The autoscopic flying avatar: a new paradigm to study bilocated presence in mixed reality

Etienne Perény, Etienne Armand Amato, Geoffrey Gorisse, Alain Berthoz

To cite this version:

Etienne Perény, Etienne Armand Amato, Geoffrey Gorisse, Alain Berthoz. The autoscopic flying avatar: a new paradigm to study bilocated presence in mixed reality. Virtual Reality International Conference, Mar 2016, Laval, France. pp.31:1-31:3, 10.1145/2927929.2927962 . hal-02367590

HAL Id: hal-02367590
https://hal.science/hal-02367590
Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ABSTRACT
This position paper presents the project "Becoming Avatar" deals with avatars' immersion [1] addressed through an interdisciplinary experimental approach. Its goal, at the crossroad of the creation of images and interactive technology, of virtual reality, neurophysiology and information and communication sciences, is to develop a device and a media scenario to support the hypothesis of a split state and to objectify the situation of bilocation [2]. Being present both here in front of the screen and over there, beyond the screen, which is shown by empirical studies of video games and by artists and metaverse explorers in Second Life. This type of state resonates in neurophysiology with the artificial "Out-of-Body Experiences" sensations produced with the aid of virtual reality equipment on healthy subjects.

The production includes the development of a scientific experimental facility for physiological measurements and a public installation allowing someone to live a non-ordinary experience of split self. The common feature to both aspects of the project is based on the original idea of integrating video and 3D technology in order to experiment a situation of flight in mixed reality. The subject is literally invited to "become an avatar", indeed, he sees his own image, filmed from behind, inlaid into a synthetic world where he will be able to move freely and experiment different events. This autoscopic system of immersion was imagined in 2012 by E. Pereny and worked again in 2013-2014 with Pr A. Berthoz and E.A. Amato, to be developed and finalized with N. Galinetti and G. Gorisse, with Jams sessions integrating students.

Categories and Subject Descriptors
Human computer interaction (HCI), Interaction paradigms, Mixed reality, Emerging technologies, Emerging interfaces.

General Terms

Keywords
Avatar, Image, Presence, Immersion, Physiological measurements, Chroma Key, Autoscopy, Third person perspective, Real-time 3D, Instantiation, Experimentation.

1. EXPERIMENTATION PROPOSED
To describe simply the experimentation we propose, we shall now introduce its basic scenario: the free flight. At the beginning of the session, the subject is facing a green curtain with a head mounted display. Then, the screens before his eyes are switched on, he is now seeing a virtual desert landscape with mountains and a glowing sky where the clouds are drifting. Suddenly, his perfectly cutout body, filmed from the back, is appearing, standing in the middle of the landscape. When the subject is moving, and because of the real time reacting of the image, he is realizing that he is like a 3D avatar viewed in third person perspective. He hears the instruction to lift his arms, which will cause the take-off of his body few meters above the ground.

Then, the image of the subject body seems to bend forward, although he himself remains right straight up, which initiates a general scrolling of the landscape. Then starts a learning phase which will train him to navigate in the landscape. Indeed, using his arms, the subject can induce the movement of his avatar to turn right or left, go up or down, depending on their orientations. After having some time to enjoy the sensations procured by this flight activity, he will have to face different events, tests or tasks that will allow him to experience the emotions of this split state situation in this mixed reality. Several physiological parameters will be measured during the experiment.

Perény Etienne
IDEFI-CréaTIC/Laboratoire Paragraphe
Université Paris 8, 2 rue de la Liberté, 93526 Saint-Denis
pereny@univ-paris8.fr

Amato Etienne Armand
DICEN-IDF/CNAM/UPEM
292 Rue Saint-Martin, 75003 Paris
etienne-armand.amato@u-pem.fr

Gorisse Geoffrey
LAMPA - P1, ENSAM ParisTech
4 Rue de l'Ermitage, 53000 Laval
geoffrey.gorisse@ensam.eu

Berthoz Alain
Collège de France,
11 Place Marcelin Berthelot,
75005 Paris
alain.berthoz@college-de-france.fr

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

ACM 978-1-4503-4180-6/16/03...$15.00
DOI: http://dx.doi.org/10.1145/2927929.2927962
is also well illustrated by the dream and the feelings of ghost limbs [8]. We know that these are the specialized areas [9] (parieto-insular cortex and temporoparietal junction) of the brain that are involved in a privileged way, both in the multi-sensory fusion and in the construction of this body schema. The same area are involved in the relationship between body and space, or in the representation of the gravity acceleration and therefore of the orientation of the body relative to gravity, which is one of the function of the vestibular system. Furthermore, Neuropsychology data describes the role of these areas in the phenomena of autoscopic, haustoscopy and out-of-body experiences, which are today studied by neurologists. Finally, it was shown that these areas are also involved in the relationship with others and empathy [10].

3. METHODES AND PERSPECTIVES

Finally, it is useful to emphasize the research-creation method that we are implementing with the researchers involved in this scientific cooperation between the University of Paris 8, the Collège de France and the Conservatoire National des Arts et Métiers. We called our approach techno-social because it takes advantage of the availability and maturity of technology in order to invent their socialization through the creation of original content, materialized through experimentation and technical devices [11]. The preparation and the production are interdisciplinary, but the resulting objects are transdisciplinary, leading to new uses in innovative or classical domains. The originality, assumed by the leaders of this project, is to combine both research and education, including students of different levels, and experiment iteratively various situations with the public to make theoretical advances.

A derivative of the experimental installation may be useful for diagnosis or even remediation of cognitive deficits in pathological identity or visuospatial functions, as well as for training in weightlessness situations or humanoid tele-robotics. The public installation, beyond the reflexive experience and the technical relationship will be proposed in technology exhibitions and could also lead to adaptations in the field of entertainment or in popular science venues such as the Futuroscope or the Museum of Science and Industry in Paris.

4. ACKNOWLEDGMENTS

We would like to thank Nicolas Galinotti and Mohamed Zaoui for their expertise and their implication in the development of the application. Moreover, we thank the TEA company for its technical support during the integration of the physiological sensors.

5. REFERENCES

