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Abstract: We consider the problem of drift function estimation of inhomoge-
neous stochastic differential equation with delay. It is shown that kernel-type
estimator is consistent and asymptotically efficient.

1. Introduction

This work is devoted to the problems of nonparametric estimation for the non linear
stochastic differential equation (SDE) with delay

(1.1) A =8SG X dtvedW,, X.=mn =0, O<5=P

where ¢ — 0. Such perturbed dynamical systems were studied in [7]. Statistical
problems (parametric and nonparametric) related to such models can be found in
[18]. We suppose that the function S (¢, z) is unknown. Recall that the limit (¢ — 0)
equation is

dEt
(1.2) E:S(t,a:t_r), Za— T s = N0l =t
and the trajectories X; converge uniformly in t € [0,7] to ;.

The problem of drift estimation for diffusion processes in small noise (¢ — 0)
and large samples (T" — o) are well studied and there are many results in different
statements for continuous and discrete time observations.

In this work we consider the problem of drift estimation by the observations
XT = (X;,0 <t < T). We suppose that the delay 7 > 0 is known and we estimate
the function S (,z), where for a given  we take t = t, defined by the equality
xt,—r = T. Therefore we estimate a function S (t;,z) of one variable x.

We propose kernel-type estimator and study its asymptotic (e — 0) behavior. We
show its consistency and asymptotic efficiency in order of convergence.

The particularity of this model can be illustrated as follows. If we write (1.1) in
integral form and change the variables ¢ — ¢t — 7, then for ¢ > 7 we obtain the
representation

t—1

Xy r=xzp+ 5 (s, Xs—r)ds +eW;_-
0
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Therefore the drift S (X;_,) in the equation (1.1) has no even the first derivative
w.I.t. &

Statistical problems of parameter estimation related to different generalizations
of the model (1.2) with the asymptotic ¢ — 0 were treated in the works [1], [11],
[12],[13], [17], [18] [22], [23], (see review in [20]). Some statistical problems for the
related SDE with delay in the case of asymptotic T — co were studied in the works
8], [9, [14], [20].

Nonparametric estimation problems for perturbed (¢ — 0) SDE (¢ — 0) can
be found in (2], [15], [16], [18]. The large samples cases of drift estimation were
considered in the works [3], [4],[5], [25], [6], [19].

2. Main Results

For a given z > zy we define ¢ = ¢, such that z = z;,_, and consider the problem
of estimation of the value S (¢,2) = S (¢, z).
Introduce the conditions R.

R1. The function S (t,z) is positive k = infiepg 17, S (t,7) > 0.
Rsy. The function S (t,z) has two continuous bounded derivatives w.r.t. t and .
R3. The delay T € (0,T) is known.

By condition R» there exist two constants M > 0 and L > 0 such that for all
t€[0,T] and all z € R.
| (t,2)| < M, and 8% (¢, z)| < L.

Moreover, for t € [0, 7] we have S (t,2;) = S(t,z0) and
t
:rt=$0+f8(s,:cg)ds, et et
0

Therefore we have two different problems of estimation. For ¢ € [0, 7] we estimate the
function S (¢, zg) of one variable ¢ € (0,7) and for t € (7,T] we estimate once more
the function S (¢, z) = S (¢, z) of one variable = € (g, 27—, ) because here ¢ = ¢, such
that z;,_» = = > z¢. Note that estimation of the function f(t) = S (¢t,z0),0<t <7
is particular case of the similar problem considered in [10], Theorem 7.4.1. That is
why we consider estimation of the function S (¢, z) for t > 7.

Define the random variable (stopping time)

Teg =m0 > 0]

and put ty. =T — 7 if supg< <7, X5 < x. Introduce the kernel-type estimator

T -
2.1) 2 b if K (S—t"’) dX,.
P= Jo Pe
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Here ¢. — 0 and the bounded kernel K (u),u € R satisfies the “usual properties”:

1 1
(2.2) / Kudu=1, f ukK (u)du =0, K (u) =0, foru ¢ [-1,1].
-1 -1

We have to define the set X' of 2 admitting consistent estimation of S (¢, z) ,z € X.
Note that

t—1
Tier =T + S5 e )ids, r<t<T —71
0
where S(t,z) > 0. Therefore, we can consider X = (zg,zr—), but the value
27—r = 7, (S) depends on the unknown function S(-,-) and can not be known.
There are at least two possibilities. The first one is to use the condition R, which
allows us to write zr_, > 2o+ (T — 7) & = & and to put & = (z¢,%). The second
one is to put X = (z9, X7—;) where Xp_, is estimator of zp_,. Then to use the
estimate | Xp_, — z7_;| < Cesupge er_, |Wi| (see (A.1)) and study the introduced
estimator (2.1). Here and below the generic constants are denoted C. .

Similar problems and estimators of nonparametric estimation for perturbed dy-
namical system (without delays) were studied in [15], [17] and [18]. Of course, if
S (t,z) = S (t) we obtain classical problem of nonparametric estimation of the de-
terministic signal in white Gaussian noise (see, e.g., [10]).

Theorem 2.1. Suppose that conditions R hold then the estimator S: (t,z),z €
(20, %) with @. = 2/° is mean-squared consistent

(2.3) Es |S:(t,2) = 8(t,2)|° < C 5.
Proof. Let us introduce the set
B {w g tpE_ItLg =2 (pe_l (T —tge) > 2}

and for w € B, change the variables s = ¢, . + ¢.u in the integral

it 1
Ly (m) S (s, 2s_r)ds
Pe Jo Pe

T—tz,e
Pe

< K ('u,) S (t;,v;’g + (psu, xtz35+wsu7T) du

_ twe

Toe
1
= / K (1) S (tze + et Tty 4peu—r) du
-1
=8 (tx,E: -'Etr,e—‘r) T QOERS) (tz:,e)
1
ote Ws[ uk (U) du {Sé (tm,mmtmyg—'r) i S; (tr,s-p 55't1|5—'r) S (t:r,sa xtz)E—ZT)]

i
R S Sl T RN
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Here we used Taylor expansion of S (t_.,;,E + YU, mt1'5+;’gsu_T) by the powers of ¢-

and the properties (2.2). Of course, QDERE) (ts,e) is the last term of Taylor expansion.
The equalities

te—T
& = =0 —I—/ S (8,25 ) ds,
0

lo,e—T
&= Xt,‘e—'r =T+ [ S (s, -Xs—'r) s EVVtI,gfr
0
allow us to write

tz,e—T te—T
0 e Xt:,s*‘r = xt.r_T = / S(SrXsz) dS A f S{Sams—‘r) dS Ar Eth,g—T
0 0

and
tr,e—T to,e—T
/ S8, Taarida= / [S (8 Xeni)i= S (5, 8s—r)| ds + W, .7,
tz—T 0
Hence
te=—T to,e—T
/ ol B / S (8, Xs—r) — 8 (8,%5—)|ds + & Wy, , |
te—T 0

T—71
< L/ IXS—T = -Ts—'r| ds+e IWtz,s—T| <eH (t-’E,E) ?
0

where the random function H (t;.) has bounded moments.
We have as well

e e—T
f S{(s 2.2 Jids| = slts. =it .
tz—T
From the last two estimates we have
(2.5) e =t eRFLH (L) > 0

We can write

1 T L a0 s
S8 o)= _f K (3 t”) Blledlgdes = (s—t“) dW.
Pe Jo Pe Pe Jo Pe

Hence on the set B, we have
’SE (t,l') i S (ta $)| = |SE (tﬂ:?zt:_‘r) I S(tf!!’mfm—?')l
1

L /OTK (%) [S (8, Zs—r) — S (tz, 21, 7)) ds

Pe
i (s—t“)
— K| ——=)[5(s,Xs_;) — S (5,25_7)|ds
=R () 6, X - S 6,200

i/TK (i&) dw,
Pe Jo Pe

< IS (tl‘,E: :Etz,s—'r) == S(tm:xtx—‘r” == ‘Pi—z

<

—

——

+|R® (ty.e)

BY (t2,)] + |RD (ta.)




with obvious notation.
The first term in the last line can be estimated as follows
2
ES][{[BE} |S (tm,ea xtz‘g—f) -8 (tm $t$ﬁr)|
< 2MEglp ) ltoe — tal” + 2Bsp,y |21, c—r — Tt,—r
) L) R S o i

\2

For the last estimate see (2.5).
Further,

(3) 2 (3) g & 8 &=t X
ES]I{BE}RE (tz,a) = EsRE (t:r,s) = ?Esf K|{———| ds
€ 0

Pe
2 i 5l 2
=E—Esf B i dn 2o SR d o
Pe e Pe J-1 Pe

e

and (below tz ey = tze + et
Eslip,} R (tzc)” < EsRY (o)

L fOTK (ﬂ) (S (5, Xs—r) — 8 (5,25-7)] ds

2

= Eg
Pe Pe

1
<285 [ K (0|5 (tres Keumr) =S (tncan 1)
=
1
< 2L2/ K (u)*Es X o mtw.s,u_7|2du =Cr
~1

Here we used the estimate (A.1).
These estimates allow us to write

2
(2:6) Eslis,) |S: (t,2) - S (t,2)P < Cyt +Ce?+C =

Pe

The probability of the compliment of the set B, we estimate as follows

Ps (BS) < Pg (97 toe <2) + Ps (07 (T - ts) < 2)
=Pg (tz — toe 2 to — 20c) + Ps (T — e < 20¢).

We have for 7 > 4,

T T
Pot, -t >t~ 20) <Py Qt.t L s 5) <Py (|t = tael 2 5)

< Pg (Cs sup |Wy| > I) = Qe
0<t<T 2



with positive constants C' > 0,c¢ > 0. Here we used (2.5). The similar estimate we
have for the probability Pg (T — t, . < 2¢;).
This allow us to estimate the mean squared error on the set B°

2

2 &
@@mmﬂ&ﬁﬂﬁ—S&wF)SEgmmEﬂ&UJj—SmMVSCK“.
Hence
2 4 2 e Le~2
Eg|S:(t,z) - S(t,z)|"<Cyp:+Ce*+C % +Ce 2*
&€

As usual in such situations the optimal rate . = £%/> we obtain from the equation
dloe o
Pe o

Therefore the estimate (2.3) is proved. O

Remark. Suppose that the function S (f,z) is Lipshits and the function @ (t) =
S (t,zi—r (Y9)),t € [0,T] has M continuous derivatives. Moreover, the M-th deriva-
tive is Holder of order p € (0,1):

dMo ) dMe ()
L de}’

= Hit-6jf

The set of functions S (¢, 2;—,) with the same constants C > 0 and p we denote as

'FM-T-_H'
Introduce additional condition on the kernel K (-)

1
(2.7) / u"K (u)du = 0, =1 . 8
= |

Using the equality (2.4) and Taylor expansion of the function ® (t;. + ¢-u) =
5] (ifg_o,E + Qe Ty, . — Peth — T) by the powers of . we obtain the expression

1 St L
= K =) 550, plide = | FO L) Bl A pati)du
e Jo Pe -1

L B .
=5 (tm,E!IfI'E—T) or ’nz_l [1 R (u) du ——Tn!—’(pa = Q&'

=8 (t;E,Eaxf;,;'EfT) +Qe.

The last term is estimated as follows

M rl
(28) Q<%= / MK ()] [0 (tae +Ger) = M) (t,)| du < Cpb .
FJ-1
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The equation (2.6) became

2
Es|S: (t,z) — S (t,)]> < C XM L 02 10 =

>

1

Now the equation ‘Pg{Mﬂ‘) = 2/, provides the rate p. = eM+u+d and
9 __2(M4w)
(2.9) Es|S. (t,z) — S (t,z)|° < Ce” MHar1/Z,

Hence slightly modifying the proof we obtain for any p > 0 the estimate

_ (M)
sup & MHHAEg|S, (t,z) - S(t )P < C.
S()EFM+p

Recall that for the model of observations (1.1) we have the lower bound (¢ = t,
snchithatie == )
2(M+p) 5

e (MR =
(2.10) lim inf sup & MHHZEg|S, (t,z) - S(,2)|

=10
£—0 Se(t,x) S()EFM4u

where inf is taken over all possible estimators S. (t,z) of the function S (t,z) (The-
orem 4.3, [18]). The inequality (2.10) shows that the estimator converging to S (t, )
faster than S; (¢, ) does not exist and therefore S; (t,z) is asymptotically efficient
in order of convergence.

Remark. Suppose that the delay 7 is unknown and we have to estimate the
function f(t) = S (t,z1—,),0 <t < T. The function f(t) is M times continuously
differentiable and the M-th derivative is Holder of order p € (0,1). It is possible
to estimate the function f (t) using even more simple kernel-type estimator than

above:
A 90y —
AR K(S t)dxs
Ye Jo Pe

T i 74 =
o K(S t)S(s,XS,T)ds+i/ K(S )dWS.
Pe Jo Pe Ye Jo Pe

As S (s5,Xs—7) = S(s,25—7) + O (€) and

=i 2

= T s—1 . 52 Pe 2 &
Es(—/ K( )dWs) =—[ K (u)*du < C—
Pe Jo Pe S et Pe

Pe

it is sufficient to study the integral

o i
df= o K (S t) 8 (5%, +)ds.
Pe Jo Pe
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Suppose that the kernel K (-) satisfies the conditions (2.2) and (2.7). Then using
Taylor formula once more we can write

E—/ K (u {f(t Z"DE ™ (t)| du+ o Re = £ () + ¢} Re.

For the last term of Taylor expansion we have estimate similar to (2.8)
M -
o2 |R| < Cigt .

i
Therefore we have the same normalizing function ¢, = e**#*2 and the same esti-
mate for the mean squared error as in (2.9).

A. Appendix section

Suppose that the function S (¢,2),t € [0,T],z € R has continuous bounded deriva-
tive |5}, (t,z)| < L w.r.t. z, then the equation (1.1) has a unique strong solution (see
Theorem in [24]). Moreover, we have the following estimates (with probability 1)

t
| Xt — x| < / 1S (5, Xs=7) — S (5,25—7)| ds + £ |W}]
0

¢ t
<L s = auds+eW <L [ 1X,-zldste sup Wil
0 0 0<s<T
Hence by Gronwall-Bellman lemma we can write
(A1) (X~ 2] < e OWr,

where we denoted WT = supp<s<7 |[Wsl.
For the second moment we have

t
Es|X; — :t:t|2 < 2L2Tf Es|X:—r — :ass_,rl2 dst 21
0

¢
o2 2L2T/ Es|X, — 2|2 ds + 26T
0

and by the same lemma

(A.2) Es|X,— x|’ <C ¢
Let us write the formal derivative Xt(l) of X; w.r.t. £, then we obtain the equation

axV =8 @, X ) XV dt+aw,, XD =0, fors<0, 0<t<T

The Gaussian process Xt( )|g:o = a:g]) satisfies the linear equation

delV = 8. (t,ze_r) 2D dt +dW,, 2 =0, fors<0, 0<t<T.

The proof of (A.1) can be done using the standard technique based on Gronwall-
Bellman lemma.
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