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The computational power allows nowadays the development of mesoscopic models of concrete, based on
finite element or lattices approaches, which represent the contribution of inclusions to the behavior of con-
crete. However, the smallest heterogeneities are often removed to these simulations for decreasing the
computation time. In this paper, the effect of aggregate classes on the fracture behavior of a plain concrete
is studied. Different simulations are performed from a mesoscopic model based on a diffuse meshing tech-
nique and Fichant’s damage model, in which the smallest aggregates are successively removed from the
granular skeleton to the benefit of a homogenized continuous mortar. The effects of these simplifications
are then evaluated by comparing the fracture behaviors obtained to the one of the reference concrete. The
results show the relevance of modeling all classes of aggregates in order to obtain an accurate description
of the failure behavior of concrete.

1. Introduction

The accurate description of concrete behavior through a macro-
scopic constitutive law is complicated by the high heterogeneities
of cementitious materials. During the fracture process, after elastic
and homogeneous strains, a micro-cracked zone called the Fracture
Process Zone (FPZ) appears before the peak load. This damaged zone,
formed by matrix microcracking, debonding of cement-aggregate
interface, and grain bridging, tends to develop and to localize into
a macro-crack, and finally critically propagates during the load-
ing. This nonlinear zone is responsible for the dissipation of the
elastic energy stored in the structure due to stress transfer. Com-
monly such behavior is called quasi-brittle. The characterization of
the FPZ (by numerical [1] or experimental [2] analysis) constitutes
a major challenge for the understanding of concrete mechanical
behavior. Concerning the global mechanical response, a softening
behavior occurs due to strain/damage localization (LEFM cannot
correctly represent the stress field), and this has to be explicitly
taken into account [3]. Concrete is a composite material with signifi-
cant heterogeneities which have an important influence on concrete
behavior at failure. The structure of concrete can be considered as
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a multi-level hierarchy system (macro-meso-micro-nanolevel) [4].
In this case, interaction between various components of concrete
is required in order to accurately simulate the softening behavior,
the damage fields and the crack paths, and to investigate the influ-
ence of concrete composition on the macroscopic properties [5].
Currently the computational power of computers allows the devel-
opment of many non-linear models at mesoscale which present a
real interest for describing the complex failure of concrete, ranging
from diffuse failure to localization and final discrete failure. Never-
theless, most mesoscopic models are forced to simplify the concrete
microstructure, representing only the largest aggregates because of
the difficulty of meshing the smallest aggregates and the correspond-
ing increase in computation time. The main question is what is the
consequence of such simplification of concrete microstructure on the
relevance of the simulated behavior. Indeed, mechanical and physi-
cal properties of concrete are dependent on the volume fraction and
properties of the constituents [6]. The mesolevel approach is useful
for analyzing the influence of aggregates on the failure behavior of
concrete which is affected by the size, shape and grading of aggre-
gates [7]. Moreover, during the failure process, the crack pattern
(tortuosity) is governed by the position of the coarse aggregates.
Generally aggregates are the cause of tougher, stiffer and more duc-
tile behavior of concrete as the volume fraction of fine and coarse
aggregates is increased without changing their grading [8]. The use
of non-linear models at mesolevel can be performed by applying the
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Nomenclature

B t Parameter of the damage evolution law
C ijkl Elastic stiffness tensor components
D internal variable for damage
E elastic modulus
fg i volume fraction of aggregates per class i
f t tensile strength
Fvg global volume fraction of aggregates
G f fracture energy
h element size
I1 First principal invariant of the effective stress
J2 Second principal invariant of the deviatoric part of

the effective stress
Ke ij elementary stiffness matrix
L REV length of the Representative Elementary Volume
Ø i aggregate diameter of the class i
Ø max maximum aggregate diameter i
Ø min minimum aggregate diameter i
W F Work of the fracture
X i first coordinate of an aggregate
Y i second coordinate of an aggregate

Greek symbols

ee
kl Elastic Strain tensor components
e eq Equivalent Strain
g g second coordinate of a Gauss point g
n g first coordinate of a Gauss point g
s̃ij Effective Stress tensor components
s ij Stress tensor components
y g Weight associated with the Gauss point g

Abbreviations

BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
FPZ Fracture Process Zone
H homogenized
HM homogenized mortar
HPC high performance concrete
ITZ Interfacial Transition Zone
M Missing
P Present
REV Representative Elementary Volume

Finite Element Method [9], the Discrete Element Method [10] or the
resource-intensive lattice method [11]. Because of the difficulty of
meshing together small and large aggregates, most authors merely
model the largest aggregates. The matrix is then composed with a
mortar that accounts for the smallest aggregates.

The aim of this paper is to present the influence of small aggre-
gates on the failure behavior of plain concrete by the use of a damage
constitutive law simulated from a Finite Element Model established
at mesolevel, i.e., taking into consideration the roles of the cement
matrix and of the aggregates. The damage model used for the sim-
ulation of the fracture behavior of concrete is an isotropic damage
model developed by Fichant et al. [12], that takes into account the
unilateral effects, used at the mesoscale of concrete for both aggre-
gates and matrix. The model is implemented in the finite elements
code Cast3M©. Moreover, a diffuse meshing method is used, whereby
the matrix and aggregates properties are projected on the shape
functions of the finite element mesh. For this study, the accurate
representation of the aggregates compactness is priority, that is a

reason why the Interfacial Transition Zone (ITZ) is not represented
in this mesoscopic model. Moreover, its mechanical parameters are
difficult to assess and the use of a diffuse meshing method may
offset this issue. Thus, in this mesoscopic model, a “natural” ITZ takes
place since elastic and fracture parameters contrasts lead to a stress
concentration and, thus, damage localizes at the paste-aggregates
interface. In the following the parameters used for cement paste and
aggregates refer to normal concrete for which intragranular crack-
ing is expected. Indeed, in a plain concrete the aggregates are not
expected to damage. Thus, in this case, the aggregates can be seen as
strong inclusions and lead to tortuous crack path and consequently
to a crack-path dependent fracture energy. This concrete configura-
tion seems to be more appropriate in order to study the effect of
aggregates classes on the fracture behavior compared to the case of
high performance concretes (HPC). The model is also able to capture
trans-granular cracking by adopting appropriate parameters which
is more appropriate for high performance concretes.

In this paper, the isotropic damage model [12] is presented along
with the generation process of the mesostrucrure of concrete, as
well as the estimation procedure of the mechanical and fracture
properties of the aggregates and the mortar matrix. The computing
strategy used to investigate the influence of aggregate classes on the
fracture behavior is then explained. Finally, the relevance of mod-
eling all or part of the aggregate classes of concrete by a numerical
homogenization method is studied and discussed.

2. Constitutive damage model

2.1. Principle of the constitutive model

The damage model used is the isotropic damage model developed
by Fichant [13], which is an extension of Mazars’ model [14] tak-
ing into account the unilateral effect of concrete and inelastic strains
(plasticity). The microcracking effect is directly linked to the inter-
nal state damage variable D. This damage variable is ranged from 0,
for an undamaged material, to 1, for a fully damaged material. The
notions of damaged and undamaged lead to the concept of effec-
tive stress s̃(1), which represents the necessary stress to apply to an
undamaged material element so that it deforms the same way as a
damaged element under total stress s (2).

s̃ij = C0
ijkl : ee

kl, (1)

where ee
kl is the local elastic strain fields and C0

ijkl the initial isotropic
elastic stiffness tensor. The total stress is described by:

sij = Cdamaged
ijkl : ee

kl, (2)

where Cdamaged
ijkl is the damaged material stiffness tensor.

Based on Eqs. (1) and (2), the relation between total and effective
stress can written as follows:

sij = Cdamaged
ijkl :

(
C0

klmn

)−1
: s̃mn = (1 − D)s̃mn, (3)

where (C0
klmn)−1 is the initial compliance tensor and D the scalar vari-

able of the isotropic model. The evolution of the isotropic damage
variable D is expressed as an exponential law:

D = 1 − ed0

eeq
exp(Bt(ed0 − eeq)), (4)

where Bt = hft
Gf −0.5fted0h is a damage parameter driving the shape of

the strain softening and in which ft is the tensile strength, Gf is the
fracture energy and h corresponds to the size of the finite element (in

2



2D analysis h corresponds to the square root of the element surface
if the element is isotropic). Moreover, in Eq. (4) ed0 is the damage
threshold expressed in strain, i.e., (ed0 = ft

E ) where E is the Young
modulus, and eeq is the equivalent strain defined by Mazars which
drives damage evolution and describes the state of local extension
induced by stress:

e eq =
√
S3

i=1 < ee
i >2

+, (5)

where ee
i is the principal elastic strain in the i-direction and 〈〉+

corresponds to the Mac Cauley operator. The mesh dependency is
controlled through the energetic regularization based on the Crack
Band Theory [15] (i.e., the fracture energy Gf related to the soften-
ing behavior). The fracture zone is then considered with a certain
width h where micro-cracks are uniformly distributed. The energy
dissipation due to fracture per unit length is therefore constant with
Gf = h

∫ ∞
0 sde. By replacing s with the damage evolution law, the

relation between the parameter Bt, the fracture energy and the ele-
ment size can be obtained [16]. To conclude, the post-pic behavior
is adjusted for each element size h in order to dissipated the same
amount of fracture energy. The damage constitutive law is applied
on each Gauss point (which represents either the paste or an aggre-
gate). After the estimation of an effective stress s̃ calculated from the
total strain increment (from an imposed displacement), the internal
variable D is calculated thanks to the Eq. (4). Then, the total and the
inelastic stresses tensors are estimated from the isotropic damage
variable D.

2.2. Model parameters

As already mentioned, the damage model takes place at
mesoscale, i.e., the fracture behaviors of the aggregates and of the
mortar matrix follow the isotropic damage model with damage
parameters corresponding to each component. The input parame-
ters (Young modulus, Poisson’s ratio, tensile strength, and fracture
energy) for cement matrix and aggregates are summarized in Table 1.
The most of used properties are from literature [17,18]. Note that
in our case, limestone aggregates were simulated and this lead to
the use of a low Young’s modulus of the aggregates [19]. As a plain
concrete is studied, the damage threshold ed0 of the aggregates
might be higher than the cement paste,thus, the choice of a “low”
but “realistic” Young’s modulus has been made. Nonetheless, the
elastic’s modulus of aggregates does not strongly influence the crack
path since this latter is mainly governed by fracture properties. Note
that the elastic mismatch between matrix and aggregates creates
stress concentrations at the aggregates’ interfaces and promotes the
development of damage in these areas.

2.3. Solving procedure

The finite element problem is solved using the classical procedure
for non linear problems that is programmed within the Cast3M code.
This procedure is based on an implicit time scheme and a quadratic
scheme of kind BFGS [20] for the material non linearities. Small time
step is adopted in order to avoid bifurcated solutions that would
unless occur.

Table 1
Elastic and fracture parameters for the cement matrix and the aggregates.

Properties Aggregates Cement paste

Elastic properties E(GPa) 35 25
m 0.2 0.2

Fracture properties ft(MPa) 6 3
Gf( J/m2) 60 20
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Fig. 1. Size distribution of aggregates corresponding to the M75C concrete.

3. Mesostructure

3.1. Generation of the mesostructure

The generation of the mesostructure consists of randomly placing
the aggregate particles in the matrix on the basis of a stochastic-
heuristic algorithm: the aggregates are placed one by one from the
largest to the smallest (take and place approach) [21]. If a dropped
aggregate overlaps one already in place, a new draw is carried out
until no overlapping remains. The spatial distribution of the aggre-
gates follows the aggregate grading curve of the concrete studied
(M75C concrete) given by Hager [22] (Fig. 1). Ten classes of aggre-
gates are generated according to Fig. 1 for a global volume fraction
of aggregate of 70% (Fvg). The volume fraction of each class of aggre-
gates ( fgi) and their diameters (Øi) used in the numerical concrete
are presented in Table 2.

For this study the “digital concrete” model is developed in two
dimensions due to the large number of simulations, and hence aggre-
gates are simply represented with a circular shape [23]. After each
draw (following the previous algorithm), the position of all aggre-
gates (coordinates Xi, Yi of the center of a particle with Øi diameter)
is known in the “mesoscopic box” and can be imported in the finite
element code for the meshing process.

3.2. Diffuse meshing method

The mesoscopic mesh is obtained by using the diffuse meshing
method [18] in which the heterogeneous material properties are
directly projected on the Gauss points of any finite element mesh
(regular or not). This method serves to represent different materi-
als in one finite element; additionally, the shape of the aggregates is
not really meshed. In our case the mesh is a regular grid made up
of four-node quadrilateral elements (Fig. 2). The elementary stiffness

Table 2
Volume fraction of each class of aggregates

N◦ Classi Øi[mm] fgi[%] N◦ Classi Øi[mm] fgi[%]

1 1 27.750 6 6.3 6.576
2 2 5.444 7 8 14.324
3 4 8.616 8 10 16.713
4 5 7.999 9 12.5 3.979
5 5.6 6.211 10 14 2.388
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matrix Keij is calculated as a function of the distribution of different
materials (aggregates and matrix).

Keij =
N∑

g=1

ygBki(ng ,gg)Ckl(ng ,gg)Bij(ng ,gg) (6)

where N is the number of Gauss points, yg is the weight associated
with each Gauss point, ng and gg are the coordinates of Gauss Points,
Bij is the gradient of the shape function matrix and Ckl is the stiff-
ness tensor of the material at Gauss point g. Unlike the exact meshing
method, the diffuse meshing method allows an easy generation of
the smallest aggregates. Nevertheless, the downside of using a reg-
ular grid is that the size of an element is totally dependent on the
diameter of the finest aggregates. N’Guyen [18] showed numerically
if the element size h is less than the third of the minimum diame-
ter (Ømin), the fracture behavior obtained on the basis of the diffuse
mesh technique is similar to the one obtained on the basis of an
exact meshing method (see Section 2.2 of [18]). Moreover, Grondin
et al. [24] showed that the stability of the results according to the
random distribution of heterogeneities for an exact meshing method
is obtained if the finite element size is equal to 0.8 times the smallest
inclusion diameter.

An element size of 0.3 mm was chosen in our case:

h <
Ømin

3
� 0.33mm (7)

This element size is used for all FE simulations (reference con-
crete, mortars, and simplified concretes described in the following).
Thus, the regular FE mesh is the same for all configurations of con-
cretes studied. The diffuse meshing method serves to represent a
wide range of classes of aggregates according to the grading curve of
concrete in strict compliance with the granular compactness.

In this study, the choice is made to simulate the experimen-
tal aggregate compactness as well as the smallest aggregates, to
the detriment of the ITZ simulation which is not considered in the
present model. Nevertheless, as shown below, the damage simula-
tion from this model will occur at the matrix/aggregate “interface”.
Thanks to the stiffness mismatch between the two components, it is

Fig. 3. Notched specimen loaded in tension (dimensions and boundary conditions)/
mesostructure corresponding to the reference one (all graduate classes).

in agreement with the expected experimental location of the damage
in concrete. On the other hand, the simulation of all aggregate classes
of concrete, and especially those corresponding to the smallest
aggregates, involves extensive computation time due to necessarily
fine meshes. It is therefore tempting to eliminate the smallest aggre-
gates in order to enlarge the minimum size of the finite elements and
hence to decrease the computation time. The main question concerns
the influence of such a simplification of the microstructure on the
global and local simulated fracture behavior of concrete. The answer
to this question is the subject of the present study.

Fig. 2. Local Young modulus values using the diffuse meshing method. (a) View of one aggregate (b) close-up view of a finite element.
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Fig. 4. Examples of the 6 different configurations of simplified concrete.

4. Effect of the microstructure simplification on the simulated
fracture behavior

4.1. Simulation samples

The numerical simulations are conducted from a notched speci-
men loaded in tension under plane stress condition in 2D from an
imposed displacement on the upper boundary of the specimen (as
shown in Fig. 3). During the simulation, the displacement incre-
ment follows a geometric progression from 0.4 lm micrometer to
300 lm. This kind of progression imposes low displacement incre-
ment around the peak load then, higher and higher displacement
increment until the end of the simulation (corresponding to the typi-
cal asymptotic behavior of quasi-brittle materials). Nevertheless, the
choice of the displacement increment is quite important for avoid-
ing any converging problem during the resolution. The dimensions
of the specimen are 10 × 10cm2 in order to have a Representative
Elementary Volume (REV). According to Grondin [25], the length of
REV (LREV) must be higher than 5 times the maximum diameter of
aggregate (Ømax = 14mm so LREV > 70mm).

4.2. Simulation procedure

In order to answer the question of the effect of the microstruc-
ture simplification on the simulated fracture behavior, a comparison
of the mechanical and damage responses between the reference
configuration where all classes of aggregates are present and
configurations corresponding to successive simplifications of the
mesostructure of mortar are performed. The simplified configu-
rations of concrete consist in successively removing the lower
aggregate classes of the granular skeleton to the benefit of a mor-
tar matrix; the mortar matrix thus considered is simulated as a
continuous medium whose mechanical and fracture properties are
estimated from a mortar constituted by the cement matrix and the

lower aggregate classes. The simulation procedure comprises four
successive steps:

1. Simulation of the numerical tensile test using the reference
digital concrete where all the classes of aggregates i = 1 to
10 are present (Table 2) and using the properties presented in
Table 1.

2. Creation of mortar specimens comprising the cement matrix
in which the lower aggregate classes are successively added.
From a practical point of view, for a mortar specimen consti-
tuted by the cement paste and the 1 to i aggregate classes,
the mesostructure is simulated by replacing the upper classes
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Fig. 5. Macroscopic response: average load-displacement curves for homogenized
mortars.
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Table 3
Average properties of homogenized mortars.

Configurations Fvg∗ Emean mmean ftmean Gfmean Gfmin Gfmax

(GPa) (MPa) (J/m2) (J/m2) (J/m2)

1_1P-2_10 M 39.3% 28.25 ± 2.45e − 3 0.2 ± 1.71e − 5 2.81 ± 0.039 65.65 ± 10.11 45.43 85.87
1_2P-3_10 M 43.6% 28.97 ± 2.54e − 3 0.2 ± 1.90e − 5 2.94 ± 0.037 65.08 ± 9.60 45.88 84.28
1_3P-4_10 M 49.4% 29.52 ± 3.86e − 3 0.2 ± 1.47e − 5 2.95 ± 0.030 67.46 ± 17.34 50.61 84.31
1_4P-5_10 M 53.8% 29.95 ± 8.64e − 3 0.2 ± 2.29e − 5 3.04 ± 0.032 73.69 ± 15.45 53.06 94.33
1_5P-6_10 M 56.7% 30.24 ± 1.36e − 2 0.2 ± 2.45e − 5 3.05 ± 0.058 69.51 ± 22.02 47.90 91.12
1_6P-7_10 M 59.4% 30.52 ± 1.42e − 2 0.2 ± 2.27e − 5 3.12 ± 0.041 70.79 ± 19.05 52.12 89.40

(i.e., i + 1 to 10 aggregate classes) by a mortar having the
same cement paste/aggregates volume fraction ratio as in
the reference concrete. Thus, the new global volume fraction
Fvg∗

1−i of a mortar made up of the cement paste and the 1 to i
aggregate classes is obtained as:

Fvg∗
1−i =

Fvg
∑i

1 f gi

1 − Fvg
∑10

i+1 f gi

(8)

The volume fraction per class of aggregate can be obtained
by a proportional law using Fvg∗

1−i. The mortar is identified
by the following nomenclature: “1_(i)P-(i+1)_10M” where
i is the highest class of aggregates present in the mortar. P
means “Present” and M means “Missing”. In this study, classes
of aggregates are deleted until Ø = 6.3 mm (class n◦6). Note
that only 6 different mortars are considered in this study,
i.e., consisting in the successive inclusions of the 6 lower
aggregate classes.

3. Estimation of the elastic and fracture properties of mortar
“1_(i)P-(i+1)_10M” defined in step 3. Young modulus (EHM),
Poisson coefficient (mHM) and tensile strength ( ftHM) are
estimated from the load-displacement response obtained
from the simulation of a tensile test on an un-notched spec-
imen (specimen shown in Fig. 3 but without notches), while
the fracture energy (GfHM) is estimated from a notched spec-
imen (Fig. 3) in order to obtain a single final crack and so a
relevant value of the fracture energy. Note that the tensile
strength ( ftHM) is estimated from an un-notched specimen,
thus avoiding the notch effect.

4. Finally, the last step consisted in simulating concrete with a
simplified mesostructure, i.e., comprising the i+1 to 10 upper
aggregate classes and a mortar (continuous medium) whose
homogenized properties correspond to those estimated from
step 3 “1_(i)P-(i+1)_10M” as shown in Fig. 4. The nomencla-
ture of the simplified concrete is “1_(i)H-(i+1)_10P” where
H means “Homogenized” and P means “Present”. Note that
the properties of the present aggregates in the simplified
concrete remain equal to those defined in Table 1. Six sim-
plified mesostructures of mortar are simulated as shown in
Fig. 4, and their load-displacement responses obtained from
the tensile test on the notched specimen (Fig. 3) are compared
to the reference one obtained in step 1. On the other hand, in
order to obtain an average fracture behavior for each concrete
configuration, i.e., a fracture behavior independent of the
aggregate location in concrete, ten draws of the mesostruc-
ture are performed for each concrete configuration (reference
concrete configuration and simplified ones) as well as for each
mortar shown in Fig. 4. Moreover, note that the 10 draws of
each simplified concrete are obtained for the 10 draws of the
reference concrete. Thus, the effect of the smallest aggregates
on the damage location and on the crack path (tortuosity)
can also be studied by comparing the corresponding reference
and simplified configurations.

4.3. Identification of homogenized mortar properties

For each of the six homogenized mortars shown in Fig. 4, 10
draws are simulated for the un-notched specimen - estimation of
EHM, mHM, ftHM - and 10 draws are simulated for the notched one -
estimation of GfHM - i.e., 120 simulations. Fig. 5 shows the average
load-displacement responses (average of the 10 draws) obtained in
the case of notched mortar specimens. The 120 load-displacement
responses are analyzed and lead to the average and standard devia-
tions of elastic and fracture properties reported in Table 3. Note that,
according to the RILEM 50-FMC [26], fracture energy is defined as the
amount of energy necessary to create one unit of area of crack and
can be computed as:

GF =
WF

Alig
=

WF

B(D − a0)
= Gf (9)

where WF is the work of fracture (considered as the whole area under
the load-displacement curve), B is the sample thickness and D − a0 is
the ligament length.

As shown in Table 3 and according to Kim and Abu Al-Rub [27],
the tensile strength and the elastic modulus (Fig. 6) tend to linearly
increase with the addition of aggregate classes and the correspond-
ing increase in the volume fraction of aggregates. The same trend
is observed with the fracture energy. Thus, as a function of the
increase in the volume fraction of aggregates, the crack path becomes
more tortuous and leads to a higher fracture energy [28,29]. In other
words, the high classes of aggregates (large diameter) increases the
tortuosity of the crack path at large length scales while the fine
classes (small diameter) tends to increase the tortuosity of the crack
path at small length scales. In fact, with the addition of aggregates
classes from the finest one, both effects act in the same time and tend
to increase the “overall” length of the crack path and consequently of
the resulting macroscopic fracture energy.
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(a) with the use of Gfmean
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Fig. 7. Macroscopic response of simplified concretes (a) with the use of Gfmean (b) with
the use of Gfmin .

Globally, standard deviations of elastic modulus and tensile
strength are low. However, the standard deviation of the fracture
energy is higher and increases as a function of the volume fraction
of aggregates due to the scattering observed for the crack paths. For
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Fig. 8. Initial elastic modulus of the different simplified concretes.

instance, a coefficient of variation of 25% can be noted for the config-
uration “1_6P-7_10M” corresponding to the highest volume fraction
of aggregates (Fvg∗). An Anderson-Darling Normality Test was per-
formed and shows that the fracture energy values follow a normal
distribution.

Thus, in order to take into account the scattered character of the
fracture energy in the following parts of the study, three values of
fracture energy are successively used: Gfmean which is the average
of 10 draws and Gfmin and Gfmax which are respectively the average
value plus-minus 2 times the standard deviation (representation of
95% of the set for the normal distribution).

4.4. Simulations of simplified concretes: Influence of the finer classes of
aggregates

4.4.1. Comparison of mechanical responses
Fig. 7 shows the load-displacement responses obtained from sim-

plified concretes “1_(i)H-(i+1)_10P” compared to the response of the
reference concrete. Fig. 7a corresponds to the responses obtained
from a fracture energy of the homogenized mortar corresponding to
Gfmean. It can be noted that the responses observed in the pre-peak
regime (peak included) are analogous to the reference one, while
in the post-peak regime, the responses overestimate that expected
and consequently lead to overestimated values of the fracture energy

Fig. 9. Fracture properties of simplified concretes: (a) tensile strength ft and (b)
fracture energy Gf .
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Fig. 10. Typical (a) damage fields and (b) crack path for the (c) reference and the simplified concrete.

compared to the reference one. In fact, damage to the simplified con-
cretes localizes later compared to the reference simulation and leads
to a residual stress which tends to increase the fracture energy. A
surprising result is that the overestimation of the fracture energy is
inversely proportional to the volume fraction of aggregates in the
homogenized mortar.

The use of the lower values of the fracture energy Gfmin instead
of the average one Gfmean for the homogenized mortars reduces the
overestimation of the fracture energy, as shown in Fig. 7b, but the
same tendency can be observed in the effect of the volume fraction
of aggregates in the homogenized mortars and a slight disagreement
can be observed concerning the expected peak value.

4.4.2. Comparison of elastic properties
Fig. 8 shows the evolution of the elastic modulus of the simplified

concretes. The values are quasi-constant and analogous to the refer-
ence with a maximum coefficient of variation of 0.55% (black square
symbol), which seems to validate the homogenization method used
to estimate the elastic properties of homogenized mortars.

4.4.3. Comparison of fracture properties
Fig. 9 shows the fracture properties ft and Gf obtained for the 6

simplified concretes. The tensile strength ft values increase slowly
throughout the homogenization process with a maximum average
error compared to the reference one of about 0.6%, which is smaller
than the reference standard deviation even if the minimum and max-
imum values of Gf are considered. Nevertheless, the best agreement
for ft is obtained by using the average value of Gf (Gfmean) for the
homogenized mortar (HM). As expected from the load-displacement
curves (Fig. 7) whose the magnitudes in the post-peak regime are
greater than the one of the reference concrete, the total fracture
energies of the simplified concrete overestimate the fracture energy
corresponding to the reference one. This phenomenon is explained
from Figs. 10,11 and 12 by damage fields more diffuse and contin-
uous in simplified concretes compared to the one observed in the
reference one and corresponding to an increase of the number of
damage elements. Associated to an increase of the fracture energy
of the corresponding homogenized mortars (Table 3), the increase
of the number of damage elements lead to an overestimation of the
total fracture energy. On the other, the total fracture energy Gf of

the simplified concretes tends to slightly decrease with the succes-
sive elimination of the finer classes of aggregates (Fig. 9) and this,
in spite of the increase of the fracture energy of the corresponding
homogenized mortars.

4.4.4. Comparison of damage fields and crack paths
The study of damage fields and resulting crack paths is illus-

trated here from one draw of the simplified concrete, i.e., considering
a given granular skeleton where the smallest classes of aggregates
are successively removed to the benefit of the homogenized mor-
tar (Fig. 10). As shown in Fig. 10, the damage fields and the crack
path (represented by deformation fields eyy which seem to be sensi-
tive to the real crack path) of the reference concrete exhibit pictures
of the failure process which are analogous to those experimentally
expected. Note that the damage fields and crack path plotted in
Fig. 10 are considered as typical of the damage fields and crack paths
observed on the 10 draws of granular skeleton. Removing aggregates
leads to extended aggregate spacing and significantly impacts the
dimensions of the damage zones. Indeed, one can observe that the
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successive removal of lower aggregate classes induces a widening of
the zone where FE exhibit greater damage than that observed in the
reference simulation. This means that the damage field may not only
be related to the aggregate sizes but also to the grain size contained
in the cement matrix [30].

Therefore, the homogenization process of mortar leads to a loss of
information at small length scales where the microstructure seems
to play an important role. Moreover, the numerical results could
be analyzed with the same Acoustic Emission (AE) analysis pro-
cess [31], considering an analogy between recorded events from AE
(corresponding to micro-crack nucleation) and numerical damaged
elements [32]. It is on the basis of this latter remark that post-
treatment results are achieved (Figs. 11, 12, 13). Fig. 11 shows that
removing aggregates from the granular skeleton increases the num-
ber of damage elements (i.e., elements for which D �= 0) and this is
true for the same number of FE constituting the mesh whatever the
configuration studied. Since there are fewer aggregates, the local-
ized damage zone is less confining. In addition,according the global
response, the cumulative number of damage elements is clearly
lesser in the reference concrete compared to the one of the reference
mortar. On the other hand, Otsuka has shown that the development
of the FPZ takes place between 30% in pre-peak regime and 70% in
post-peak regime [33]. Fig. 11 is also in agreement with this latter
result insofar as the number of damaged elements is highly varied in
this loading interval. Another way to observe the different damage
fields as a function of the considered configuration consists in esti-
mating the probability density function of the cumulative number
of damaged Gauss points along the y-coordinate (i.e., perpendicu-
larly to the final crack path), as shown in Fig. 12 from the inserted
graph exhibiting two examples of the obtained probability density
function. Moreover, in order to compare the probability density func-
tions, these ones can be fitted with a reasonable accuracy from a
Gaussian distribution as shown in Fig. 12 (inserted graph). The result-
ing Gaussian distributions are plotted in Fig. 12 and exhibits a strong
dependence of the maximum probability as a function of the con-
figuration considered. Note that all the simplified concretes lead to
maximum probabilities greater than those observed for the reference
configuration and that this overestimation of the maximum prob-
ability increases as a function of the simplification of the granular
skeleton of concrete. Moreover, if according to Haidar [34], the width
of the FPZ might be estimated from a horizontal straight line which
intercepts the probability density function curve at 20% of its maxi-
mum (related to the maximum number of events for a y-coordinate
location), the FPZ width appears to be dependent on the granular
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Fig. 13. Estimation of the width of the FPZ for the reference and simplified concretes
(Haidar’s method).

skeleton simplification and decreases with the simplification level
(Fig. 13). Note that even if removing lower classes of aggregates tends
to enlarge the damage fields, the probability of getting a damage
element (or Gauss point) near the ligament is higher, and the con-
crete is more lacking in low aggregate classes. Thus, an error in the
estimation of the width of the FPZ occurs with the simplification
level.

5. Conclusions

The possibility of removing the smallest aggregate classes in the
mesoscopic modeling of concrete due to time considerations was
studied in this paper. To this end, a simulation procedure was estab-
lished where lower aggregate classes were progressively removed
from the granular skeleton to the benefit of a homogenized contin-
uous mortar matrix. An isotropic damage model was used at the
mesoscopic scale through a two-dimensional analysis which is use-
ful for predicting the behavior qualitatively. This study was made
for a parameter set that the cement paste is considering as the leak
component, thus a standard concrete was studied. This model gives
a good description of the failure process in concrete, ranging from
diffuse damage to localization, towards a final crack. In addition, it
is able to highlight the existence of branching cracks, due to (i) the
mesostructure, (ii) the boundary conditions and (iii) the geometry
of the specimen (notch). The impact of removing the lower classes
of aggregates (small diameter) is analyzed by comparing the macro-
scopic behavior and the damage fields of the simplified concrete with
different levels of granular skeleton simplification. The results show
that the homogenization technique has no impact on the pre-peak
region of the load-displacement curves, giving Young modulus and
tensile strengths in agreement with those expected from the ref-
erence simulation. In other words, the homogenization procedure
proposed in the paper is successfully applied for the elastic proper-
ties and it is clearly observed that the pre-peak load-displacement
response is mainly governed by the elastic properties. However, the
softening behaviors observed in the post-peak regime lead to an
overestimation of the fracture energy. This is due to different damage
fields and crack paths generated by the presence of small aggregates
during damage localization and the softening process: small aggre-
gates like sand are helpful for the strain and damage localization,
and large aggregates bring tortuosity increasing dissipated energy
for the failure. To conclude, the response obtained by the homoge-
nization of one or several classes of aggregates can lead to an error
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in interpreting the global response and the damage fields, since dif-
ferent mechanisms induced by deleted aggregates are lost during the
homogenization. Thus, for an accurate description of concrete failure,
the whole granular skeleton must be considered even if this involves
expensive computation time. The whole study is based on the con-
sideration of a plain concrete, i.e., intergranular fracture. A new study
might to be realize with the consideration of transgranular fracture
(HPC) and/or a mixed inter-and trans-granular (thanks to the use of
a Gaussian properties distributions for each component).
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