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Acceleration estimation using imperfect
incremental encoders in automotive applications

Missie Aguado-Rojas, William Pasillas-Lépine, Antonio Lorı́a, and Alexandre De Bernardinis

Abstract— We address the problem of rotational velocity
and acceleration estimation from incremental encoders in
the presence of sensor imperfections, with a particular
orientation towards automotive applications such as trac-
tion and brake control. In this area, measurements of the
wheel speed and acceleration are often affected by large
disturbances with a period of one revolution that arise
from sensor imperfections and degrade the performance of
most control designs. We present an algorithm to identify
and remove such periodic perturbations online, without the
need of error compensation look-up tables, and without as-
suming constant velocity. Experimental tests prove that the
method is able to greatly reduce the impact of perturbations
without introducing an important phase lag, as opposed to
the results obtained using a notch-filter.

Index Terms— Velocity and acceleration estimation, in-
cremental encoders, periodic measurement noise, time-
stamping algorithm, parameter estimation, antilock braking
system.

I. INTRODUCTION

Real-time measurement of angular velocity and acceleration
plays a crucial role in numerous control applications [1]. For
example, in the area of traction and brake control, several
vehicle-dynamics control systems rely on the measurement of
the rotational speed of the wheels as the basic building block,
making the wheel-speed sensor one of the most important
sensors on a wheeled vehicle [2]. The most commonly used
technology to measure rotational velocity and acceleration is
based on incremental shaft encoders [3, § 6.2]. They consist,
mainly, in a toothed wheel (or a slotted disc) attached to
the rotating shaft and a fixed pick-off sensor that detects the
passing of the teeth and outputs a square wave signal in which
each edge corresponds to the edge of one tooth. Thus, the
velocity and acceleration are not directly measured, but they
have to be reconstructed from the encoder pulses.

Several algorithms have been proposed to estimate velocity
or acceleration from encoder measurements (see [4] and [5] for
comprehensive reviews on the state-of-the-art), which can be
classified either as model-based or as signal-based approaches.
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The former are well suited for applications for which simple
and fairly accurate models exist, such as electrical motors. In
the application of interest of this paper, however, the latter
are usually preferred. In the field of automotive engineering
accurate wheel models are rare because the dynamics is af-
fected by the highly nonlinear and uncertain tyre-road friction
characteristic. For this reason, signal-based approaches are
considered to be better suited for automotive applications [6,
appx. B]. Nevertheless, since they rely on the output of a real
sensor subject to manufacturing and assembly tolerances, their
accuracy is inevitably affected by the encoder imperfections.

An ideal incremental encoder is characterized by identical
and equidistant teeth (or slits) distributed over the encoder’s
code-track. In real devices, however, well-known encoder
imperfections (see, e.g., [3, § 6.7] as well as [7]–[9]), such
as non-ideal teeth and eccentricity of the code-track, result
in inexact readings of displacement and affect the quality of
the velocity and acceleration estimations. Moreover, since the
measurement error caused by sensor imperfections is periodic
over one mechanical revolution, both estimates contain large
periodic perturbations whose frequency is locked with the
rotational frequency of the shaft. In an academic context, the
inexact encoder readings induced by sensor imperfections can
be compensated for using error look-up tables (see, e.g., [10]).
However, these are suited solely for a particular encoder and
their construction requires the availability of a high-resolution
reference sensor. In an industrial context, error estimation and
compensation approaches have been proposed, but they work
only when the speed is constant (see, e.g., [1]) or does not
vary significantly within one revolution (see, e.g., [11]).

The available literature shows that, on the one hand,
the problem of rotational velocity and acceleration estima-
tion from ideal incremental encoder measurements is well-
addressed and, on the other hand, the most significant er-
ror sources in the encoder output signals caused by sensor
imperfections are well-known. However, to the best of our
knowledge, only a small number of works have addressed the
issue of the effects of encoder imperfections on the velocity
and acceleration estimation using real-time filters. The pres-
ence of periodic disturbances with a period of one mechanical
revolution was noticed in [12] in the context of experimental
identification of engine-to-slip dynamics in a sport motorbike.
An offline zero-phase adaptive notch-filter-based scheme was
used to remove the first harmonic component of the velocity of
the wheels. The causes of the disturbances were later identified
in [13] and the adaptive notch-filter was applied in real time.
Similarly, the phenomenon was noticed in wheel acceleration
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measurements in [14], in the context of experimental validation
of a five-phase ABS algorithm. A dynamic notch filter was
proposed in [15] to eliminate the periodic disturbances on the
wheel acceleration and the effect of this filter on the delay
margin of the system’s feedback loop was analysed. More
recently, a method to remove the wheel-speed disturbances
caused by sensor imperfections was proposed in [11] to
estimate the pedaling cadence in an electric bicycle. Under
the assumption that the true speed is well approximated by
the mean revolution speed (which does not hold, e.g. during
sudden braking scenarios), a constrained batch least squares
formulation was used to recursively estimate and compensate
for the geometric errors of the toothed wheel of the encoder.

In this paper, we are interested in the estimation of the wheel
angular velocity and acceleration for automotive applications
such as the antilock braking system (ABS). It should be noted,
however, that the domain of application of our contribution is
by no means restricted to the automotive field. The paper is
organized as follows. In Section II we present the outline of a
signal-based approach to reconstruct velocity and acceleration
from encoder measurements, known as the time-stamping
algorithm (TSA). In Section III, we describe the main error
sources in incremental encoders, as well as their effect on
the position, velocity and acceleration measured via the TSA.
The contributions of our work are presented in Sections IV
to VII. First, we introduce three models that capture the
effects of sensor imperfections on the measured position,
velocity, and acceleration signals. By combining these models
with the features of the TSA, we extend the work presented
in [16] and propose a method to identify and remove the
periodical disturbances introduced by sensor imperfections.
Rather than filtering out only the first harmonic component
of the disturbances (i.e. the component whose frequency is
equal to the speed of the wheel) as in the previous references,
the aim of our approach is to identify a given number of
harmonic components and to use that information to recover
reliable estimates of the velocity and acceleration of the shaft.
The method proposes a trade-off between the smoothness
of the signals and the length of the delay, which could be
exploited in order to satisfy delay margin constraints imposed
by control laws. The effectiveness of the estimation algorithm
is validated on an experimental setup via open-loop tests,
and its performance is compared with respect to the one
of a notch filter. A case-study from the ABS literature is
used to illustrate the usefulness of the estimation algorithm
in closed-loop control applications. Concluding remarks and
perspectives on future work are given in Section VIII.

II. TIME-STAMPING ALGORITHM

In this section we present the so-called time-stamping
algorithm (TSA) [17], which is used throughout this work to
reconstruct angular velocity and acceleration from the output
pulses of an incremental encoder. This algorithm is closely
related to the Savitzky-Golay filter [18] (see also [19], [20])
and the least squares fit observer [21]. It consists in capturing,
via a high-resolution clock, the time instants in which the
edges of the encoder pulses are detected, and using the

information of the last n edges to approximate the evolution
of the angular position with a polynomial of order m. Each
edge detection is called an encoder event.

Let ti and θi denote the time instant and position corre-
sponding to the ith encoder event, and let k be the index of
the most recent event. The position θ at the current time t is
modelled as

θ(t) = pmt
m + pm−1t

m−1 + . . .+ p0, (1)

where the coefficients p0, . . . , pm are unknown. A regression
problem is formulated for the last n events as

Ax = b (2)

with A ∈ Rn×(m+1), x ∈ Rm+1, and b ∈ Rn given by

A =

t
m
k−n+1 tm−1k−n+1 · · · tk−n+1 1

...
...

...
...

...
tmk tm−1k · · · tk 1

 ,
x =

[
pm pm−1 · · · p1 p0

]>
,

b =
[
θk−n+1 · · · θk

]>
.

Given n > m ≥ 2, equation (2) is solved for x, in the
least-squares sense, as

x = (A>A)−1A>b.

Estimates of the angular velocity ω and acceleration α are
then obtained via analytic differentiation of (1) with respect
to time as

ω(t) =
∑m

i=1
i pi t

i−1, (3)

α(t) =
∑m

i=2
(i− 1) i pi t

i−2. (4)

In what follows, the order of the polynomial is set to m = 2.
Under this choice, the algorithm presented here is equivalent
to the one described in [14, appx. 1], which has been shown
to yield a good performance in automotive applications.

III. INFLUENCE OF ENCODER IMPERFECTIONS

An ideal incremental encoder is characterized by identical
and equidistant slits distributed over the encoder’s code-track
and, in the case of quadrature encoders, by two symmetrical
output channels 90 degrees out of phase. That is, an ideal
encoder is characterized by equally-spaced edge transitions of
the output pulses. In real devices, however, well-known man-
ufacturing and assembly imperfections introduce variations in
the location of the edge transitions that lead to differential-
and integral-type errors in the output signals.

The most significant error sources are: 1) cycle error, i.e.,
stochastic variations of the edge transitions due to nonidentical
and unequally-distributed slits, as well as limitations and
irregularities of the encoder’s signal generation and sensing
hardware; 2) pulse-width error, generated when the duty cycle
of the output pulses is not exactly symmetrical; 3) phase error,
generated when the phase between the two channels is not
exactly 90 degrees; and 4) eccentricity or tilt of the encoder’s
code-track due to concentricity and assembly tolerances.
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Fig. 1. Error in transition location as a function of angular position. LEFT: 60-ppr encoder. RIGHT: 1024-ppr encoder.
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(a) Velocity: 6 events (black, offset = 4 rad/s), 10 events (yellow, offset
= 2 rad/s), 15 events (red), 20 events (green, offset = −2 rad/s), 60 events
(blue, offset = −4 rad/s).
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(b) Acceleration: 6 events (black, offset = 600 rad/s2), 10 events (yellow,
offset = 300 rad/s2), 15 events (red), 20 events (green, offset = −300
rad/s2), 60 events (blue, offset = −600 rad/s2).

Fig. 2. Velocity and acceleration measured via the TSA for a 1020 rpm (≈ 107 rad/s) constant-velocity reference using a 60-ppr encoder and
different numbers of events (an offset is added to each signal for the sake of clarity).

The effects of these error sources have been thoroughly
analyzed in [7]–[9], where it is shown that they can be
modelled as two independent additive perturbations. That is,
when viewed over the circumference of the encoder’s code-
track, the first three error sources (also termed ‘transition
noise’) appear as random high-frequency variations of the edge
transition locations from their ideal values, whereas the fourth
one introduces a systematic low-frequency variation with a
period of one mechanical revolution —see also [13] and [16].
This is illustrated in Fig. 1, which shows the error in edge-
transition locations for a 60-pulses-per-revolution (ppr) and
a 1024-ppr encoder. These graphics were obtained using the
experimental setup described in Section VI. The shaft of the
encoders was rotated at a (theoretically) constant velocity and
the time instants at which each edge transition was detected
were stored and compared against the ideal time instants at
which the edge transitions would have occurred if the encoders
were perfect. The transition-location error was then computed
via a least-squares fitting of the time-instant error and the
theoretical value of the shaft velocity. For the ith encoder slit,
each dot represents the error measured at one of a total of 100

revolutions, and the cross represents the average value of the
error corresponding to that slit. Both a once-per-revolution and
a high-frequency stochastic variation of the transition locations
can be observed.

The effects of the encoder imperfections on velocity and
acceleration measurement are illustrated in Fig. 2. The graphic
shows the measurements obtained via the TSA for an exper-
iment with a constant reference of 1020 rpm using different
numbers of events. Note that, because the execution of the
TSA is feasible only after the first n events have been captured,
the measured signals are not available at the beginning of
the experiment. A clear periodicity can be observed in all
cases. It can be noted as well that the amount of high-
frequency variations that appear in the measured signals is
directly related to the number n of encoder events used in the
estimation. Not surprisingly, because we are using a second-
order parabola to approximate the position history, the more
angle/time points are used in the polynomial fit, the less the
measured velocity and acceleration signals are prone to be
affected by high-frequency transition location errors —see [20,
Fig. 4]. This filtering effect introduces however an important
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phase lag when n is too large, which hampers the ability of
the TSA to capture small variations in the real signals and to
accurately reflect large sudden variations.

IV. MEASUREMENT MODELS

The arguments given in the previous section and the exper-
imental data shown in Fig. 1, naturally lead us to model the
effects of sensor imperfections using a 2π-periodic function,
that we denote fr, added to the real position θr. Hence the
measured position θm corresponds to

θm = θr + fr(θr). (5)

If the function fr is approximated using a finite number Mr

of Fourier coefficients, one obtains

θm = θr +

Mr∑
k=1

[
ark sin(kθr) + brk cos(kθr)

]
.

In what follows, we assume that both ark � 1 and brk � 1.
Indeed, the error due to transition noise is often between 0.002
and 0.05 encoder cycles [22], whereas eccentricity of the code-
track is often between 0.05 and 0.25 mm [23]. Hence, this
condition is always satisfied if the encoder is of reasonable
quality and if the sensor has been correctly mounted on its
shaft.

The fact that θr is unknown limits the applicability of the
previous model [16]. Nevertheless, when the perturbation fr is
sufficiently small, the function ϕr that maps θr to θm through
(5) is invertible. Denoting this inverse by ϕm, we have

θm = θr + (fr ◦ ϕm)(θm),

where ◦ denotes the function composition operator. Defining
fm = fr ◦ ϕm, we obtain

θm = θr + fm(θm).

The function fm is also 2π-periodic. Note, however, that the
Fourier coefficients of a finite approximation of fm, given by

θm = θr +

M∑
k=1

[
ak sin(kθm) + bk cos(kθm)

]
, (6)

are in general different from those of fr, even when M = Mr.
Actually, in general M 6= Mr and it might be necessary to
take M > Mr to obtain a good approximation.

The new approximation (6) is the starting point for our
estimation algorithm. The differentiation with respect to time
of the expression above leads to the velocity and acceleration
measurement models

ωm = ωr + ωm

M∑
k=1

[
ka′k cos(kθm)− kb′k sin(kθm)

]
(7)

and

αm = αr + αm

M∑
k=1

[
ka′′k cos(kθm)− kb′′k sin(kθm)

]
−ω2

m

M∑
k=1

[
k2a′′k sin(kθm) + k2b′′k cos(kθm)

]
, (8)
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Fig. 3. Off-line least-squares fitting of the Fourier coefficients ak and
bk for the measurement models (6), (7), and (8), using n = 15 and
M = 5.

in which the Fourier coefficients a′k, b′k, a′′k and b′′k are un-
known. Hence, our goal is to estimate the Fourier coefficients
in order to recover reliable estimates of ωr and αr.

Remark 1: The notation (·)′ and (·)′′ is used here in order
to emphasize that the Fourier coefficients are different in (6),
(7), and (8) because ωm (resp. αm) does not correspond to
the derivative of θm (resp. ωm), but it is obtained by using
the TSA. This fact is illustrated in Fig. 3, where we show
the values of ak and bk obtained via an offline least-squares
fitting of the models (6), (7), and (8) with the data of the 1020
rpm experiment (Fig. 2) using 15 events. It can be observed
that the fitted values of ak and bk vary when the fitting is
performed using the different models, especially for the low-
order harmonics.

In the experiments associated to Figs. 1 to 3, an evaluation
of the quality of these models as a function of the number
of harmonics M seems to indicate that the fit between data
and the model improves until M = dN/ne + 1, where N is
the number of pulses per revolution of the encoder, n is the
number of events used in the fit, and d·e is the smallest integer
greater than or equal to the argument. Based on (7) and (8), an
algorithm to reduce the periodic noise present in the measured
signals can be designed as discussed in the following section.

V. VELOCITY AND ACCELERATION ESTIMATION

Let us rewrite (7) and (8) as

ωm = ωr + ωmφ(θm)>Dϑ′ (9)

and

αm = αr +
[
αmφ(θm)>D − ω2

mψ(θm)>D2
]
ϑ′′, (10)

where D ∈ R2M×2M , φ and ψ ∈ R2M are defined as

D = diag[1, 1, 2, 2, . . .],

φ(θm) =
[
cos(θm) − sin(θm) cos(2θm) − sin(2θm) · · ·

]>
,

ψ(θm) =
[
sin(θm) cos(θm) sin(2θm) cos(2θm) · · ·

]>
,
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Fig. 4. Three-stage velocity and acceleration estimation scheme. The
input signals ω(t) and α(t) are those obtained from the TSA —see (3)
and (4).

and ϑ′,ϑ′′ ∈ R2M contain the corresponding coefficients a′k,
b′k, a′′k and b′′k .

According to these models, provided that the frequencies
of vehicle velocity and acceleration variations are much lower
than those of the wheel harmonics, the measured velocity
ωm and the measured acceleration αm can be seen as the
sum of a low-frequency term —ωr in (9) and αr in (10)—
and a high-frequency (with respect to the first one) term
Φ(θm, ωm, αm)>ϑ, where Φ ∈ R2M depends on the known
signals θm, ωm, and αm, and is linear in the unknown
parameters ϑ ∈ R2M . More precisely, we use

Φ =

{
Dφ(θm)ωm for the model (9)

Dφ(θm)αm −D2ψ(θm)ω2
m for the model (10),

and

ϑ =

{
ϑ′ for the model (9)

ϑ′′ for the model (10).

In order to estimate the real velocity (resp. acceleration), we
perform the three-stage algorithm illustrated in Fig. 4, which is
based on the work presented in [16]. In the first stage, in order
to separate Φ(θm, ωm, αm)>ϑ from the other terms in (9)
(resp. (10)), the measured signal is filtered using a first-order
high-pass filter with a cutoff frequency that is considerably
below that of the wheel revolution (for example 1 Hz).

In the second stage, assuming that the filters are ideal
and they completely eliminate the low-frequency term of the
measured signals, the Fourier coefficients of the periodic per-
turbation in (9) (resp. (10)) are estimated using the parametric
model

ζ = Φ(θm, ωm, αm)>ϑ (11)

via the normalized recursive least-squares algorithm with
forgetting factor [24, Ch. 4]:

˙̂
ϑ = −ΓΦε, ϑ̂(0) = ϑ̂0 (12)

Γ̇ = βΓ− ΓΦΦ>Γ

1 + κΦ>Φ
, Γ(0) = Γ0 = Γ>0 > 0 (13)

ε =
Φ>ϑ̂− ζ

1 + κΦ>Φ
, (14)

where ϑ̂ ∈ R2M , Γ ∈ R2M×2M , ε ∈ R, and κ and β are
positive constants.

Note that due to the form of the parametric model (11)
any other standard algorithm may be used. Note as well
that, due to the form of φ(θm), ψ(θm), and D, the real-
time implementation of the RLS algorithm can be greatly

PMSM (A) PMSM (B)

Resolver
Encoder
1024 ppr

Encoder
60 ppr

IGBT-based converter + dSPACE MOVIDRIVE + MOVITOOLS

Fig. 5. Experimental setup. The low-resolution 60-ppr encoder and the
high-resolution 1024-ppr encoder are those characterized in Fig. 1.

simplified, especially for large values of M . That is, the term
Φ>Φ in (13) and (14) simplifies to

Φ>Φ =

{
ς2ω

2
m for velocity estimation

ς2α
2
m + ς4ω

4
m for acceleration estimation

where ς2 =
∑M

k=1 k
2 and ς4 =

∑M
k=1 k

4. Also, note that the
regressor Φ contains M frequencies, that is, it is sufficiently
rich to estimate the 2M unknown parameters [24, Ch. 5].

Finally, using the estimated parameters ϑ̂, we construct our
velocity estimate as

ω̂r = ωm − ωmφ(θm)>Dϑ̂′ (15)

and our acceleration estimate as

α̂r = αm −
[
αmφ(θm)>D − ω2

mψ(θm)>D2
]
ϑ̂′′. (16)

The experimental validation of this algorithm is presented
in the following section.

VI. EXPERIMENTAL VALIDATION

The experimental setup is illustrated in Fig. 5. It consists
of two identical three-phase synchronous motors coupled via a
torque transducer. The motor A has a built-in 2-pole resolver; it
is driven by an IGBT-based converter and a dSPACE DS1006
processor board. The motor B has a built-in 1024-ppr encoder;
it is driven by a MOVIDRIVE inverter and the MOVITOOLS
MotionStudio software from SEW-EURODRIVE. For the tests
presented in this paper, the motor B was used as an active
torque generator and the motor A as a passive load. The
estimation algorithm was implemented using an available 60-
ppr encoder mounted between the motors that has a resolution
close to 48 ppr, which is frequent in automotive applications
(see, e.g. [25, pp. 90-93]). The 1024-ppr encoder was used
as a high-resolution reference sensor. For simplicity, the TSA
was implemented considering only the rising edge of one
output channel. The use of quadrature mode is nevertheless
straightforward.

The performance of the estimation algorithm is illustrated in
Fig. 6 for a time-varying velocity reference, and in Fig. 7 for
a constant reference. The parameters and initial conditions of
the estimation algorithm were set as κ = 1, β = 0.1, ϑ̂0 = 0,
and Γ0 as a matrix of the form Γ0 = diag[γ1, γ1, γ2, γ2, . . .]
with γ1 > γ2 > . . . > γM > 0. In all cases a comparison
with respect to the results obtained using a notch filter, as
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Fig. 6. Measured vs. filtered and estimated signals for a time-varying velocity reference using n = 15 and M = 5.
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Fig. 7. Fourier transform of the measured, filtered, and estimated signals (LEFT: Velocity. RIGHT: Acceleration.) for a constant velocity reference
using n = 15 and M = 5. The depicted amplitude is normalized to the magnitude of the first harmonic of the measured signals.

proposed in [13] and [15], is shown. The damping ratio of the
filter, ξ ∈ (0, 1), was chosen as ξ = 0.5 in order to have a
good compromise between the selectiveness of the filter and
its response time. The signals labeled “measured” correspond
to those obtained directly from the TSA.

The depicted results show that, once the estimated parame-
ters have converged to appropriate values, the estimated signals
contain significantly smaller oscillations than the measure-
ments. This can be more easily noticed during the intervals in
which the velocity or the acceleration are constant. During this
intervals, the level of attenuation of the periodic perturbations
of the estimation algorithm is similar to that of the notch
filter. The usefulness of the estimation algorithm over a notch
filter is, however, more evident during the intervals in which
the velocity or the acceleration are changing. Even though
both the notch filter and the estimation algorithm show a
good performance in terms of reducing the amplitude of the
oscillations, the filter clearly introduces a significant delay,
whereas the estimation scheme follows the reference with no
noticeable delay. The root-mean-square error (computed with
respect to measurements of the 1024-ppr encoder) is given
in Table I. In all cases, the proposed scheme performs better
than both the TSA and the notch filter: it makes it possible to
obtain better estimates of the velocity and of the acceleration
without using a large number of events nor introducing a long

delay. To further illustrate these advantages, in the next section
we use the estimation algorithm in a concrete case-study
of control systems technology, namely, the antilock braking
system (ABS).

VII. CASE-STUDY: ABS CONTROL

A. System modelling
Let us first present a simplified quarter-car model to describe

the braking dynamics. For simplicity, only the forces acting
on the longitudinal direction of a single loaded wheel are
considered. Even though load transfer and combined slip are
ignored, all the basic phenomena related to ABS appear in
the model, and the limit cycles predicted by it are quite close
to those obtained using more realistic models or experimental
setups (cf. [14]).

Consider a wheel with radius R, inertia I , vertical load Fz ,
angular velocity ω and angular acceleration α, mounted on
a vehicle with longitudinal speed vx > 0 and longitudinal
acceleration ax. Define as state variables the wheel slip

x1 = (Rω − vx(t))/vx(t),

that represents the normalized relative velocity between the
vehicle and the tyre, and the wheel acceleration offset

x2 = Rα− ax(t),



7

TABLE I
ROOT-MEAN-SQUARE ERROR OF THE MEASURED, FILTERED, AND

ESTIMATED SIGNALS RELATIVE TO THE 1024-PPR ENCODER.

Time-varying reference Constant reference

Signal Velocity Acceleration Velocity Acceleration
[rad/s] [rad/s2] [rad/s] [rad/s2]

Measured (60ppr) 0.1430 12.8528 0.3007 30.0886
Notch filter 5.2597 33.5899 3.0730 7.9528
Estimated 0.0783 5.9237 0.0716 7.9405

i.e. the relative acceleration between the vehicle and the tyre,
and consider vx(t) and ax(t) as known external variables.
During an ABS braking maneuver, the simplified dynamics
of the system [26] is described by

ẋ1 =
1

vx(t)
x2

ẋ2 = − ā

vx(t)
µ′(x1)x2 − b̄u

where ā = (R2/I)Fz , b̄ = (R/I)γb, and γb is an overall
braking system gain. The control input u = Ṗb is the derivative
of the brake pressure, and µ′(x1) denotes the derivative of the
tyre-road friction coefficient µ with respect to x1. The friction
coefficient is modeled using Burckhardt’s formula [27]

µ(x1) = c1(1− exp(−c2x1))− c3x1,
in which the parameters ci depend on the road conditions.

B. Control strategy
A five-phase hybrid ABS control algorithm, based on the

one presented in [26], is described in Fig. 8. The objective of
the algorithm is to keep x1 in a small neighbourhood around
its unknown optimal value x?1, in order to minimize the braking
distance while maintaining a good steerability of the vehicle.
According to the active phase, the brake pressure is either kept
constant (phases 2 and 5), or rapidly increased (phases 3 and
4) or decreased (phase 1). The changes in brake pressure are
determined as a function of the wheel angular velocity ω and
some parameters ui > 0 that depend on the maximum pressure
variations allowed by the brake actuator. The switch from one
phase to another is triggered when x2 crosses some predefined
thresholds εi > 0. Since x2 depends on the value of the wheel
acceleration α, any perturbation in the measurement of α can
cause the trigger to occur at inappropriate moments.

C. Simulation results
The performance of the control algorithm is illustrated in

Figs. 9 to 11, where the phase-plane behavior of the wheel
dynamics during a braking maneuver of a vehicle running on
dry concrete with an initial speed of 130 km/h are shown.
The TSA was implemented using m = 2, n = 12 and
M = 6, considering an encoder with parameters N = 60
and Mr = 1. The ideal limit cycle, obtained when the real
values of ω and α are used in the control algorithm, is shown
in all cases using green circles. The deceleration thresholds
ε0 = 50, ε1 = 30, ε2 = 40, ε3 = 20, ε4 = 20, and

Ṗb = 0 5

Ṗb = − u1

Rω 1

Ṗb = 0 2

Ṗb =
u3

Rω 3Ṗb =
u4

Rω 4

x2 ≤ −ǫ0

x2 ≤ −ǫ5 x2 ≥ ǫ1

x2 ≥ ǫ2

x2 ≤ ǫ1
x2 ≤ ǫ3

x2 ≤ −ǫ4

Fig. 8. Five-phase hybrid ABS control algorithm [26].

ε5 = 30 m/s2, are represented by the horizontal gray lines.
The optimal point (x?1, 0) is indicated with a cross. Any
variation in x1 decreases the average braking force, while
variations in x2 demand a stronger effort from the brake
actuator. Therefore, the amplitude of the cycle is a measure
of the braking performance: the smaller the cycle, the shorter
the vehicle’s braking distance.

Fig. 9 shows the behavior obtained when the measurements
affected by encoder imperfections are used. Due to the pertur-
bations in the measured signals, the algorithm fails to cycle
and remains blocked in an arbitrary phase (in this particular
simulation, the wheel is trapped at the point (−7, 0)). To cope
with this, one may increase the values of εi (as suggested in
[14]) so that only the most significant variations in x2 are
detected, but this implies increasing the amplitude of the limit
cycle as well. When a notch filter (see [13] and [15]) is used to
remove the perturbations in the measured signals (Fig. 10), the
control algorithm is able to cycle around the desired point, but
the performance is far from optimal. The delay introduced by
the notch filter causes the algorithm to switch from one phase
to another at inappropriate moments and the acceleration to
go far outside the predefined thresholds. Finally, when the
estimation algorithm is used to compensate for the encoder
imperfections (Fig. 11), the control algorithm is able to cycle
around the desired point. Although the estimation is not perfect
and the acceleration violates the predefined thresholds, the
excursion is smaller (around 35 m/s2) than with the notch
filter. Thus, the use of the estimation algorithm renders the
performance of the control algorithm much closer to optimal.

VIII. CONCLUSION

This paper presented a three-stage estimation algorithm to
estimate angular velocity and acceleration from incremental
encoder measurements and reduce the effects of the encoder
imperfections. The performance of the proposed algorithm has
been evaluated in open-loop via experimental tests with satis-
factory results, and in closed-loop via numerical simulations.
Future work will focus on the real-time implementation of the
estimation scheme in closed loop with ABS-related control and
estimation algorithms, as well as on the potential utility of the
method in different (non automotive) areas of application.
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Fig. 9. Ideal cycle vs. behavior obtained with the measurements
affected by encoder imperfections.
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Fig. 10. Ideal cycle vs. behavior obtained using a notch filter.
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Fig. 11. Ideal cycle vs. behavior obtained using the estimation algo-
rithm.
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