
HAL Id: hal-02367580
https://hal.science/hal-02367580

Submitted on 5 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hybrid controller for ABS based on
extended-braking-stiffness estimation

Missie Aguado-Rojas, William Pasillas-Lépine, Antonio Loria

To cite this version:
Missie Aguado-Rojas, William Pasillas-Lépine, Antonio Loria. A hybrid controller for ABS based on
extended-braking-stiffness estimation. 9th IFAC Symposium on Advances in Automotive Control, Jun
2019, Orleans, France. �10.1016/j.ifacol.2019.09.072�. �hal-02367580�

https://hal.science/hal-02367580
https://hal.archives-ouvertes.fr


A hybrid controller for ABS based on
extended-braking-stiffness estimation ?

Missie Aguado-Rojas ∗ William Pasillas-Lépine ∗∗ Antonio Loŕıa ∗∗
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Abstract: In the context of antilock braking systems (ABS), we present a two-phase hybrid
control algorithm based on the tyre extended braking stiffness (XBS), that is, on the slope of the
tyre-road friction coefficient with respect to the wheel slip. Because the XBS cannot be directly
measured, a switched observer is used to estimate it. With the proposed hybrid algorithm,
the closed-loop trajectories of the system satisfy the conditions required for the observer to
correctly estimate the XBS. Moreover, the braking distances are shorter than those obtained
using a hybrid algorithm based on wheel deceleration thresholds.
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1. INTRODUCTION

Introduced by Bosch in 1978 for production passenger
cars, the antilock braking system (ABS) is the core of
today’s active driving-safety systems. Its main objectives
are to prevent the wheels from locking in order to maintain
the stability and steerability of the vehicle during heavy
braking, and to maximally exploit the tyre-road friction
coefficient in order to achieve the shortest possible braking
distance [Corno et al., 2012; Singh et al., 2013].

Most commercial ABS use a regulation logic based
on wheel deceleration thresholds (see, e.g. Kiencke and
Nielsen [2005]; Gerard et al. [2012]; Reif [2014]). The
principle of these algorithms is based on generating limit
cycles in a desired range of longitudinal wheel slip. The
main force of these controllers is that they are able to keep
wheel slip in a neighborhood of the optimal point without
using explicitly its value and they are quite robust with
respect to changes in tyre parameters and road conditions.
Their main drawback, however, is that they are often
based on purely heuristic arguments and the tuning of the
deceleration thresholds is not an easy task [Choi, 2008;
Hoàng et al., 2014]. Moreover, the wheel-slip cycling range
cannot be explicitly chosen; instead, it has to be selected
indirectly through the wheel deceleration thresholds. The
objective of this paper is to design an algorithm that allows
the cycling range to be chosen in a more direct manner.
To that end, we present a regulation logic based on the
tyre extended braking stiffness (XBS).

The braking stiffness is the slope of the tyre-road friction
curve with respect to the wheel slip at the zero-friction
operating point [Gustafsson, 1997]. As a generalization of
this concept, the XBS may be defined as the slope of the
friction-vs-slip curve at any operating point [Sugai et al.,
1999; Umeno, 2002]. The interest of using the XBS is that,
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in contrast to the unknown optimal value of wheel slip, the
optimal value of XBS is always known and equal to zero.
Hence, the (control) objective of an ABS algorithm may
be reformulated in terms of this variable. In other words,
our objective is to design an algorithm such that the XBS
remains in a neighbourhood around zero.

The concept of maximizing the braking force in an ABS
based on the XBS was introduced by Sugai et al. [1999],
and was later extended by Umeno [2002] and Ono et al.
[2003]. In these works, however, the XBS is implicitly
assumed to be a constant parameter so its dynamics is
neglected. In Villagra et al. [2011], in order to estimate
the maximum friction coefficient, the XBS is used to signal
the entrance of the tyre into a different road surface and
to distinguish one type of road from another. In Hoàng
et al. [2014] the XBS is used to perform closed-loop wheel
acceleration control during some phases of a five-phase
wheel-deceleration-based algorithm.

In this paper, a two-phase algorithm based on XBS thresh-
olds is developed. This work builds upon the results pre-
sented in Aguado-Rojas et al. [2018], where an observer
to estimate the XBS under unknown road conditions
was introduced. By directly choosing the values of XBS
thresholds, the proposed algorithm allows an easier and
more direct selection of the wheel-slip cycling range and,
consequently, to reduce the braking distance. Moreover,
it is shown that the trajectories of the system satisfy the
conditions required for the observer to correctly estimate
the XBS, which may not be achieved with continuous
control algorithms.

2. XBS DYNAMICS

Consider a quarter-car model composed of a wheel with
radius R and angular velocity ω mounted on a vehicle with
longitudinal velocity vx. The normalized relative velocity
between the vehicle and the tyre, known as the wheel slip
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Fig. 1. Typical shape of the XBS-vs-slip curve.

λ =
(
Rω − vx

)
/vx,

determines the friction coefficient µ between the tyre and
the road through a nonlinear relation µ(λ).

Define as state variables the wheel acceleration offset

z1 := Rω̇ − v̇x(t),

that is, the difference between the longitudinal acceleration
of the vehicle and the linear acceleration of the tyre at the
wheel-ground contact point, and

z2 := µ′(λ),

that is, the tyre extended braking stiffness (XBS). The
shape of the curve µ′(λ) is illustrated in Fig. 1. The point
at which the maximum braking force can be obtained
corresponds to z2 = 0. The area above this point is
called the stable region of the tyre, and the area below
is called the unstable region. Given a suitable choice for
the tyre-road friction µ(λ), a simple second-order model
in which the XBS appears directly as a state variable can
be developed. In this work the friction model proposed by
Burckhardt [1993] is used, hence the XBS is modelled as

µ′(λ) = c1c2 exp(−c2λ)− c3,
where the coefficients ci are constants that depend on the
road conditions.

During an ABS braking scenario, v̇x(t) remains almost
constant and close to the maximal value allowed by the
road conditions, while λ remains relatively small. Under
such conditions, the dynamics of z1 and z2 are described
by 1

ż1 = − a

vx(t)
z1z2 − bu (1a)

ż2 =
(
cz2 + d

) z1
vx(t)

(1b)

y = z1, (1c)

where the control input u is the derivative of the brake
pressure, the measured output y is the wheel acceleration
offset, the positive parameters a and b depend on the
geometrical characteristics of the wheel, and c and d on
the road conditions. All parameters are assumed to be
known and constant. The vehicle speed vx(t) is considered
as a known external variable and assumed to be positive,
bounded, and bounded away from zero.

The aim of this paper is to design a control law such
that the XBS remains close to its optimal value and thus
maximize the braking force during an emergency braking
scenario.
1 See Hoàng et al. [2014] and Aguado-Rojas et al. [2018] for the
complete derivation of this model.

3. CONTINUOUS CONTROL DESIGN

To simplify the control design, let us assume for the
moment that both z1 and z2 are known. Under this
assumption, one may design a control law that stabilizes
system (1) at the origin. Note, however, that because the
control input u does not appear explicitly in (1b), one
must achieve the objective through z1, that is, regarding
the latter as a virtual control.

Hence, we first design a virtual reference z∗1 such that if
z1 = z∗1 , then z2 → z∗2 = 0. One such reference is

z∗1 = −kr
z2

cz2 + d
, kr > 0, (2)

since, setting z1 = z∗1 in (1b) leads to ż2 = −krz2/vx(t)
which is exponentially stable.

To perform the tracking of z∗1 , the control is designed as

u =
1

b

[
− a

vx(t)
z1z2 +

kp
vx(t)

(
z1 − z∗1

)
− ż∗1

]
, kp > 0,

(3)
where we employ (1b) in the evaluation of ż∗1 . Hence, the
latter is implemented using z1 and z2 as

ż∗1 = − kr
vx(t)

dz1
cz2 + d

.

Note that, even though the right-hand side of (2) is not
defined when z2 = −d/c, this singularity lies outside the
domain in which z2 is physically feasible. Indeed, there
exist zmax

2 ≥ z2 ≥ zmin
2 > −d/c. Hence, z∗1 is well-posed.

Now, let z̃1 := z1 − z∗1 and z̃2 = z2 − z∗2 . Substitution of
(3) in (1a) yields the closed-loop dynamics

ż1 =
kp
vx(t)

(
z∗1 − z1

)
+ ż∗1 = − kp

vx(t)
z̃1 + ż∗1

and from (1b) and (2) one has

ż2 =
(
cz2 + d

) z∗1
vx(t)

+
(
cz2 + d

) z̃1
vx(t)

= − kr
vx(t)

z2 +
(
cz2 + d

) z̃1
vx(t)

.

Hence, the tracking error dynamics is

˙̃z1 = − kp
vx(t)

z̃1 (4a)

˙̃z2 = − kr
vx(t)

z̃2 +
cz̃2 + d

vx(t)
z̃1, (4b)

which has a cascaded structure. This is relevant because,
for cascaded systems, sufficient conditions for the origin
to be globally asymptotically stable (GAS) are well es-
tablished. It is enough that the origin for (4a) be GAS,
that the origin for (4b) with z̃1 = 0 be GAS, and that the
solutions of (4) be uniformly globally bounded [Panteley
and Loŕıa, 2001].

Now, recalling that vx(t) is positive, bounded, and
bounded away from zero, it follows that the origin of (4a)
is GAS. The same holds for the origin of

˙̃z2 = − kr
vx(t)

z̃2.

Moreover, note that because z∗2 = 0, the tracking error
z̃2 = z2 is the XBS itself, which is bounded by nature.
Thus, the interconnection term

(
cz̃2 +d

)
/vx(t) is bounded

and so are the solutions of (4). Therefore, it follows by a
cascade argument that the origin of (4) is GAS.
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Fig. 2. Continuous state-feedback control: the system converges to the origin. Left: The estimated states do not
converge to their true values because z1 → 0 (hence, it is not persistently exciting). Right: During the transient
stage, the estimate ẑ2 crosses the set {cz2 + d = 0}.
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Fig. 3. Continuous output-feedback control using XBS observer: z2 does not converge to its optimal value. Left: The
estimated states do not converge to their true values because z1 → 0 (hence, it is not persistently exciting). Right:
Even though the true trajectories of the system remain within the feasible region, as ẑ2 approaches −d/c, the
denominator of the right-hand side of (2) approaches zero and z∗1 grows unbounded. The simulation is stopped
when a division by zero is detected.

The performance of this control law is illustrated in Fig. 2.
Unless otherwise stated, in what follows we consider a sim-
ulation scenario of a vehicle braking on dry asphalt with an
initial speed of 90 km/h. The graphics show the evolution
of the system (solid line, blue) on the phase-plane for
two different initial conditions (the trajectories labeled
‘observer’ will be discussed later on). Not surprisingly, the
control law given by (2) and (3) is able to smoothly steer
the system’s trajectories towards the origin. We recall,
however, that we have momentarily assumed that z1 and
z2 are known, but in a real-time implementation z2 cannot
be directly measured. Hence, in order to implement the
control law, an estimate ẑ2 must be used instead. To
generate such an estimate, an observer is presented in the
following section.

4. XBS OBSERVER

Under the assumptions established in Section 2, an ob-
server for system (1) may be designed as

˙̂z1 = − a

vx(t)
z1ẑ2 − bu+ k1(z1)

z1
vx(t)

(
z1 − ẑ1

)
(5a)

˙̂z2 =
(
cẑ2 + d

) z1
vx(t)

+ k2(z1)
z1
vx(t)

(
z1 − ẑ1

)
, (5b)

where

ki(z1) =

{
k+i if z1 > 0

k−i if z1 < 0
for i = {1, 2}. (6)

Define the estimation errors z̄1 := ẑ1−z1 and z̄2 := ẑ2−z2.
From (1) and (5), one has[

˙̄z1
˙̄z2

]
=

z1
vx(t)

[
−k1(z1) −a
−k2(z1) c

] [
z̄1
z̄2

]
. (7)

The observer described by (5) and (6) is a particular case
of those presented in Hoàng et al. [2014] and Aguado-Rojas
et al. [2018] (in this work the road parameters c and d are
assumed to be known, but in the aforementioned references
such is not the case). It is a Luenberger-like observer in
which the gains ki(z1) switch between two different values
k+i and k−i depending on the sign of z1. Following the same
approach used in those references, it can be shown that if
the gains k+i and k−i satisfy



k+1 > c, k+2 < − c
a
k+1 , k−1 < c, k−2 < − c

a
k−1 ,

k−1 = 2c− k+1 , ck+1 + ak+2 = ck−1 + ak−2 ,
(8)

then the origin of (7) is asymptotically stable, provided
that: (i) z1 is persistently exciting (PE), (ii) z1 crosses zero
only at isolated points, and (iii) any two such points are
separated by an interval of length no smaller than τD > 0.

The condition (i) holds if there exist positive constants µ0

and T0 such that∫ t+T0

t

z1(ς)2dς ≥ µ0 for all t ≥ 0. (9)

Roughly speaking, (9) means that z1 should be rich enough
to guarantee that the solutions of (7) do not become too
slow or remain “stuck” away from zero. The condition (ii)
renders the system observable even when it crosses the
set {z1 = 0} on which the system is not observable. The
conditions (ii) and (iii) imply that there exists a minimal
dwell time τD > 0 between each consecutive switch of the
gains k+i and k−i . This three conditions, together with (8),
guarantee the asymptotic stability of (7) [Aguado-Rojas
et al., 2018].

Fig. 3 illustrates the performance of the control law of
Section 3 when (2) and (3) are implemented using ẑ2
instead of z2. In both cases the control fails to drive the
system towards the origin. This is caused by two problems:
(a) the control law does not guarantee that z1 is PE
because z1 → 0, and (b) the observer does not guarantee
that ẑ2 remains within a feasible region for all t. Consider
again Fig. 2-Left. The graphic shows the evolution of the
observer (dash-dotted line, green) when it is implemented
in open loop (that is, independently from the control).
In this case, the trajectory of z1 does not satisfy the
persistency of excitation condition so the estimated states
do not converge to their true values. When the control
is implemented in closed loop with the observer (Fig. 3-
Left), this causes the system to converge to a point
different than the origin. Now, consider Fig. 2-Right. In
this case the estimated states do converge to the true
trajectory of the system. However, during the transient
stage ẑ2 crosses into a region in which such a value of
z2 is not feasible. When the control is implemented in
closed-loop with the observer (Fig. 3-Right), the reference
z∗1 grows unbounded as ẑ2 approaches −d/c. When ẑ2
crosses the set {cz2 + d = 0} (dashed line, red), z∗1 and
consequently u are no longer defined. To circumvent these
problems, in the following section we redefine the virtual
reference z∗1 such that (9) is satisfied.

5. HYBRID CONTROL DESIGN

To generate a signal z∗1 such that z1 is PE, we propose the
two-phase regulation logic defined in Fig. 4, wherein zref1 ,
χa, and χb are (tunable) design parameters. The system’s
associated phase-portrait is illustrated in Fig. 5. The idea
behind this regulation logic is as follows.

• We assume that the initial condition of the system is
such that z1 < 0 and z2 < 0. That is, we assume that
the wheel has entered the unstable region of the tyre;
if it goes too far into this region, the wheel will lock.
• During phase 1 the reference z∗1 is set to some positive

value zref1 . The aim of this phase is to change the sign

Fig. 4. Two-phase regulation logic for z∗1 . The switching of
the reference is performed based on the value of z2.

 a
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Fig. 5. Limit cycle associated to the regulation logic of
Fig. 4. The aim of the algorithm is to keep the system
oscillating around the origin.

of the wheel acceleration offset and thus cause the
wheel to return to the stable region of the tyre. Once
z1 becomes positive, z2 starts to increase.

• As soon as z2 crosses the threshold χb > 0, phase 2
is triggered and the reference z∗1 is set to −zref1 . The
aim of this phase is to prevent the wheel from going
too far into the stable region, as this would result in
a loss of friction force and thus in an increase of the
braking distance. After the change of sign of z1, the
wheel goes back into the unstable region of the tyre
and z2 starts to decrease.

• As soon as z2 crosses the threshold χa ≤ 0, phase 1
is triggered again and the cycle starts over.

The structure of this algorithm is similar to that of Corno
et al. [2012], where the wheel acceleration is controlled
to a positive or a negative reference during each phase
using a proportional controller and the triggering of the
phases is performed based on the measurement of the tyre
longitudinal force. Nevertheless, unlike this approach we
do not assume the availability of an additional sensor,
hence the XBS observer is used instead.

The performance of the hybrid control algorithm of Fig. 4
is illustrated in Fig. 6. The graphics show the phase-
plane evolution of the system when the control law is
implemented using state feedback. The initial conditions
of the system and the observer as well as the design
parameters are the same as those used to evaluate the
continuous control. Because of the new definition of z∗1 ,
note that in the implementation of this algorithm we
drop the last term of u given by (3) as ż∗1 = 0 almost
everywhere. In both cases the control drives the system to
a limit cycle around the origin. Moreover, because z1 is
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Fig. 6. Hybrid state-feedback control: the system converges to a limit cycle around the origin.
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Fig. 7. Hybrid output-feedback control using XBS observer: the system converges to a limit cycle around the origin.

PE, the observer (implemented in open loop) converges to
the true trajectories of the system.

Fig. 7 illustrates the performance of the hybrid control
law when it is implemented using ẑ2 instead of z2. Even
though the system is perturbed during the transient stage
because of the initial estimation error, the estimated states
converge to the true trajectories of the system. Moreover,
the hybrid control shows robustness to ẑ2 not staying
within the feasible region. Hence, in all cases the control
manages to drive the system towards a limit cycle around
the origin, thus satisfying the control objective.

To assess the performance of the two-phase algorithm
developed in this paper and compare it against that
of an algorithm that use the same set of sensors, the
five-phase algorithm of Pasillas-Lépine [2006] based on
wheel deceleration thresholds is taken as a reference. A
comparison between these two algorithms is illustrated in
Fig. 8. The graphic shows the phase-plane evolution of
the system in the wheel slip domain for a vehicle braking
on wet asphalt with an initial speed of 120 km/h. The
results obtained with different initial speeds and road
conditions are summarised in Table 1, which shows the
braking distance lbrake computed as

lbrake =
vx(0)2

2gµ̄
,

where g denotes the gravitational acceleration and µ̄ is
the average friction coefficient obtained in each scenario.

In all cases both algorithms manage to keep the system
oscillating around the optimal braking point. With the
two-phase algorithm, however, a smaller variation of the
wheel slip with respect to its optimal value is obtained.
In consequence, the average value of tyre-road friction
coefficient is higher, and the braking distance is shorter
than that of the five-phase algorithm. The reduction of
the braking distance using the two-phase algorithm is
especially noticeable at high speeds, in which a reduction
of up to 1.5 meters is obtained.

Even though, theoretically, the operating interval around
zero could be made arbitrarily small, in any real-time im-
plementation the choice of the different design parameters
cannot be made arbitrarily. For the algorithm to work
properly, the thresholds χb and χa must take into account
the (typical) maximum and minimum values of XBS that
can be attained in a certain type of road, as well as the
possible error in the estimate ẑ2. The reference zref1 should
not be too small, as this would cause the algorithm to be
very sensitive to the measurement noise in the wheel accel-
eration offset. Moreover, the gain kp should be sufficiently
large in order to guarantee asymptotic stability of the limit
cycle —see Aguado-Rojas [2019].

6. CONCLUDING REMARKS AND FUTURE WORK

We presented a hybrid control for ABS that uses XBS
logic-based switching. Sufficient conditions to guarantee
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Fig. 8. Comparison between the two-phase algorithm and
the five-phase algorithm of Pasillas-Lépine [2006]. The
latter displays a larger variation of the wheel slip with
respect to the optimal point.

the asymptotically stability of the limit cycle were estab-
lished, provided that the wheel acceleration, the vehicle
acceleration, and the XBS are known. Future work will
focus on the stability analysis of the limit cycle including
the XBS observer dynamics for the general case in which
the road parameters are estimated as well. Future work
will also consider the evaluation of the proposed algorithm
in the presence of unmodelled dynamics such as load
transfer, tyre relaxation, actuator delay, and changes in
the brake efficiency and the road conditions.
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