces time for
this peer to get the first video packets (start-up delay reduction).

Totally, the main contributions are the following: (i) we measure and analyze
the bootstrapping of PPlive, motivating the need for a faster process; (ii) we
formulate the problem of distributed channel switching, and (iii) we propose
and simulate a greedy algorithm to the distributed channel switching problem.

The rest of this paper is organized as follows. Section 2 details our measure-
ments of start-up delays of PPlive. Section 3 formulates the channel switching
problem. Section 4 presents our algorithm proposal. Section 5 reports simulation
results, and Section 6 finally concludes the paper.

2 On the importance of given peer sets in PPlive

To understand the bootstrap process, and assess its importance for current popu-
lar P2P streaming systems, we conducted a measurement study of PPlive in July
and August 2008. Application protocols are not publicized by PPlive, justifying
a reverse-engineering by practical measurements (active crawling and passive
sniffing [10]), to understand this critical phase. We focus on the bootstrapping
process, i.e. the first two minutes of connections. Depending on channel popular-
ity estimated by the PPlive website, we define five classes of channels: from 1-star
popularity grade (the less popular channels) to 5-star popularity grade. In most

Channel
popularity

% of responding
peerlist’s peers

Avg number of
overlay neighbors

% of ov. neigh-
bors /∈ peerlist

Tstart (sec-
onds)

Tstart /∈
peerlist

1 2.1 4.90 34.69 9.61 25.44

2 7.0 16.40 35.98 10.73 34.49

3 10.9 23.20 32.44 11.92 49.84

4 17.2 33.75 23.70 11.21 63.27

5 16.1 30.87 21.86 9.76 47.46

Fig. 1: Measurement results for bootstrap procedure in PPlive

of experiments (more than 95%), the residential peer receives the peerlists from
three servers. Each peerlist consists of 50 peers that are assumed to watch the
same channel, in order for the joining peer to bootstrap. 20 channels are selected
per class, except for the 5-star class for which 8 channels only were available.

A first set of results is reported in Fig. 1 (first 4 columns). We focus here
on overlay neighbors providing at least one video packet during the first two
minutes. These peers are known either through the initial peerlist, or through
subsequent requests from joining peers to their neighbors. We observe that the
ratio of peers that belong to the initial peerlist and actually send eventually
a packet (second column) is low. This shows the low quality of peers provided
through the bootstrap process. Less than 17% of peers that have been provided
by servers for the bootstrap are delivering video content. For less popular chan-
nels, this ratio is even worse (2.1%). This can be explained by the fact that peers
are active during a smaller duration in non popular channels, so servers’ knowl-
edge of active peers is unperfect. Presence of NATs, and overhead tradeoff for
refreshing of peer information towards the servers may explain these low ratios.
This is an issue that motivates the need for a dedicated strategy for improving
the discovery of trustworthy peers for the bootstrap process. It can be done by
contacting less peers, but preferably good and active ones for efficiency. Then,
we enumerate the number of peers that deliver at least one packet during the
first two minutes (third column); we observe that more peers are forwarding con-
tent in most popular channels, thus virtually providing an increased quality of
service. Finally, the fourth column shows that approximately one third of peers
that are actively providing content (protocol neighbors) are not given by servers
in peerlists. Those results show that the initial peerlists given to a joining peer
are crucial. If they are not good enough, an additional process for requesting
new peers to participate is needed, therefore adding some delay for video start.
Note that this need is even more stringent for low popularity channels.

A second set of results is depicted in Fig. 1 (last two columns). We measure
the time Tstart which is the average interval between getting the initial peerlist
from servers and receiving the first packet. In all cases, the first packet is received
from a peer in the initial peerlist. The results show that peers that are contacted
are not immediately responding, and the required time to send the packet is
approximately constant, around 10 seconds. The last column shows the time at
which the first packet is received from a peer obtained by an additional search
process (not in the initial peerlist). The results are very different depending on

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120

C
D

F

time in seconds

popularity 1/5
popularity 2/5
popularity 3/5
popularity 4/5
popularity 5/5

Fig. 2: CDF of the duration of video packet delivering for transient neighbors

the popularity of channels (time increases with popularity). This shows that the
additional process is more critical for unpopular channels. Effectively, [10] shows
that playback starts up to 2 minutes after a join for unpopular channels; here
the first packet is received at best 25 seconds after the reception of peerlists,
highlighting this process criticity. Contrariwise, for popular channels, first pack-
ets arrive after playback started; they help for improvement of quality of service
instead of initial playback.

The last measurement is depicted in Fig. 2. We present the time interval
between the first packet and the last packet received from a peer. As we measure
only the first two minutes of bootstrap, peers still sending packets after this delay
are not shown here. Fig. 2 shows the results under a Cumulative Distribution
Function (CDF) where a point at (0.4,45) means that 40% of transient peers
have sent video packets during less than 45 seconds. This measurement shows
how long a peer is expected to be transient in delivery to send video packets.
Obviously, the longer that time, the easiest for the joining peer is to predict
the filling of its video buffer. The main observation is that the curves are almost
linear. Therefore, there is absolutely no guarantee on the expected video delivery
duration for transient peers (time during which a peer will send video packets
can not be predicted). The only curve we can analyze more easily is for the most
unpopular channel: its reveals three typical durations about 10 seconds for 40%
of peers, then about 50 seconds for 40% of peers and almost two minutes for
others. As the video delivery for this channel is mostly ensured by peers provided
through the additional process, we may argue those peers have a behavior that
can be more easily predicted (probably due to a particular choice, according to
their importance for the application quality).

3 The distributed switching problem and our proposal

As previously shown, basic centralized managements of the bootstrap proce-
dure, in particular the delivery of peerlists, may lead to a long playback delay.

Meanwhile, it has been shown in current mesh-based streaming systems [14]
that some characteristics such as upload capacity for example may have a great
impact on the quality of content dissemination. Therefore there is a tendency
in such systems, to connect peers having close characteristics (upload capacity,
latency, activity, etc.). We call such peers matching peers in the sequel.

In order for an overlay to connect peers regarding such characteristics, gossip-
based topology management systems (see e.g., [11]) consist in ensuring that all
peers are eventually connected to matching peers, through an epidemic and iter-
ative protocol. With a randomly chosen peerlist, a joining peer has low chance to
be connected directly to matching peers, and thus should quickly improve neigh-
borhood. Actually, despite some recent works in this direction (e.g., [18,4]), a
central server can hardly provide peers with matching peers quickly, in a scalable
fashion. This calls for a new strategy. We describe our approach as follows.

Multi-channel IPTV modelization. We assume an IPTV system consist-
ing of α channels, each channel being modeled as an overlay graph. The set of
all overlay graphs is noted G. A peer x is involved in exactly one P2P channel
g(x) ∈ G among the α channels simultaneously offered by the IPTV service. In
the P2P system, x cooperates with some other peers, called overlay neighbors,
with the exclusive goal of exchanging content related to the channel g(x). This
small set of neighbors is noted Γ prot(x). Note that we focus in this paper on
the topology problem, and do not address the higher level policies of packet
exchanges between peers. Furthermore, let d(x, y) denote the hop-distance of
the shortest path between a peer x and another peer y in the overlay graph
(d(x, y) = ∞ if g(x) 6= g(y)). For any integer k > 0, let the k-neighborhood of x

be (Γ prot(x))k = {y|0 < d(x, y) ≤ k}, where y is called k-neighbor of x.

Distributed channel switching definition. We define the distributed
channel switching problem has, for any peer, (i) the overlay change from a
channel to another one, on a fully distributed fashion (i.e. without request to a
central entity), and (ii) the quick matching with accurate peers in the new over-
lay, in order to shorten playback delay. These are the two metrics we promote
and evaluate in this paper.

Our proposal. Considering the fact that the number of available channels
is not likely to grow indefinitely in practice, and that channels have an unequal
distribution of popularity in reality (Pareto in [5]), approaches that may want
to create a structured overlay (distributed hash table, skiplist) connecting peers
in all channels does not seem justified at the moment. Instead, we propose a
light and simple mechanism, that aims at giving access to the most probable
channels, thus capturing distributedly a fair amount of potential switches. To
do so, besides the neighborhood that is used directly for the aim of the P2P
protocol, a peer also maintains connections to peers belonging to other overlays,
for channel switching purposes. We note Γ inter(x)c the set of contact peers of x,
for the channel c. Formally, a peer y is a contact peer of x means that y is not in
the same overlay (g(y) 6= g(x)), but x → y relation exists. A peer x is asked to
maintain fresh lists of contacts (dead nodes or nodes that switched are removed
from contact lists), and to try to match with those contacts.

...

b

b
b

b

b

b

b x

Gh Gi Gx Gz

G

Fig. 3: An example of a resulting system G. Node x has 4 neighbors in its current
overlay Gi (dashed lines) and 2 contacts in other overlays, δ = 2 (plain lines).

We associate with a peer x a set C(x) of overlays in G such that an overlay
graph G belongs to C(x) if and only if there exists a peer y such that both
g(y) = G and y ∈ Γ inter(x)G. We say that x is a switcher to a channel if
the overlay graph associated with this channel is in C(x). Because the number
of channels α is expected to be large, a peer can not be a switcher to all other
channels, for scalability issues (we bound by δ this maximal number). This forms
a P2P overlay switching system depicted in Fig. 3.

System In a Nutshell. An overlay switch for a node x is the process leading
to a complete change of its neighborhood Γ prot(x), to another one reflecting its
move to a new chosen channel in G. Say that a peer x in Gi wants to switch to
a channel Gj ; we describe now the two ways to switch overlays.

First, a peer x, has a switcher peer y (thus y has a Γ inter(y)Gj) in its k-
neighborhood. Search could be implemented through basic expanding ring search
technique, at k hops, from the requesting peer. It then only has to ask y for its
contact list from Gj , to replace its protocol neighborhood, and join the targeted
channel. Note that, if both overlays Gi and Gj are based on a same matching
preference system (say upload capacity), this is immediately leveraged in the new
overlay (as few handshakes are necessary until x discovers matching neighbors
in Gj) and will speed up the convergence process.

The second scenario is simply a failure in searching distributedly a contact
peer for the targeted overlay. It can either occur because of the dynamics of the
overlays (switchers are not accessible at k hops), or because the chosen channel is
not in the most probable ones. In such a case, the traditional centralized approach
is used to get a set of contacts. Note that in IPTV, servers are mandatory, as
they are in charge of pushing the content into overlays.

Main Challenges.

Allocating Contact Peers. In IPTV systems, some channels are far more pop-
ular than others [5,15]. Moreover, channels exhibit content similarities such that
a participant is more likely to switch to an overlay having similar content or
dealing with close activities as the one it is currently enjoying. That is, from
one channel, the probability to switch to another channel is not equal for all
channels. For example, paper [5] shows that 76% of switches are done in the
same channel genre (e.g. sport, music or news). We would like every overlay to

contain switchers having few contact peers in most probable channels, so that a
peer that wants to switch is likely to find a switcher in its k-neighborhood.

Ensuring Matching Contact Peers. As we have seen through measurements
in PPlive, the initial peerlist given to a joining peer is crucial for a quick start-
up. We use the matching property in an overlay to directly give matching (or
at least close) peers in the target overlay. As previously said, our assumption is
that the neighborhood reflects the matching, in other words, for two integers k1

and k2 with k1 < k2, if y1 is a k1-neighbor of x and y2 is a k2-neighbor of x,
then it means that y1 matches better with x than y2. The challenge is here to
maintain an accurate matching between peers, despite the overlay dynamics.

4 Protocol description

This section depicts implementation of our proposal, summarized on Algorithm 1.
Switcher creation. In order for nodes to distributedly choose for which

channels they should be switchers, we refer to the notion of domination, well
known in graph theory. A set D ⊆ V of vertices in a graph G = (V,E) is
called a dominating set if, for every vertex x in V , x is either an element of D

or is adjacent to an element of D. More generally, a k-dominating set extends
this adjacency notion at k hops, at most, from a given peer x [8]. Consider
that at most δ resources (here channels to be switcher for) can be allocated to
a node. A δ-configuration is an allocation of a set of resources such that, for
every resource, the vertices associated with this resource form a dominating set.
The same extension as in previous definitions can state for a δ-configuration.
That is, a (δ, k)-configuration is to allocate resources to vertices, such that no
more than δ different resources are allocated to any vertex, and each vertex can
access a resource associated with another vertex in less than k hops. Back to
our switcher creation problem, nodes in the dominating set are responsible for
keeping contacts in specific channels, and the resources are the overlays one peer
has to keep in touch with.

The purpose of (δ, k)-configuration is to determine a configuration; unfortu-
nately this decision problem has been proved to be NP-complete. That is, all
optimization problems that are directly related with this decision problems are
NP-hard. Thus, maximizing the number of channels that can be allocated, with
a given δ and a given k is NP-hard, as well as minimizing the maximal distance
and the number of switcher peers δ for a given k and a given most probable
channels to cover. Therefore, an optimal solution can not reasonably be com-
puted in a dynamic large-scale system. Instead, we propose a heuristic which
enables to provide a practical and realistic alternative.

We assume that each peer joining a channel is provided by the central server
or by neighbors with the list of most probable channels for switching in the same
channel genre. It then checks at k hops from itself if a switcher is missing, sorted
by order of importance; if so, it become a switcher for this channel (an initial
peerlist is acquired from the server), with a limit of δ channels. If switchers to all
most probable channels have been found, the furthest ones are chosen (l. 4-6).

Algorithm 1: A simple protocol for probabilistic switching

Initially: upon IPTV join of a node x in channel ci

1: Arbitrarily fixed input: k (depth of switcher search), t (awaited T-Man
convergence for Γ prot(x))

2: Request server ci that returns a peerlist Γ prot(x)
Matching for x in current channel:

3: T-Man resulting in matched Γ prot(x) +
4: After t cycles, periodically search for switchers at k hops: +
5: Request switchers in

`

Γ prot(x)
´

k

6: Pick a channel cj in missing most probable, or choose the furthest one
7: Transform x into a switcher for cj :
8: Request server cj that returns a peer list Γ inter(x)Cj

9: T-Man resulting in a matched Γ inter(x)
Upon switch to channel cj:

10: Find a switcher y for cj among
`

Γ prot(x)
´

κ
with increasing κ (κ ≤ k)

11: Γ inter(y)Cj becomes Γ prot(x) in cj

12: Else, request server cj that returns a peerlist Γ prot(x)
13: Goto line 3

Matching through gossip. In order for peers to get connected to matching
peers, according to some application predefined metric (as e.g. proximity, latency
or bandwidth), we use a gossip based topology management similar to T-Man
[11]. In this paradigm, each peer owns a value reflecting this metric. To end up
with neighbors close from this value (l. 3 & 9), each peer periodically chooses its
neighbor with the closest value, and exchanges with it a list of current closest
neighbors and some nodes chosen randomly amongst the channel population.
After each exchange, closest nodes are kept as neighbors, while furthest ones are
discarded. It turns out that only a few cycles are needed to reach a near optimal
peer matching, even in presence of churn [11]. The random peers needed by this
protocol are provided by peer sampling protocols, that can also be based on the
gossip paradigm (see e.g. Cyclon [17] or the Peer Sampling Service [12]).

The same matching technique as for overlay neighbors Γ prot is used by switch-
ers for contacts they keep in touch with in Γ inter, except that the procedure there
is not bidirectional (the switcher tries to match with peers in target overlay, but
the reverse case is not true). With this matching process, once a peer wants to
switch, and is able to find a switcher in its k-neighborhood, the peer contacts
given by the switcher have relatively a high chance to be close from its future
position in the new channel (l. 10-11).

5 Multi-channel system simulation

We evaluated our proposal using the PeerSim [2] simulator targeting large-scale
and dynamic overlays. The multi-channel system we implemented as an input is
based on recent application measurements conducted in [5].

Simulation Configuration.

Centralized Distributed

switches 2718 (42%) 3760 (58%)

Switcher
dist.

/ 0.67 hops

Peerlist with
≥ 1 match

5.8% 33.3%

NPR 20% 73%

Fig. 4: Switching statistics for 100 peers

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.2 0.75 1.0

N
um

be
r

of
 c

yc
le

s

NPR ratio

Centr.
Distr.

Distr. improved

Fig. 5: Convergence to matched neighbors

The system is composed of 150 channels, classified in 13 genres (e.g. cine,
sports, kids, docu). Channel popularity in each genre follows a Zipf distribution,
that decays fast for non-popular channels; the probability to stay in the same
genre during a switch is set to 76% [5,6]. Otherwise, a peer picks uniformly at
random first the genre it switches to (probabilities are exposed in [5]), and then
the channel in that genre. Furthermore, according to the time peers watch chan-
nels, peers get assigned a role: surfer (watches the channel from 0 to 45 seconds),
viewer (46 to 3600) or leaver (3601 to 36000); joining and departing peers cre-
ate the dynamism (or churn) in the system. Note that a second corresponds to
one Peersim cycle execution in our simulation. After each channel switch, a peer
picks a role with probability 0.6 for surfer, 0.35 for viewer and 0.05 for leaver.

Simulation parameters are set as follows: 105 peers in the system, an average
channel-neighborhood Γ prot per peer of 15 (consistent with observations made
in Section 2). A peer could be a switcher for simply 1 channel (δ = 1), and
keeps in touch with 5 peers in this channel for Γ inter (note that PPlive returns
not less that three peerlists of 50 peers each). The gossip protocols (matching
and sampling), for both Γ prot and Γ inter are executed at each cycle. After a
switch, a peer waits for t = 3 cycles before looking for switchers, and this action
is performed again every 3 cycles (to prevent a flood for search at every cycle).

Simulation Results. We run simulation 86400 cycles for an equivalent of
one day of simulation. Key statistics, collected from 100 randomly selected peers,
are presented on Fig. 4. Our implementation leads to 58% of distributed switches.
Note that this percentage cannot be greater to the probability of switching in
the same genre (here 76%), as we only provide switchers for channels in the
same genre group (difference between 58% and 76% is due to churn and to the
fact that only the 5 most probable channels are linked in each genre, and not all
of them). The average distance between a switching peer and a switcher to the
target overlay was 0.67 hops. This is due to the fact that a majority of peers are
switchers themselves or could find one among their 1−neighbors.

The neighborhood perfection ratio (NPR) is a simple measure for the cor-
rectness of the matching of peers in our simulator: for a peer x, it is the number
of best matches for x that are currently its neighbors, divided by the number of
neighbors of x (1 then expresses that all neighbors of x are its best matches, and
no better one exists in the overlay). We now observe the number of matching

peers that are given to a switching peer, by the server or by our system. In
the centralized case, random selection provides only 5.8% of peerlists containing
at least one matching neighbor (20% of matched contacts on average). When
switches are executed distributedly, one third of the provided peerlists contain
at least one good contact (with a high value of NPR of 73%), thus highlighting
the improvement in providing neighbors with close characteristics.

We now look (Fig. 5) at the number of cycles needed, after a switch, to reach
a given NPR. As expected, the distributed process in every case helps switching
peers to reach more quickly a given ratio, as the given peerlist is closer from
the switching peer than random list given by the server. We also observe that
centralized switches perform relatively well: this is due to the efficiency of gossip-
based topology management which converges quickly in many scenarios [11]. This
motivates current streaming applications to consider gossip-based protocols for
the efficiency of neighborhood management. Finally, as an important part of
switching peers (33%) is immediately provided with a high quality peerlist with
respect to the matching criterion (NPR of 73%), we also plot convergence time
for those peers (called ”Distr. improved” on Fig. 5). We observe that the time
required to reach a perfect neighborhood is very short. In this case, as nearly
all given neighbors are matching, the missing ones could be found in very few
cycles.

This simulation study shows that a simple implementation can improve in a
substantial number of cases (i) the quality of the initial sets provided to switch-
ing peers, thus allowing (ii) a fast convergence towards matching neighborhoods.
Finally (iii), gossip-based mechanisms appear to be an elegant and reliable so-
lution to tackle this self-organization issue. Increased values for parameters δ,
k and the number of channels linked in same genres obviously improve results.
Based on observations from Section 2, this could potentially reduce significantly
video start-up delays at the application level.

6 Conclusion

In this paper, we address the problem of switching from one channel to another
in P2P IPTV systems, in a distributed fashion. To the best of our knowledge, no
previous studies have dealt with scalable channel switching, which is a crucial
issue for the next generation of multimedia delivery mechanisms over Internet.
This approach shows the interest of leveraging peers’ belonging to an overlay,
in order to improve forthcoming switches. We believe that the simple proposed
algorithm represent a first step toward the design of distributed and efficient
switching mechanisms.

Acknowledgments

We would like to thank Dehao Zhang for the measurements of PPlive.

References

1. http://www.pplive.com.
2. http://peersim.sourceforge.net.
3. D. boong Lee, H. Joo, and H. Song. An effective channel control algorithm for inte-

grated iptv services over docsis catv networks. IEEE Transactions on Broadcasting,
53:789–796, 2007.

4. A. Boudani, Y. Chen, and G. Simon. A quicker way to discover nearby peers. In
Proc. of the ACM CoNEXT Conference, 2007.

5. M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatrianin. Watching
television over an ip network. In Proc. of Usenix/ACM SIGCOMM Internet Mea-
surement Conference (IMC), October 2008.

6. M. Cha, P. Rodriguez, S. Moon, and J. Crowcroft. On next-generation telco-
managed p2p tv architectures. In Proc. of International Workshop on Peer-To-
Peer Systems (IPTPS), February 2008.

7. C. Cho, I. Han, Y. Jun, and H. Lee. Improvement of channel zapping time in iptv
services using the adjacent groups join-leave method. In Proc. of Int. Conf. on
Advanced Communication Technology (ICACT), 2004.

8. T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of domination graphs.
CRC Press, 1998.

9. Y. He, G. Shen, Y. Xiong, and L. Guan. Optimal prefetching scheme in p2p vod
applications with guided seeks. IEEE Transactions on Multimedia, 11(1):138–151,
Jan. 2009.

10. X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A measurement study of a
large-scale p2p iptv system. IEEE Transactions on Multimedia, 9(8):1672–1687,
Dec. 2007.

11. M. Jelasity and O. Babaoglu. T-man: Gossip-based overlay topology management.
In ESOA, Intl’l Work. on Engineering Self-Organising Systems, 2005.

12. M. Jelasity, R. Guerraoui, A. marie Kermarrec, and M. V. Steen. The peer sampling
service: Experimental evaluation of unstructured gossip-based implementations. In
Proc. of Middleware, pages 79–98. Springer-Verlag, 2004.

13. J. Lee, G. Lee, S. Seok, and B. Chung. Advanced scheme to reduce iptv channel
zapping time. In Proc. of APNOMS 2007, 2007.

14. B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. Inside the new cool-
streaming: Principles, measurements and performance implications. In INFOCOM
2008: Proc. of 27th IEEE Int. Conf. on Computer Communications., April. 2008.

15. T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu. Modeling channel popularity
dynamics in a large iptv system. In Proc. of ACM Sigmetrics, 2009.

16. A. Sentinelli, G. Marfia, M. Gerla, S. Tewari, and L. Kleinrock. Will IPTV Ride
the Peer-to-Peer Stream? IEEE Communications Magazine, 45(6):86, 2007.

17. S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inexpensive membership man-
agement for unstructured p2p overlays. Journal of Network and Systems Manage-
ment, 13(2):197–217, June 2005.

18. C. Wu, B. Li, and S. Zhao. Multi-channel live p2p streaming: Refocusing on servers.
In Proc. of IEEE INFOCOM, pages 1355–1363, 2008.

19. D. Wu, Y. Liu, and K. W. Ross. Queuing network models for multi-channel p2p
live streaming systems. In Proc. of IEEE INFOCOM, 2009.

20. C. Zheng, G. Shen, and S. Li. Distributed prefetching scheme for random seek
support in peer-to-peer streaming applications. In Proc. of the ACM workshop on
Advances in peer-to-peer multimedia streaming, 2005.

