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Abstract Observation of the seismic process for a large earthquake population is of key interest
to detect potential magnitude-dependent behaviors and, more generally, to quantify how seismic rupture
develops. In contrast with studies focusing on the first radiated waves, we here propose to characterize
the growing phase leading to the main seismic moment release episode(s), which we refer to as the
development phase. Our analysis uses the 2,221 teleseismic source time functions (STFs) of shallow
dip-slip earthquakes provided by the global SCARDEC database and consists in measuring the moment
acceleration during the development phase at prescribed moment rates. This approach is therefore
insensitive to hypocentral time uncertainties and aims at quantifying how seismic ruptures accelerate,
independently of when they accelerate. Our results first show that rupture acceleration does not exhibit
any magnitude-dependent signal emerging above the intrinsic measurements variability. We thus use the
full STF catalog to characterize the moment rate

.
Md of the development phase and show that, on average,.

Md(t) ∝ tnd with nd equal to 2.7. This time evolution therefore does not follow the steady t2 growth
expected for classical circular crack models, which indicates that stress drop and/or rupture velocity
transiently vary during the development phase. We finally illustrate with a synthetic STF catalog that, due
to initial rupture variability, approaches based on hypocentral time are not expected to fully characterize
the behavior of the development phase.

1. Introduction
The mechanisms governing the seismic rupture expansion and giving rise to earthquakes of very differ-
ent magnitudes remain debated. From an observational point of view, past studies most often focused on
the first seismic signals radiated by the earthquake rupture, with the goal to provide useful information
for early warning. Several studies (Beroza & Ellsworth, 1996; Colombelli et al., 2014; Olson & Allen, 2005)
argued for the existence of a magnitude-dependent initial signal, connecting the early phases of the rup-
ture process with its final magnitude. The existence of such a signal could be explained, for example, if an
earthquake is more likely to become a large one if its initial phase occurs in rupture-prone areas. Large
earthquakes would then start differently from small ones, at least in a statistically predictable way. Con-
versely, many rupture onsets have been observed without detecting any clues related to the final earthquake
magnitude; seismic rupture is then interpreted as a “self-similar” process, meaning that large earthquakes
are only upscaled versions of small-magnitude events, without having their own characteristics (Aki, 1967).
As a result of this concept, studies showed, for instance, that stress drop and rupture velocity are indepen-
dent of the magnitude, or that the seismic moment is proportional to the cube of the earthquake duration
(Allmann & Shearer, 2009; Kanamori & Anderson, 1975). The self-similar behavior can be reproduced by a
cascade model, in which the rupture starts from a very small patch, which size is undetectable by seismolog-
ical investigation. Then rupture grows in a self-similar way, implying that the final magnitude is controlled
by the earthquake duration. Such behavior has been for example observed by Uchide and Ide (2010) in their
analysis of earthquakes in the Parkfield area.

Observations of the earthquake process, however, reveal that real ruptures frequently depart from such
simple models and that the peak moment rate can be reached after a nonmonotonical or delayed process.
Studying how rupture behaves when entering into its most active phase (that we hereafter refer to as the
“development phase”) therefore requires an analysis of the whole process and not only its beginning. To
do so, we propose to make use of the large catalog of moment rate functions (or source time functions,
STFs) provided by the SCARDEC database (Vallée & Douet, 2016). SCARDEC database has first been used
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to extract global source properties, such as source-averaged stress/strain drop or rupture velocity (Cour-
boulex et al., 2016; Chounet et al., 2017; Chounet & Vallée, 2018; Vallée, 2013) and is now more and more
exploited to characterize the transient parts of STFs (Meier et al., 2017; Melgar & Hayes, 2017; 2019). With
a similar objective as the studies based on the early stages of the rupture, we will first explore if the moment
acceleration in the development phase correlates with the magnitude of the event. We will then character-
ize the temporal moment evolution of this specific phase, in order to provide observational constraints on
rupture propagation models. We finally further illustrate, with a realistic synthetic STF catalog, why the
characteristics of the development phase are difficult to retrieve from the study of the early rupture stages.

2. Moment Acceleration in the Development Phase
2.1. SCARDEC STF Database and Earthquake Development Phase
Exhaustive catalogs of STFs (describing the time evolution of the moment rate

.
M) can be built with two

distinct methods which both use teleseismic data from the Federation of Digital Seismograph Network. The
first approach determines a finite fault model of the seismic source (in general for earthquakes with Mw > 7;
Hayes, 2017; Ye et al., 2016) from which the absolute STF is computed. On the other hand, in the SCARDEC
method (Vallée et al., 2011), seismic moment, focal mechanism, source depth, and STFs are more directly
obtained through a deconvolution process (see also Tanioka, 1997). At each station and for each phase (P
or S), apparent source time functions (ASTFs) are extracted, whose shapes differ due to space-time source
effects (Chounet et al., 2017). In order to take into account both this expected distorsion and possible outliers
(due to nodal radiation, incorrect instrument response, etc.), SCARDEC database (Vallée & Douet, 2016)
provides two representative STFs for each event. A mean STF is first obtained by correlating in time all P
wave ASTFs (less sensitive to space-time source effects than S wave ASTFs), removing ASTFs far from the
beam, and averaging the remaining ASTFs. The optimal STF is then chosen as the P wave ASTF, which is
the closest to the mean STF. Such an optimal STF is unlikely to be among the most distorted ASTFs, and its
shape is not affected by the smoothing present in the mean STF. The optimal STFs are therefore considered
in this study. Deep (>70 km) and pure strike-slip events are removed from the database due to their specific
behavior (Houston, 2001) and the difficulty to robustly extract their P wave STFs, respectively. The catalog
is finally composed of 2,221 earthquake STFs (from 1992 to 2017), whose magnitudes range from Mw 5.5 to
Mw 9.1 (2011 Tohoku earthquake) and durations from 2 to 120 s.

We aim here at isolating the development phase, that is, the time period where STFs grow toward their peak
moment rate Fm (that they reach at time Tm). Taking into account that the moment rate always flattens
before reaching Fm, we do not consider the highest STF values to be part of the development phase: in the
following, we only select the parts of the STF which are before Tm, and whose values are below 0.7Fm. At
low moment rate values, we would ideally track the development phase from its very beginning. However,
SCARDEC STFs are retrieved by deconvolving the full P-waveform (under physical constraints such as STF
positivity), and the STF fidelity at values much lower than Fm is therefore expected to be relatively low. As a
result, we do not analyze here the development phase for STF values lower than 0.07Fm. The value of these
two selected lower and upper limits are not critical and other choices (e.g., starting at 0.05Fm and stopping
at 0.5Fm) do not affect significantly the following results (see Figure S13 in the supporting information).

In order to isolate the development phases in all cases, we consider the two following possible configurations
of STFs. The simplest and most common case (representing 62% of the STF catalog) is illustrated by the
STFs shown in Figures 1a and 1b. Here, even when the STF does not grow monotonically toward its peak,
there is a unique monotonic domain connecting the values between 0.07Fm and 0.7Fm. This specific section
of the STFs, shown in red in Figure 1, is selected as the development phase. STFs with complex shapes
however do not have such a unique monotonic domain (Figure 1c). In this case, we work on the time interval
defined by two times T0 and T1: T0 is the latest time preceding Tm when the STF is as low as 0.07Fm and
T1 is the latest time preceding Tm when the STF is not above 0.7Fm. In the [T0T1] interval, there may be
several local maxima Fp(p = 1,P), around which rupture is not considered to be in a development phase.
The development phase is then selected as the combination of monotonic phases preceding each Fp, from
the time when they exceed the largest value of all the preceding local maxima (or from T0 if p = 1) to the
time where they reach 0.7Fp. As a consequence, if one of the local peak values before Fp is larger than 0.7Fp,
the monotonic phase preceding Fp is not considered. We finally select the monotonic phase up to T1 (from
the time where the STF reaches FP, or from T0 if P = 0). In these complex cases, the development phase is
therefore the combination of at most (P + 1) growing sections of the STFs.
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Figure 1. Examples of extraction of the development phase (in red) for representative STF shapes. In (a) and (b), STFs
have a monotonic section connecting the values between 0.07Fm and 0.7Fm. Panel (c) is an example of STF with
complex shape in which development phase is extracted in the [T0T1] time interval (see section 2.1). These three
illustrative events have different magnitudes and their development phases start at different times. Moment
acceleration is computed at the time where the development phase crosses the prescribed moment rates (

.
Md)i, if this

intersection exists. Four examples of (
.

Md)i values (for i = 1, 15, 21, and 27) are shown in green. The sampling rate is
equal to 0.07 s. Note that the approximate reference time shown in the bottom of each STF is not used in this approach.

According to the aforementioned definitions, the development phase may be delayed compared to hypocen-
tral time, meaning that we do not intend to characterize the earliest signals emitted by the seismic rupture.
This approach therefore differs from studies specifically analyzing the latter signals in order to explore the
concept of earthquake determinism since the earthquake initiation (Meier et al., 2017; Melgar & Hayes,
2017, 2019).

2.2. Seismic Moment Acceleration Within the Development Phase
Once the development phase is extracted for each STF, we aim at characterizing it without using hypocen-
tral time information, in order to quantify how rupture develops independently of when rupture develops.
Formally, we look for the moment evolution of the development phase Md where Md(t) = M(t + Td), Td
being the unknown time at which the development phase starts. A way to characterize Md is to consider
a discrete sampling of prescribed moment rates (

.
Md)i, and to compute the seismic moment acceleration

(STF slope) each time that the development phase crosses (
.

Md)i. To do so, we consider 40 different values
of (

.
Md)i(i = 1, 40), from 1017 to 1019 Nm/s, in order to sample the development phase of most earthquakes.

Outside of this range, moment rates are either mostly below 0.07Fm or above 0.7Fm and cross only a few
development phases. As further documented later, the maximum considered moment rate (1019 Nm/s) is
typically reached 6s after the beginning of the development phase for monotonically growing STFs. In terms
of magnitude, the smallest earthquakes of the SCARDEC database (Mw = 5.5) can be analyzed by this
sampling, and only the largest earthquakes (Mw > 8.4) are systematically excluded. Figure 1 illustrates the
method for three STFs and four moment rates (

.
Md)i (green dashed lines). Low values of moment rate are

mostly sampled by small events (as they will lie below 0.07Fm for large ones) and high values of moment
rate are mostly sampled by large events (as they will lie above 0.7Fm for small ones). However, this general
behavior does not prevent us from sampling a large range of magnitudes at a given moment rate. As shown
in the example of Figure 1, the moment acceleration of the development phase at the (

.
Md)15 level can be

computed from Mw = 6.2 to Mw = 6.8.

2.3. Variability and Magnitude-Independent Behavior
Such slope measurements can be first used to detect a potential magnitude-dependent behavior, in which the
slope measured when the development phase crosses prescribed moment rates would be for instance steeper
for larger events. For the Ni development phases crossing (

.
Md)i, we compute the slope values (M̈d)i𝑗( 𝑗 =

1,Ni) as a function of Mw, to observe whether or not a magnitude-dependent signal appears. Figure 2 shows
an example of the 892 (M̈d)15𝑗 values for (

.
Md)15 = 5.2 × 1017 Nm/s. The following analysis of M̈d values

with respect to Mw has to be done with care, because a given (
.

Md)i value does not sample equally well all
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Figure 2. Moment acceleration as a function of magnitude for the prescribed moment rate of 5.2 × 1017 Nm/s ((
.

Md)15).
The filled histogram represents the ratio (%; see scale to the right) of sampled events in each Mw bin. Comparisons
between moment acceleration and magnitude can be safely done when almost all the source time functions of a given
magnitude are sampled (>80%), here between Mw = 6.3 and Mw = 7.0. Red stars are median values for each magnitude
bin. Similar figures for all the prescribed moment rates are provided in Figures S3–S12.

magnitude ranges (section 2.2), as also illustrated in Figure 2: the histogram shows the ratio of sampled STFs
in each Mw bin, and this value decreases both toward low Mw (only impulsive STFs reach (

.
Md)i) and toward

high Mw (only STFs with relatively low Fm have (
.

Md)i in their development phase). As a consequence, (M̈d)i𝑗
values are expected to be biased toward high values for small-magnitude events, as confirmed by Figure 2.
We thus focus on the Mw domain where most of the development phases cross the chosen (

.
Md)i (for example

between Mw = 6.3 and Mw = 7.0 in the case shown in Figure 2).

Figure 2 does not exhibit any clear dependency between (M̈d)15𝑗 and Mw, and the same behavior is observed
for all the other prescribed (

.
Md)i (Figures S3 to S12 in the supporting information). This shows that if

a magnitude-dependent signal exists, it is fully dominated by the intrinsic variability of the development
phase. This means that when an earthquake develops and reaches a given moment rate (

.
Md)i, moment

acceleration cannot be used as an indicator of the final magnitude (only a lower bound can of course be
estimated based on the seismic moment already released). This observation may appear different from the
recent results of Melgar and Hayes (2019), who extracted a magnitude-dependent signal from STF accelera-
tions (using also the SCARDEC catalog). Their approach is however fundamentally different as they simply
computed an averaged moment acceleration by dividing the moment rate from the rupture time, at several
prescribed rupture times 𝜏 (𝜏 = 2, 5, 10, 20s). Using this definition, they observe an increase of the moment
acceleration with the final event magnitude, clearly appearing for 𝜏 equal to 10 and 20 s. In such an anal-
ysis, there is, however, no guarantee that the earthquake at 𝜏 is still in its development phase, particularly
when 𝜏 is a significant fraction of the global earthquake duration. As an example, 20 s is a significant fraction
of the global duration of an Mw = 8 earthquake (whose average global duration is about 60 s, e.g., Vallée,
2013). It is therefore not uncommon, at 20s, that Mw = 8 earthquakes STFs flatten as they approach their
peak moment rate (and some of them may have already passed it). As a result, on average, acceleration can
be understood to be statistically lower than for a Mw = 9 earthquake, for which the peak always occurs far
after 20 s. Melgar and Hayes (2019) results likely reflect the magnitude-dependent shape of the earthquake
STFs, at a macroscopic scale, while we are here specifically studying their fast growing parts.

3. Time Evolution of the Development Phase
3.1. Observational Evidence of a Power Law Between ̈M and

.
M

The magnitude independency derived in the previous section justifies the combined use of (M̈d)i𝑗 for all
values of i, in order to determine a generic behavior of the rupture development. Figure 3 represents (in
log-log scale) all the moment acceleration values as a function of the moment rate values (yellow dots).
Direct observation in Figure 3 reveals that M̈d grows with

.
Md, which first implies that the time evolution

RENOU ET AL. 8945



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018045

Figure 3. Moment acceleration M̈d as a function of moment rate
.

Md (log-log scale). Each yellow dot corresponds to an
individual (M̈d)i𝑗 value, and black dots are 75 randomly selected values for each (

.
Md)i used to compute the linear fit

(see Text S1 in the supporting information). Red line is the best linear fit explaining the data, and its equation and
correlation coefficient r are given in the figure. Green dashed lines are fits with extremal values of m and log(𝛽) at the
90% confidence interval. Background color represents the number of (M̈d)i𝑗 values normalized by Ni for each (

.
Md)i.

This fraction of observations is computed between log(1015) Nm/s2 and log(1020) Nm/s2 with 100 bins.

of the moment rate in the development phase cannot be linear. In order to quantify the general behavior,
we try to fit our observations with a power law of the type M̈d = 𝛽

.
Mm

d . Using the method detailed in Text
S1 in the supporting information, a linear fit (in log-log scale) leads to values of m = 0.63 ± 0.015 and
log(𝛽) = 6.7 ± 0.28 at the 90% confidence interval, with a correlation coefficient of 0.8 (Figure 3).

3.2. Power Law Time Exponent of the Development Phase
Analytical models of rupture dynamics (Dahlen, 1974; Kostrov, 1964; Madariaga, 1976; Nielsen &
Madariaga, 2003) have shown that self-similar circular growth with constant stress drop 𝛥𝜎 and rupture
velocity Vr leads to a moment rate function of the form

.
M(t) = 𝛼tn with n = 2. In this model, the local slip

u and slip rate .u have the shape, in the general case of a time-varying rupture velocity vr(t) :

u(r, t) = Δ𝜎
𝜇

√
a2(t) − r2 (1)

.u(r, t) = Δ𝜎
𝜇

vr(t)
a(t)√

a(t)2 − r2
(2)

where 𝜇 is the rigidity and a(t) = ∫ t
0 vr(u)du is the radius of the rupture at time t. The moment time evolution

therefore follows the following law:

M(t) = 2𝜋𝜇 ∫
a(t)

0
u(r, t)r dr (3)

= 2𝜋
3
Δ𝜎

[
(a2(t) − r2)3∕2]0

a(t) (4)

= 2𝜋
3
Δ𝜎a3(t). (5)
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And if vr(t) = Vr is constant, a(t) = Vrt and we have

M(t) = 2𝜋
3
Δ𝜎V 3

r t3

.
M(t) = 2𝜋Δ𝜎V 3

r t2.

This quadratic dependency with time is also found from the seismic moment M0, by using that Δ𝜎 = c𝜇 ΔU
L

,
M0 = 𝜇𝛥US (where c is a constant, 𝛥U the average displacement, L the characteristic dimension of the
fault, and S its surface), and considering a seismic rupture growing in a bidimensional way with constant
rupture velocity. At the time of the end of the rupture, we have M0 ∝ Δ𝜎V 3

r T3 (with T being the final rupture
duration), but due to self-similarity, this relation also holds for the moment function M at any earlier time t:

M(t) ∝ Δ𝜎V 3
r t3 leading to

.
M(t) ∝ Δ𝜎V 3

r t2. (6)

The previously obtained M̈d values do not directly constrain the time evolution of the development phase,
because we only know them as a function of

.
Md (M̈d = 𝛽

.
Mm

d , with log(𝛽) and m found equal to 6.7±0.28 and
0.63 ± 0.015 at the 90% confidence interval, respectively). However, reorganizing this power law equation,
and integrating over time leads to

∫
t

0

M̈d(u)
(

.
Md(u))m

du = ∫
t

0
𝛽 du (∀t > 0,

.
Md(t) > 0), (7)

with t being a time inside the development phase. The lower bound of integration in (7) assumes that the
observed power law between M̈ and

.
M holds from the beginning of the development phase, which appears

reasonable because no deviation appears at low moment rates in Figure 3. As m is observationally strictly
smaller than 1 (even the extreme m values shown in Figure S1a in the supporting information are strictly
smaller than 1), equation (7) has the following solution:

(
.

Md(t))1−m

1 − m
= 𝛽t (8)

where we use the physical constraint
.

Md(0) = 0. The moment rate function can then be rewritten as a
function of time:

.
Md(t) = (𝛽(1 − m))

1
1−m × t

1
1−m (9)

In the following, we now define 𝛼d = (𝛽(1 − m))
1

1−m and nd = 1
1−m

. Using the values of m and 𝛽, the
numerical expression for the time evolution of the development phase is

.
Md(t) = 𝛼d × tnd = 1016.9±0.1 × t2.7±0.11 (10)

where uncertainties for nd and 𝛼d correspond to the 90% confidence intervals estimated in Figure S1b in the
supporting information.

In Figure 4, we show this temporal evolution of
.

Md and indicate the time window between ∼1 and ∼6 s
(corresponding to

.
Md values between 1017 and 1019 Nm/s), where the shape of

.
Md is directly constrained

by the observations. As nd is robustly larger than 2, equation (10) indicates that the rupture process dur-
ing the development phase grows with time with a higher exponent than what the classical self-similar
equations (3.2) and (6) predict.

3.3. Implications for Earthquake Source Physics
Our results highlight that when seismic rupture efficiently develops, it does not steadily follow the classical
t2 law predicted by classical self-similar equations. While this simple law is seismologically observed when
considering the whole rupture duration T (i.e. M0 ∝ T3 (Bilek et al., 2004; Chounet & Vallée, 2018; Houston
et al., 1998; Vallée, 2013)), it is transiently not respected during the development phase. Such breaks in
scaling laws have been recently found by other authors (Archuleta & Ji, 2016; Denolle & Shearer, 2016). As
their spectral observations are not explained by a self-similar Brune (1970) source spectrum with a single
corner frequency, they also suggest the existence of a second timescale related to a transient accelerating
phase.
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Figure 4. Time evolution of the development phase extracted from the observed power law between M̈d and
.

Md. t1 and
t40 are the times corresponding to the extremal moment rate values ( (

.
Md)1 = 1017 Nm/s and (

.
Md)40 = 1019 Nm/s) at

which the moment accelerations are computed. This time window between t1 and t40, where the time exponent of the
moment rate nd = 2.7 directly comes from the observations, is highlighted by the red shaded area. Green dashed curves
are the extremal curves inferred from 𝛼d and nd uncertainties.

As the t2 law directly comes from the shape of the slip function in equation (2) and from the constant stress
drop and rupture velocity hypotheses, at least one of these assumptions should not be respected during
the development phase. The radial model can for example be questioned based on numerical dynamic and
kinematic studies (Beroza & Spudich, 1988; Das & Kostrov, 1983; Dunham et al., 2003; Zhang et al., 2012)
showing that the main asperity may break inward after being encircled by the rupture front. But while this
process is expected to generate a large transient moment acceleration, it is less clear how it can reproduce
a power law similar to what we observe. If remaining in a radial model with constant rupture velocity, we
can also easily derive that a slip function of the form u(r, t) ∝ tnd−2

√
a2(t) − r2 would lead to our observed

moment rate evolution of the development phase. Such a model implies that stress drop inside the main
asperities grows with time (consistent with some studies showing a positive correlation between peak stress
drop and magnitude (Causse et al., 2013; Mai et al., 2006)), but as a consequence, it is unlikely that the slip
law can be physically written in this case under a simple form similar to equation (2).

An interesting analytical configuration, inspired by the model of Sato (1994), is the case of a crack model
growing with non constant rupture velocity. We here remain in the general configuration of an unknown
average rupture velocity function, that should be regarded as the marker of the surface expansion evolution
of the rupture. We now refer to this average rupture velocity as vrd to clearly recall that we are inside the
development phase. By equating the theoretical moment function (5) and the observed one (10), we have

Md(t) =
2𝜋
3
Δ𝜎a3(t) =

𝛼d

nd + 1
tnd+1 (11)

which leads to

a(t) = ∫
t

0
vrd(u)du =

(
3𝛼d

2𝜋Δ𝜎(nd + 1)

) 1
3

t
nd+1

3 (12)

and finally to the determination of the rupture velocity evolution

vrd(t) =
(
𝛼d(nd + 1)2

18𝜋Δ𝜎

) 1
3

t
nd−2

3 ≡ pt𝛾 (13)

This derivation therefore shows that the observed power law for the moment rate function can be fully
explained by rupture velocity acceleration. Rupture velocity is shown to follow a power law function with
an exponent 𝛾 ≃ 0.23 and a factor p inversely proportional to 𝛥𝜎1/3. The crack model considered here
(equation (2)) can be modified to include a process zone of size 𝛿r at the tip, preventing the slip rate to diverge
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Figure 5. Rupture velocity acceleration during the development phase, as constrained by a crack model with constant
stress drop. Each curve shows the equation vrd(t) = pt𝛾 for 𝛾 fixed to the obtained value (0.23) and different values of p
(controlled by 𝛥𝜎). Outside the time window directly constrained by the observations (between ≃1 and ≃6 s; see
Figure 4), the curves are dashed; vs is the shear wave velocity, here fixed at a classical 3.5-km/s crustal value.

at the edges of the slipping zone. In this case, equation 2 remains valid for r ≤ a(t) − 𝛿r , where slip rate is
maximum (and finite). This leads to a rupture velocity correlated with peak slip rate, as the slip rate calcu-
lated at 𝛿r just behind the rupture front .u(a(t)−𝛿r, t) grows as vrd(t)

√
a(t)∕𝛿r, or as t

3𝛾+1
2 if retaining only the

time dependency. This derivation is consistent with dynamic models (Bizzarri, 2012; Schmedes et al., 2010)
showing that during rupture propagation, there is a positive spatial correlation between rupture velocity
and peak slip rate. In contrast, the classical crack model does not lead to this correlation because peak slip
rate increases as

√
t while rupture velocity remains constant.

We show in Figure 5 the time evolution of vrd for three realistic values of 𝛥𝜎. In the sampled part of the devel-
opment phase (between ∼1 and ∼6 s) and for the realistic values of 𝛥𝜎 shown in Figure 5, vrd(t) gradually
increases and is in a classical rupture velocity range of 1.5 to 3 km/s (Chounet et al., 2017; Doornbos, 1982;
Geller, 1976; McGuire et al., 2002; Somerville et al., 1999). This behavior may, however, be questionable
for two reasons. For rupture times approaching zero (not directly sampled in the development phases), the
power law predicts slow rupture velocities that have not been observed for microearthquakes (Abercrombie
et al., 2017; McGuire, 2004). This requires that rupture accelerates even more abruptly in the initial instants
following rupture initiation. Rupture velocity evolution also indicates that larger earthquakes, which have
longer development phases, are expected to have higher local rupture velocities. However, in the magnitude
range of the SCARDEC catalog, a scaling between rupture velocity and final magnitude has not been clearly
observed in kinematic source analyses (Hayes, 2017; Ye et al., 2016).

The origins of the observed moment rate evolution may finally be searched in models where rupture velocity
and/or stress drop have a random variability. Such models are not expected to individually follow a power law
but they may collectively reproduce the average behavior of the development phase. This class of stochastic
models could additionally remain self-similar, without requiring to introduce differences between small and
large earthquakes.

4. Different Behaviors Between Development Phase and Early Rupture Stage
The development phase does not necessarily occur at early times of the rupture process. As a consequence,
we do not expect to find the same time dependencies as studies focusing on how rupture starts, with refer-
ence to the earthquake origin time (Melgar & Hayes, 2017; Meier et al., 2017). In particular, we expect the
latter studies to find a less pronounced time dependency, in an average sense, due to inclusions of earth-
quakes with low initial moment release. In this section, we further illustrate how an average linear time
dependency of the growing rupture process (Meier et al., 2017) can be approached from rupture variability
rather than from intrinsic rupture properties.
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Figure 6. Examples of five synthetic STFs of Mw = 7, illustrating the diversity of STF shapes in the synthetic catalog.
STF = source time function.

To do so, we build a synthetic catalog of bimodal STFs, by summing two subevents growing both as.
M(t) = 𝛼(t − td)n where 𝛼 and n randomly vary around the observational values of 𝛼d and nd. td = 0 for the
first subevent and td take random values between 0 and T0∕2 for the second subevent, where the STF total
duration T0 takes into account the observed variability around its magnitude-dependent scaling law (Cour-
boulex et al., 2016). By also varying the relative durations (and hence moments) between the first and the
second subevent, we generate a synthetic catalog with a large diversity, mimicking the main STF character-
istics observed in the SCARDEC catalog: simple STFs with early development phases are obtained when the
first subevent dominates, while complex ruptures, with delayed development phases, are simulated when
the second subevent dominates. More details on the generation of this synthetic catalog are provided in Text
S2 and Figure S2 in the supporting information, and Figure 6 shows examples of five synthetic Mw = 7 STFs,
illustrating their large diversity.

Using the synthetic catalog, we compute the median values of the STFs at each time, as done by Meier
et al. (2017) using the real STF catalogs of Ye et al. (2016), Hayes (2017), and Vallée and Douet (2016).
Figure 7 shows the obtained median STFs for six magnitude bins between Mw = 7 and Mw = 8. No early
magnitude-dependent signal is observed, as the median STFs grow in a indistinguishable way before the

Figure 7. Median synthetic STFs from Mw = 7 to Mw = 8, shown in 0.2 magnitude bins. Each median STF is computed
from a large number of STFs whose diversity is illustrated in Figure 6. STF = source time function.
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smallest earthquakes approach their peak. The nonlinear signal at the very beginning of each median STF is
expected since all STFs have a first subevent growing with an n exponent distribution centered on nd = 2.68.
This early nonlinearity is also observed in the average source time functions of Melgar and Hayes (2017).
Median STFs then have a flatter trend than individual subevents (equation (10)), as a result of STF diversity.

This synthetic catalog therefore illustrates how the early stages of the STFs can have average characteristics
which are difficult to translate in terms of physical rupture properties. The linear behavior observed by
Meier et al. (2017) quantifies how rupture starts, on average, and is useful from a practical point of view
to characterize a standard STF shape. However, as we here show that this behavior can mainly result from
the combined effects of nonlinear development phases and rupture diversity, its interpretation in terms of
rupture dynamics must be done with care.

5. Conclusion
In this study, the development phase is defined as the growing phase directly preceding the peak moment
rate. As such, it is not expected to behave the same way as the early stage of the seismic rupture. We here
systematically extract the development phase of 2,221 STFs from the SCARDEC database in order to quantify
its time evolution. For this purpose, we compute the moment acceleration (STF slope) at several moment
rates, within the development phase. We first show that no magnitude-dependent signal appears, favoring a
process where small and large earthquakes only differ in the duration of their development phase. Further
analysis then highlights that rupture time evolution inside the development phase differs from the classical
steady self-similar growth (where moment rate develops as t2): the moment rate of the development phase.
Md rather develops as

.
Md ∝ tnd with nd ≃ 2.7 ± 0.11 at the 90% confidence level.

Such deviation with respect to the steady quadratic growth can be due to a combination of factors. Noncir-
cular rupture geometry, or transient variations of stress drop and rupture velocity, may increase the time
exponent of

.
Md. We analytically developed one of the end-member cases, where the exponent excedence

compared to the self-similar growth is purely due to monotonic rupture velocity variations. In this con-
figuration, rupture velocity vrd inside the development phase is itself shown to follow a power law time
function, with vrd ∝ t0.2. Due to this low exponent, vrd is expected to quickly reach classical rupture velocities
(> 1 km/s) and then to increase only moderately in the sampled part of the development phase (between ∼1
and ∼6 s) More generally, even if the observed time dependency of the development phase may have several
causes, it should give a new observational constraint to assess the realism of dynamic rupture scenarios.
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