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I. Introduction

An underwater swimming manipulator (USM) is an underwater snake robot (USR) equipped with thrusters [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF]. The main purposes of the thrusters are to provide forward thrust without requiring the snake robot to follow an undulating gait pattern, which is of particular importance in narrow, confined environments, and to provide sideways thrust for station-keeping and trajectory tracking. The stationkeeping and trajectory tracking capabilities enable the USM to act like an underwater floating base manipulator. The slender, multi-articulated body provides the USM with outstanding accessibility and flexibility. As such, the USM is a crossover between a small autonomous underwater vehicle (AUV) and an underwater snake robot. The USM possesses the high kinematic redundancy of the USR, and at the same time it has the advantages of the AUV in terms of full energy-efficient hydrodynamic properties and tetherless operation. Moreover, the USM has the advantages of remotely operated vehicles (ROVs) regarding full actuation and the capability of doing intervention operations. Since the USM can use the thrusters instead of the joints to create forward propulsion, the joints can be used to perform manipulation tasks and, thus, exploit the full potential of the inherent kinematic redundancy. This has been addressed in detail in [START_REF] Sverdrup-Thygeson | A control framework for biologically inspired underwater swimming manipulators equipped with thrusters[END_REF], [START_REF] Sverdrup-Thygeson | The Underwater Swimming Manipulator -A Bio-Inspired AUV[END_REF].

As a floating base manipulator, the USM can move itself to an area of interest, position its tail at the initial base location, and then start to operate as a robotic manipulator. When the USM carries out a manipulation task, the overall motion of the USM and the joint angle velocities can be determined by the desired velocities of the end-effector, i.e. the desired motion of the head of the USM. One approach for this is described in [START_REF] Sverdrup-Thygeson | Kinematic singularity avoidance for robot manipulators using set-based manipulability tasks[END_REF],

where the base motion and the joint angle motion of the USM are assigned using a redundancy resolution technique based on inverse kinematics. The outputs of this procedure are time-varying velocity references for the base and the joints. This inverse kinematics method is only one of many ways to calculate the velocity references.

Controller design for underwater robots (URs) such as the USM and ROVs, is a complex problem [START_REF] Antonelli | [END_REF]. URs are often subject to hydrodynamic and hydrostatic parameter uncertainties, uncertain thruster characteristics, unknown disturbances, and unmodelled dynamic effects, e.g. thruster dynamics and coupling forces caused by joint motion. As the USM has no separate vehicle base and a low mass compared to an ROV, the motion of the joints become more significant for the overall motion of the USM as a rigid body than for the ROV. The coupling forces are therefore more prominent for the USM, and this increases the complexity of motion control of the USM, compared to an ROV.

Sliding mode control (SMC) is a robust and versatile non-linear control approach, and we will in this paper show that it is well suited for control of USMs. For underwater vehicles, in general, some important contributions are given in [START_REF] Antonelli | Singularity-free regulation of underwater vehicle-manipulator systems[END_REF], [START_REF] Fossen | Adaptive macro-micro control of nonlinear underwater robotic systems[END_REF], [START_REF] Fossen | Adaptive control of nonlinear underwater robotic systems[END_REF], [START_REF] Cristi | Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane[END_REF], [START_REF] Dannigan | Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle[END_REF] and [START_REF] Soylu | A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinitynorm thrust allocation[END_REF]. In [START_REF] Antonelli | Singularity-free regulation of underwater vehicle-manipulator systems[END_REF], a singularity-free SMC approach, inspired by [START_REF] Fjellstad | Singularity-free tracking of unmanned underwater vehicles in 6 DOF[END_REF], is used for set-point regulation of a UR with uncertainties in the hydrodynamic parameters. In [START_REF] Fossen | Adaptive macro-micro control of nonlinear underwater robotic systems[END_REF], [START_REF] Fossen | Adaptive control of nonlinear underwater robotic systems[END_REF], SMC is employed to cope with multiplicative c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls uncertainty in the thruster configuration matrix. The combination of sliding mode and adaptive control is studied in [START_REF] Fossen | Adaptive macro-micro control of nonlinear underwater robotic systems[END_REF], [START_REF] Fossen | Adaptive control of nonlinear underwater robotic systems[END_REF], [START_REF] Soylu | A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinitynorm thrust allocation[END_REF]. In particular, in [START_REF] Soylu | A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinitynorm thrust allocation[END_REF], sliding mode control is combined with adaptive PID controller gains and an adaptive update of the upper bound on the disturbances and the parameter uncertainties.

SMC is also applicable to deal with linearisation errors [START_REF] Cristi | Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane[END_REF] and the coupling effects between an underwater vehicle and an attached manipulator arm [START_REF] Dannigan | Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle[END_REF]. Sliding mode techniques have been applied to land-based snake robots in [START_REF] Rezapour | Differential geometric modelling and robust path following control of snake robots using sliding mode techniques[END_REF] to achieve robust tracking of a desired gait pattern and under-actuated straight line path following.

However, SMC have to the authors' best knowledge, never been applied to underwater snake robots, and in particular, to USRs with thrusters.

In this paper SMC is applied to the robot model proposed in [START_REF] Kelasidi | Modeling and Propulsion Methods of Underwater Snake Robots[END_REF], for which the robot is equipped with thrusters as in [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF]. The model in [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF] extends the 2D model proposed in [START_REF] Kelasidi | Modeling of underwater snake robots[END_REF], by modelling also additional effectors and considering the force allocation among these effectors. In [START_REF] Kelasidi | Modeling and Propulsion Methods of Underwater Snake Robots[END_REF] the model from [START_REF] Kelasidi | Modeling of underwater snake robots[END_REF] used in [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF] has been revised and extended, and we here use the revised model. In [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF] a linear PD-controller was used for tracking of the position and heading along the reference path. In this paper, we propose to replace the PD-controller with a super-twisting algorithm (STA) for sliding mode control accompanied by a higherorder sliding mode observer, for the case when only the position measurements are available. We consider the tracking problem for the position of the centre of mass of the USM.

The first-order relay controller [START_REF] Hung | Variable Structure Control: A Survey[END_REF], has large problems with chattering. To eliminate chattering, we could have used saturation control, but since the sliding mode does not exist inside the boundary layer, the effectiveness of the controller is challenged when parasitic dynamics are considered, [START_REF] Young | A control engineer's guide to sliding mode control[END_REF]. Therefore the super-twisting algorithm will be used. The STA is one of the most powerful second-order continuous sliding mode control algorithms. It was first introduced in [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] and has thereafter been used for multiple applications.

The STA attenuates chattering and will, therefore, give a smoother control signal. A challenge with the STA is that it only works with bounded perturbations, and therefore a conservative upper bound has to be used when designing the controller to ensure that sliding is maintained. To avoid this issue, we will use adaptive STA [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF]. The gains can then adapt to a level where they are as small as possible but still guarantee that sliding is maintained. Since the STA is only applicable to systems where the control input appears in the equation for the first derivative of the sliding variable, both the position and velocity of the USM need to be available for measurement. For the case when only the position measurements are available, we will use a higher-order sliding mode observer, proposed in [START_REF] Kumari | Implementation of Super-Twisting Control on Higher Order Perturbed Integrator System using Higher Order Sliding Mode Observer[END_REF], to estimate the states. As such, we combine the results from [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF] and [START_REF] Kumari | Implementation of Super-Twisting Control on Higher Order Perturbed Integrator System using Higher Order Sliding Mode Observer[END_REF], as done in [START_REF] Chalanga | Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches[END_REF], but we will replace the regular STA with a STA with adaptive gains. We will then apply this control structure to the USM and show ultimate boundedness of the tracking errors. We also present simulations that verify that the proposed c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls approach applies well to USMs, and also compare the results to a standard PD-controller.

The remainder of this paper is organized as follows. In Section II the robot model used will be explained in more detail. The control and observer design is presented in Section III, and in Section IV we prove boundedness of the tracking errors. In Section V the simulation results will be presented. Conclusions and suggestions for future work are given in Section VI.

II. Underwater Swimming Manipulator (USM) Model

In this section, the equations of motion for the USM and the force allocation matrix will be explained.

We refer to [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF], [START_REF] Kelasidi | Modeling and Propulsion Methods of Underwater Snake Robots[END_REF] and [START_REF] Kelasidi | Modeling of underwater snake robots[END_REF] for further details.

Kinematics

The position of the center of mass (CM) of the USM, p CM ∈ R 2 , expressed in the global frame is

p CM =   p x p y   =   1 mt n i=1 m i x i 1 mt n i=1 m i y i   = 1 m t   e T M X e T M Y   (1)
where USM. Eq. ( 1) is valid because it is assumed that the mass of each link is uniformly distributed. The matrix representation of the force balance for all the links is

(x i , y i ), i = 1, • • • ,
M Ẍ = D T h x + f x + f px , M Ÿ = D T h y + f y + f py (2)
where f px and f py are the forces from the additional effectors, h x and h y are the joint constraint forces and f x and f y are the fluid forces acting on the links. By differentiating Eq. ( 1) and inserting Eq. ( 2), the joint constraint forces cancel out, and the translational motion of the CM of the USM can be written as

m t px = e T (f x + f px ), m t py = e T (f y + f py ). (3)

Force Allocation

The force allocation distribution is given by

τ CM =      F CM,x F CM,y M CM,z      =      e T 0 1×n 0 1×n e T e T S ψ K -e T C ψ K        f px f py   = T (ψ)f p , (4) 
where T (ψ) is the allocation matrix and f p = [f p,k1 , . . . , f p,kr ] is the vector of scalar effector forces. The primary objective for the force allocation method is to distribute the efforts among the additional effectors to obtain the desired forces and moments. In the next section, we propose a novel method for calculation of the desired forces and moments, together with a nonlinear observer for position and velocity.

III. Control and observer design

Control problem: Assume that there exist a guidance system which determines a suitable path for the USM to follow. The task at hand is to design a motion controller that calculates the desired forces for the translational motion F CM , and the desired moments for the rotational motion M CM , of the USM.

We will in the following use a super-twisting algorithm with adaptive gains to calculate the desired forces, F CM . To calculate the desired moments, M CM , we will use a proportional controller. The desired forces and moments are represented by

τ CM,d =   F CM,d M CM,d   =      F CM,dx F CM,dy M CM,d      (5) 
The control input for the translational motion is therefore F CM,d , which is the desired force we want to impose on the system. This force will be given as input to the force allocation matrix in Eq. ( 4), which will then distribute the forces on the effectors so that the combined force in xand y-direction is equal to the desired forces in xand y-direction, i.e. F CM,dx and F CM,dy , respectively. By assuming that the actuator dynamics is faster than the system dynamics, the following equation is assumed to be satisfied.

F CM,d =   F CM,dx F CM,dy   = F CM =   F CM,x F CM,y   =   e T f px e T f py   . (6) 
By replacing e T f px and e T f py in Eq. ( 3), with F CM,dy and F CM,dy , the translational motion of the CM of the USM can be rewritten as

m t px = e T f x + F CM,dx , m t py = e T f y + F CM,dy . (7) 

Sliding surface design

First we define the error variable. As the output variable for the translational motion of the USM is p CM , the error variable can be defined as 

p =   px py   = p CM -p CM,ref =   p x -p x,ref p y -p y,ref   (8 
Since only the position, p CM , of the centre of mass is available for measurement, an observer for the states is designed. The observer states will be used in the sliding surface, and following the structure of Eq. ( 9), the revised sliding surface is then

σ =   σx σy   =   px -p x,ref py -p y,ref   +   λ( ṗx -ṗx,ref ) λ( ṗy -ṗy,ref )   . (10) 

Control input design

In this section the equations describing the STA with adaptive gains and the SMO will be given in detail.

These will then be used to find the desired force F CM,d .

The super-twisting algorithm with adaptive gains

The STA with adaptive gains proposed in [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF] can be written as

u STA =   u STA,x u STA,y   =   -α x |σ x | 1/2 sgn(σ x ) + v x -α y |σ y | 1/2 sgn(σ y ) + v y   v =   vx vy   =   -β x sgn(σ x ) -β y sgn(σ y )   (11) 
where the adaptive gains are defined as

α =   αx αy   =                 ω 1 γ1 2 , if σ x = 0 0, if σ x = 0      ω 1 γ1 2 , if σ y = 0 0, if σ y = 0            (12) 
and

β =   β x β y   =   2εα x + λ + 4ε 2 2εα y + λ + 4ε 2   , (13) 
where ε, λ, γ 1 and ω 1 are positive constants. For implementation purposes, a small boundary is put on the sliding surface and the adaptive gains can be expressed as

α =   αx αy   =                 ω 1 γ1 2 , if |σ x | > α m 0, if |σ x | ≤ α m      ω 1 γ1 2 , if |σ y | > α m 0, if |σ y | ≤ α m            β =   β x β y   =   2εα x + λ + 4ε 2 2εα y + λ + 4ε 2   (14) 
where the design parameter α m is a small positive constant.
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By designing the observer structure as in [START_REF] Kumari | Implementation of Super-Twisting Control on Higher Order Perturbed Integrator System using Higher Order Sliding Mode Observer[END_REF], the state observer is chosen as

ṗ1 =   ṗ1,x ṗ1,y   =   p2,x + z 1,x p2,y + z 1,y   ṗ2 =   ṗ2,x ṗ2,y   =   p3,x + z 2,x + 1 mt F CM,dx p3,y + z 2,y + 1 mt F CM,dy   ṗ3 =   ṗ3,x ṗ3,y   =   z 3,x z 3,y   (15) 
where

z 1 =   z 1,x z 1,y   =   k 1 |e 1,x | 2/3 sgn(e 1,x ) k 1 |e 1,y | 2/3 sgn(e 1,y )   z 2 =   z 2,x z 2,y   =   k 2 |e 1,x | 1/3 sgn(e 1,x ) k 2 |e 1,y | 1/3 sgn(e 1,y )   z 3 =   z 3,x z 3,y   =   k 3 sgn(e 1,x ) k 3 sgn(e 1,y )   (16) 
and k 1 , k 2 and k 3 are gains to be chosen according to [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] and [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF], e 1,x = p x -p1,x and e 1,y = p y -p1,y .

One choice of parameters that meets the requirements in [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] and [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF], is according to [START_REF] Chalanga | Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches[END_REF], 

k 1 = 6L 1/3 , k 2 = 11L 1 

Control input

In order for the STA to be applicable, the control input needs to be chosen such that the control appears in the equation of the first derivative of the sliding variable.

In particular, we want to have σ = u STA , so that σ reaches zero in finite time. Taking the time derivative of Eq. ( 10) and substituting ṗ1 and ṗ2 , defined in Eq. ( 15), we find that

σ = ( ṗ1 -ṗref ) + ( ṗ2 -pref ) = (p 2 + z 1 -ṗref ) + (p 3 + z 2 + 1 m t F CM,d -pref ) (18) 
By choosing F CM,d to be

F CM,d = m t (-p 2 -z 1 + ṗref -p3 -z 2 + pref + u STA ) (19) 
we obtain

σ = u STA . (20) 

PD-controller

We want to compare the performance of the SMC algorithms to an existing controller for USMs with respect to disturbances and modelling errors. We will to the standard PD-controller that was proposed in [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF]. This is implemented by replacing u STA in Eq. [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF] with

u PD = k CM d   ṗx,ref -ṗx ṗy,ref -ṗy   + k CM p   p x,ref -px p y,ref -py   (21) 
where k CM 

IV. Stability Analysis

In this section we perform a stability analysis of the closed-loop system, and it will be shown that the tracking error converge asymptotically.

Error dynamics

By defining p = p x p y T and dividing Eq. ( 7) by m t (the total mass of the USM) the equations of motion can be written as

p =   px py   =   1 mt (e T f x + F CM,dx ) 1 mt (e T f y + F CM,dy )   ( 22 
)
where e T f x is the sum of all forces acting on the CM in

x-direction and e T f y is the sum of all forces acting on the CM in y-direction. These forces are hard to model exactly and will therefore be interpreted as a time-

varying disturbance called f (t) = f x (t) f y (t) T ,
where it is assumed that ḟ (t) is bounded. The equation can then be written as

p = 1 m t (f (t) + F CM,d ) =   px py   =   1 mt (f x (t) + F CM,dx ) 1 mt (f y (t) + F CM,dy )   . ( 23 
)
The error variable was introduced in Eq. [START_REF] Fossen | Adaptive control of nonlinear underwater robotic systems[END_REF]. By introducing p1 = p, p2 = ṗ and by differentiating the error variables the error dynamics can be written as

ṗ1 = ṗ = p2 ṗ2 = p = p -pref (t) = 1 m t (f (t) + F CM,d ) -pref (t), ( 24 
)
where it is assumed that the reference trajectory and its derivatives is bounded by design. By introducing a new function F (t) = 1 mt f (t) -pref (t), the error dynamics can be written as

ṗ1 = p2 ṗ2 = F (t) + 1 m t F CM,d . (25) 
where Ḟ (t) is bounded since it is a function of two bounded signals.

Overall closed-loop dynamics

By using the fact that p1 = p -e 1 and that p2 = ṗ -e 2 , from Section 3.2.2, Eq. ( 10) can be written as

σ = p -e 1 -p ref + ṗ -e 2 -ṗref . ( 26 
)
Since p1 = p -p ref and p2 = ṗ -ṗref then Eq. ( 26) can be written as

σ = p1 -e 1 + p2 -e 2 . ( 27 
)
By using that p2 = ṗ1 , from Eq. ( 25), we get that

σ = p1 -e 1 + ṗ1 -e 2 (28) 
and

ṗ1 = σ -p1 + e 1 + e 2 . ( 29 
)
The overall closed-loop dynamics with F CM,d given by Eq. ( 19), σ as in Eq. ( 20), ṗ as in Eq. ( 29) and the state c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls analysed with σ = 0. The derivative of the Lyapunov function V 11 is then

V11 (p) = -||p 1 || 2 + σ p1 ≤ -||p 1 || 2 + θ||p 1 || 2 -θ||p 1 || 2 + β 1 ||p 1 || ≤ -(1 -θ)||p 1 || 2 ∀ ||p 1 || ≥ β 1 θ (35) 
where 0 < θ < 1. The solutions are then UGB, since the conditions of [START_REF] Khalil | Nonlinear systems. 3rd ed[END_REF]Theorem 4.18] are satisfied.

Consequently, the conditions of [24, Lemma 2.1] are satisfied, which implies that the origin of subsystem Analysis of the complete system: To analyse the complete system, [24, Lemma 2.1] is used. To check if the solutions of the complete system are UGB, the boundedness of p1 has to be evaluated when e 1 = 0 and e 2 = 0, for this the Lyapunov function V 11 is used. Note that boundedness of σ follows from 12 being UGAS, since 12 is not perturbed by 2 .

V11 (p) = -||p 1 || 2 + (σ + e 1 + e 2 )p 1 ≤ -||p 1 || 2 + θ||p 1 || 2 -θ||p 1 || 2 + (β 1 + 2β 2 )||p 1 || ≤ -(1 -θ)||p 1 || 2 ∀ ||p 1 || ≥ β 1 + 2β 2 θ (36) 
where 0 < θ < 1. The solutions are then UGB, since the conditions of [START_REF] Khalil | Nonlinear systems. 3rd ed[END_REF]Theorem 4.18] are satisfied.

Consequently, the conditions of [24, Lemma 2.1] are satisfied, which implies that the complete system is UGAS, and the tracking errors will therefore converge asymptomatically.

V. Simulation Results

Implementation

The complete model with the force allocation We want the USM to move as a torpedo-shaped AUV when it is moving from one place to another. To achieve this type of behaviour, the link angles were set to zero, i.e. there was no lateral undulation, and a line-of-sight (LOS) guidance law defined by Ψref = -arctan(p y /∆), where ∆ is the look-ahead distance and p y is the cross-track error from the path, was used for heading control. This was motivated by [START_REF] Kelasidi | A waypoint guidance strategy for underwater snake robots[END_REF] and [START_REF] Liljebäck | Snake Robots : Modelling, MMechatronics, and Control[END_REF], but as [START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF] the heading of the USM was defined as the head link angle Ψ = Ψ n . This simulation case is shown in Fig. 2.

Case 2-Operation mode

When the USM is in operation mode, it will use the thrusters to stay in one place or move around, and use the end-effector at the head of the USM to do the operation. The motion of the joints can be seen as a disturbance to the CM position control system, as it will 3, where the USM head changes direction at 10, 20 and 30 seconds.

Simulations

As described in Section 3.2.2 the gain parameter L needs to be chosen sufficiently large, and for the simulations L was tuned manually to get good performance. The PD-controller gains were chosen by pole placement, and then slightly tuned to get better performance. The sliding surface parameter λ in Eq. ( 10) was set to 1. For the simulations, a fixed-step solver, with fixed step size 10 -5 was used. In Table 1 The gains in the super-twisting algorithm with adaptive gains were set to:

ε = 1, λ = 1, γ 1 = 1, ω 1 =
8, α m = 0.05, and the observer gain was set to: L = 55.

The simulations for torpedo mode can be seen in Fig. 4, and the simulations for operation mode can be seen in Fig. 5. The position error for case 2, operation mode can be seen better in Fig. 6. 

The PD-controller

The gains for the PD-controller were set to:

k CM d = 6 and k CM p = 200.
The torpedo mode simulation can be seen in Fig. 7 and the operation mode simulation can be seen in Fig. 8. The position error for case 2, operation mode can be seen better in Fig. 9. It is worth noticing that for case 2, operation mode, the difference in position error is not very large. From Fig. 6 and Fig. 9, it can be seen that for the PDcontroller the absolute position error is more varying than for the STA with adaptive gains. The reason for the larger absolute position error for the STA is the peaks that can be seen in Fig. 6. These peaks are from when the magnitude of the force needed to control the USM noticeably. In operation mode, when using the STA the control input does have some peaks when the USM shifts position, but that is to be expected as the position error is nearly not affected at all by the shift. It is important that the increase in force needed is not too large, as that will affect the power usage of the USM.

From Figs. 4 and 5 we can see that the sliding surface does indeed converge to zero, and so do the observer errors. From Fig. 7 and Fig. 8 we can see that the observer errors also converge to zero when the PDcontroller is used.

The PD gains for the linear controller might not be completely optimal, since finding the optimal gains is a difficult task. This gives the STA with adaptive gains one more advantage as finding the optimal gains is no longer a problem.

VI. Conclusions and Future Research

In this paper, we have discussed the use of the 

  Fig.1. System overview USM,[START_REF] Sverdrup-Thygeson | Modeling of underwater swimming manipulators[END_REF] 

  The allocation matrix represents the mapping between the effector forces and the forces and moments acting on the CM of the USM. It is assumed that the additional effector forces are acting through the CM of each link. c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls

  ) where p CM,ref is the desired position of the CM of the USM in the global frame. The sliding surface should be selected such that the state trajectories of the controlled system are forced onto the sliding surface σ = σ = 0, where the system behaviour meets the design specifications. The controller F CM,d should also appear in the first derivative of σ, so that the relative degree is equal to 1. The sliding surface σ can then be c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls -ṗx,ref ) λ( ṗy -ṗy,ref )  

/2 and k 3 =

 3 6L, where L is a sufficiently large constant. By defining e 2 = ṗ -p2 and e 3 = -p 3 + F (t), the error dynamics of the state observer can be written as ė1 = -k 1 |e 1 | 2/3 sgn(e 1 ) + e 2 ė2 = -k 2 |e 1 | 1/3 sgn(e 1 ) + e 3 ė3 = -k 3 sgn(e 1 ) + Ḟ (t)

d

  and k CM p are controller gains. c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls

  matrix and controller is implemented in MATLAB Simulink. The USM implemented has n = 16 links, each one having length 2l i = 0.14 m and mass m i = 0.6597 kg. The thruster configuration used corresponds to configuration 2 in [1]. This has one tail thruster attached to link 1, exerting a force along the x-axis of the link, and four additional thrusters located at link number 3, 6, 11 and 14, exerting forces normal to the links. For more details regarding the parameters used in the model, please see [1]. We have implemented two different case studies, one called torpedo mode, which is described in Section 5.1.1, and one called operation mode, described in Section 5.1.2. c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls 5.1.1. Case 1 -Torpedo mode

Fig. 2 .

 2 Fig. 2. Torpedo mode USM simulation

Fig. 3 .

 3 Fig. 3. Operation mode USM simulation

Fig. 4 .

 4 Fig. 4. Torpedo mode:Simulation of STA with state observer

Fig. 6 .Fig. 7 .

 67 Fig. 6. Operation mode: Position error for the STA

Fig. 8 .

 8 Fig. 8. Operation mode: Simulation of PD-controller

Fig. 9 .

 9 Fig. 9. Operation mode: Position error for the PD-controller

Table 1 .

 1 Absolute maximum value for position error

	Algorithm		Error
		Torpedo	Operation
		x	y	x	y
	The STA with 3.6134• 2.8766•	
	adaptive gains	10 -4	10 -4	0.0126 0.0264
	PD-controller	0.0018 0.0095 0.0195 0.0227

Fig. 5. Operation mode: Simulation of STA with state observer c 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society Prepared using asjcauth.cls 5.3. Discussion From Figs. 4 and 5 we can see that the proposed control law is indeed applicable since the position error converges to zero. From Figs. 4 to 8 and

Table 1

 1 

	,
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it gives better tracking performance than a linear PDcontroller.

Future work includes investigating the best choice of control parameters and extending the results to 3D.
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observer error as in Eq. ( 17) is then

Theorem 1 Assume that the error dynamics is given by Eq. [START_REF] Khalil | Nonlinear systems. 3rd ed[END_REF], where | Ḟ (t)| ≤ ∆, m t is known and the sliding surface is defined by Eq. [START_REF] Dannigan | Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle[END_REF]. Assume that a state observer in Eq. ( 15) is used to estimate p and ṗ.

Let the control input be given by Eq. [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF]. Then the origin of the cascaded system in Eq. (30) is uniformly globally asymptotically stable (UGAS), which ensures asymptotic convergence of the tracking error.

Proof. Analysis of subsystem 1, with e 1 = 0 and e 2 = 0: With e 1 = 0 and e 2 = 0, subsystem 1 can be written as

This can then be divided in two subsystems:

where [24, Lemma 2.1] can be used. Subsystem 11 with σ = 0 is analysed first. This is clearly a globally exponentially stable linear system, but since we will need a Lyapunov function for the analysis of this system when σ = 0, we will use the Lyapunov function

1 for the analysis. The derivative of the this is

This means that the Lyapunov function satisfies:

By using Theorem 4.10 in [START_REF] Khalil | Nonlinear systems. 3rd ed[END_REF] subsystem 11 is proven globally exponentially stable with σ = 0.

Subsystem

12 has the structure of the STA algorithm with adaptive gains. In [START_REF] Shtessel | Super-twisting adaptive sliding mode control: A Lyapunov design[END_REF] a Lyapunov function is proposed for systems with this structure.

Here it is proven that the Lyapunov function proposed is indeed a Lyapunov function for subsystem 12 and that for any initial conditions, σ, σ → 0 in finite time by using the STA with adaptive gains given by Eq. [START_REF] Fjellstad | Singularity-free tracking of unmanned underwater vehicles in 6 DOF[END_REF] and Eq. ( 13) where ε, λ, γ