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Extended-braking-stiffness estimation
under varying road-adherence conditions

Missie Aguado-Rojas, William Pasillas-Lépine, Antonio Lorı́a

Abstract—We present a switched adaptive observer for the
estimation of the tyre extended braking stiffness (XBS) during
ABS braking scenarios. The design of the observer is based
on Burckhardt’s friction model, and on a model of the wheel
dynamics in which the XBS appears as one of the state variables.
Global asymptotic stability of the estimation error is established
provided that certain dwell-time and persistency of excitation
conditions hold. The approach is validated under constant road
conditions with experimental data from a tyre-in-the-loop test rig,
and under varying road conditions via numerical simulations on
a two-axle vehicle model that includes dynamic load transfer and
tyre relaxation length.

Index Terms—adaptive observer, switched systems, antilock
braking system, persistency of excitation, time-scale transforma-
tion, non-strict Lyapunov functions, tyre-road friction.

I. INTRODUCTION

As vehicle safety-oriented control systems become more
advanced, their dependence on accurate information on the
state of the vehicle and its surroundings increases. For in-
stance, the performance of driver-assistance technologies, such
as the antilock braking system (ABS), is greatly influenced
by the characteristics of the friction force between the tyre
and the road. Therefore, by taking into account the external
driving conditions of the vehicle, the effectiveness of such
active safety systems can be greatly improved [1]. Tyre-road
friction, however, cannot be directly measured in real-time;
hence its estimation has been an intensive research area in
the last years. Numerous different approaches to estimate the
tyre-road friction coefficient and its maximum value have been
proposed in the literature —see, e.g., [2], [3], and references
therein. In several of these works it is proposed to estimate the
peak tyre-road friction under the premise that the tyre braking
stiffness indicates the peak value of the friction-slip curve [4].
The braking stiffness is the slope of the friction with respect
to the wheel slip at the zero-friction operating point [5]. In
this work we are interested in a generalization of this concept
that is known as extended braking stiffness (XBS) and may be
defined as the slope of the friction-slip curve at any operating
point —see [6] and [7]. The interest of estimating the XBS is
that, in contrast to the unknown optimal value of wheel slip,
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the optimal value of XBS is always known and equal to zero.
Hence, an ABS control algorithm can be designed in order to
maintain the XBS in a neighbourhood around zero.

The concept of maximizing the braking force in an ABS
based on the slope of the braking force with respect to the
wheel slip was first introduced by Sugai et al. in [6]. The
XBS is identified by forcing a vibration via the brake actuator
and analyzing the frequency characteristics of a resonance
system composed of the vehicle body, the wheel and the road
surface. In [7] the XBS is estimated via the instrumental
variable method based on the frequency characteristics of
a tyre vibration model linearized around a constant-velocity
operating point. In [8], the XBS is (implicitly) assumed to be
a constant parameter and estimated by applying the recursive
least squares algorithm to wheel rotational velocities. In [9], in
order to estimate the maximum friction coefficient, the XBS
is used to signal the entrance of the tyre into a different road
surface and to distinguish one type of road from another.
The XBS is estimated using elementary diagnostics tools and
algebraic methods to filter and estimate derivatives of noisy
signals (whose main difficulty is to achieve a good trade-off
between filtering and reactivity), and the estimation results are
accurate only within certain validity range. In [10], Hoàng et
al. introduced two different models of the wheel acceleration
dynamics in which the XBS appears as one of the state vari-
ables. The first one is based on the well-known Burckhardt’s
friction model [11] and it allows to estimate the XBS under the
assumption that the road parameters are partially known. To
cope with uncertainty on all the road parameters, the second
model is based on a re-parametrization of Burckhardt’s model
that is linear in the (new) unknown parameters. Assumed to
be constant, these are regarded as static state variables and
the XBS is estimated using an asymptotic state observer for
the augmented system. The implementation of this observer,
however, still requires knowledge on upper and lower bounds
of the road parameters. As a consequence, the observer is not
robust to large changes in road conditions, as conservative
bounds must be chosen in order to take into account different
types of roads.

In this paper we present a switched adaptive observer to
estimate the XBS using the first model of [10]. Our approach,
however, does not require any a priori knowledge on the pa-
rameters related to the road conditions or their bounds. Instead
of changing the friction model, a state-space transformation
is used to preserve Burckhardt’s standard parametrization
and render the system linear in the unknown variables. The
proposed observer has an overall better performance than that
of [10] and provides a good estimation of the XBS even after
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large changes in road conditions. This paper builds upon the
preliminary results presented in [12], which are extended here
in three directions. First, the stability properties of the observer
are established with a more rigorous theoretical analysis and
clearer hypotheses. Conditions which might hamper the use-
fulness of the approach in particular control tasks are discussed
as well. Second, the observer is experimentally tested under
constant road conditions and vertical load, characteristics
which are imposed by the test rig. Third, the observer is tested
in simulation under varying road conditions with a vehicle
model that includes dynamic load transfer and tyre relaxation
length.

II. XBS DYNAMICS

The model employed in this paper to describe the XBS
dynamics is based on a simplified single-wheel model that
considers the forces acting on the longitudinal direction only.
Despite its simplicity, the latter is widely encountered in the
literature of active braking control systems, as it is known to
provide a simple yet sufficiently rich description of the braking
dynamics (see, e.g., [13, Ch. 2]).

The dynamics of the angular velocity ω of the wheel is
described by

Iω̇ = −RFx + T, (1)

where I is the rotational inertia of the wheel, R is its
effective rolling radius, Fx is the longitudinal tyre force, and
T = Te− Tb is the torque applied to the wheel, composed by
the engine torque Te and the brake torque Tb. In what follows
it is assumed that the clutch is open during an ABS braking
maneuver so the engine torque can be neglected. The brake
torque is given by Tb = γbPb, where γb denotes the brake
efficiency, and Pb denotes the brake pressure.

The longitudinal tyre force Fx is modeled as

Fx = µ(λ)Fz, (2)

where Fz is the tyre normal load and µ(λ) denotes the tyre-
road friction (or adhesion) coefficient, which describes the tyre
capability of transferring the vertical load to the ground. It
depends nonlinearly on the longitudinal wheel slip λ defined
as

λ =
Rω − vx

vx
, (3)

where vx is the longitudinal speed of the vehicle and Rω is
the linear speed of the tyre at the wheel-ground contact point.
From physical considerations, in what follows vx is assumed
to be positive, bounded, and separated from zero, i.e.,

vxmin ≤ vx(t) ≤ vxmax, ∀ t ≥ 0. (4)

The first inequality above is justified by the fact that, according
to certain manufacturers, the ABS is automatically deactivated
when the speed is lower than 5 km/h.

The friction coefficient is described using Burckhardt’s
model

µ(λ) = c1(1− exp(−c2λ))− c3λ, (5)

where the coefficients ci are “constants” that depend on the
road conditions, on the tyre characteristics, and on the vehicle

-0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. Measurement and offline fitting of the friction characteristics of the
tyre-in-the-loop test rig. The parameters associated to the tyre mounted on
the rim are I = 1.2 kg·m2, R = 0.3 m, Fz = 2850 N·m, and γb = 17.5
N·m/bar. The fitted values of Burckhardt’s friction model are c1 = 1.1794,
c2 = 27, and c3 = 0.8552. For the half of the curve with negative λ, the
parameters c1 and c2 are also negative.

operational conditions [11]. Thus, by changing the values
of these three parameters, many different conditions can be
modeled. The typical behavior of the friction coefficient is
illustrated in Fig. 1. The dots correspond to experimental data
obtained from a tyre-in-the-loop test rig, while the solid line
corresponds to the offline fitting of the data to the model (5).
The XBS, which is the variable of interest in this paper, is
defined as the slope of this curve at the operating point, i.e.,

µ′(λ) =
dµ

dλ
(λ).

It indicates whether the current slip is close to the maximum
force. In contrast to the maximum friction coefficient, which
depends on the road conditions and is usually unknown, the
XBS that corresponds to the optimal wheel slip is always
known and equal to zero.

We define as state variables the wheel acceleration offset

z1 := Rω̇ − ax(t), (6)

i.e., the difference between the longitudinal acceleration ax(t)
of the vehicle and the linear acceleration of the tyre at the
wheel-ground contact point, and the XBS z2 := µ′(λ). During
an ABS braking maneuver, the longitudinal acceleration of
the vehicle remains almost constant and close to the maximal
value allowed by the road conditions, while the wheel slip
remains relatively small. Under such conditions, the dynamics
of z1 and z2 are described by1

ż1 = − a

vx(t)
z1z2 − bu (7a)

ż2 = (cz2 + d)
1

vx(t)
z1, (7b)

where the control input u = Ṗb is the derivative of the brake
pressure, a = (R2/I)Fz and b = (R/I)γb are assumed to be
known constant parameters, and c = −c2 and d = −c2c3 are

1The reader is referred to [10], as well as [12], for the complete derivation
of this simplified model.
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parameters that depend on the road conditions, thus they are
assumed to be constant but unknown. Moreover, it is assumed
that u is bounded and it is such that the state trajectories of
(7) are bounded. The vehicle speed vx(t) is considered as a
known external variable. The wheel acceleration offset defined
in (6) can be computed from the measurements of the wheel
angular acceleration and the vehicle longitudinal acceleration.
Hence, z1 is regarded as the system’s measured output. Our
aim in this paper is to design an observer for the unmeasurable
XBS z2.

III. SWITCHED ADAPTIVE OBSERVER

In this section we address the problem of XBS estimation
during an ABS braking maneuver under the conditions previ-
ously described.

A. Observer design

The system (7) is linear in the unmeasured state z2; hence, at
first sight, one could rely on theory of observer design for such
systems —see e.g., [14], [15], as well as [16]–[18]. However,
since c and d are assumed to be unknown, the term cz2 is
nonlinear in two of the unknown variables. To cope with this
difficulty, we introduce the linear change of coordinates

w1 = z1

w2 = z2 +
c

a
z1

that transforms the system (7) into

ẇ1 =
w1

vx(t)
(cw1 − aw2)− bu

ẇ2 = −bc
a
u+

w1

vx(t)
d.

In the new coordinates, the previous equations become

ẇ = A(t, y)w +Bu+ Ψ(t, u, y)θ (8a)
y = Cw, (8b)

where w =
[
w1 w2

]>
,

A(t, y) =
y

vx(t)

[
0 −a
0 0

]
:=

y

vx(t)
A′, (9)

B =

[
−b
0

]
, C =

[
1 0

]
, Ψ(t, u, y) =


y2

vx(t)
0

− b
a
u

y

vx(t)

 ,
θ =

[
c d

]>
, and the measured output y = w1 is the wheel

acceleration offset previously defined in (6).
Then, inspired by [16], we introduce the adaptive observer

˙̂w = A(t, y)ŵ +Bu+ Ψ(t, u, y)θ̂

+
[
K(t, y) + ΥΓΥ>C>

]
(y − Cŵ) (10a)

˙̂
θ = ΓΥ>C> (y − Cŵ) , (10b)

Υ̇ = [A(t, y)−K(t, y)C] Υ + Ψ(t, u, y) (10c)

where Γ = Γ> > 0. This observer is also reminiscent of that
in [15, Def. 5.3.2] where A is considered to be constant. A

benefit of this observer is that the dynamics of the estimation
errors w̃ := ŵ − w and θ̃ := θ̂ − θ corresponds to

˙̃w = [A(t, y)−K(t, y)C] w̃ + Ψ(t, u, y)θ̃

−ΥΓΥ>C>Cw̃ (11a)
˙̃
θ = −ΓΥ>C>Cw̃ (11b)

together with (10c). For (11), it is shown in [16] that the origin
is (uniformly) asymptotically stable2 if K(t, y) is such that the
origin for the system

˙̃w = (A(t, y)−K(t, y)C) w̃ (12)

is also (uniformly) asymptotically stable and Ψ(t, u, y) is
persistently exciting, i.e., if there exist µ1 > 0 and T1 > 0
such that, for all t ≥ 0,∫ t+T1

t

Ψ(ς, u(ς), y(ς))>Ψ(ς, u(ς), y(ς))dς ≥ µ1I.

Thus, if ŵ → w and θ̂ → θ, the estimate of the XBS, which
is computed via the inverse change of coordinates

ẑ1 = ŵ1

ẑ2 = ŵ2 −
ĉ

a
ŵ1,

tends to its true values, i.e., ẑ → z.
In what follows, we show how to define the observer gain

K(t, y) and establish global asymptotic stability of the origin
for the system (12).

B. Analysis under known road conditions

For clarity of exposition, let us assume momentarily that
θ̂ = θ and Γ = 0. In view of the structure of A(t, y) in (9),
we set

K(t, y) :=
y

vx(t)
K ′(y) (13)

to obtain
˙̃w =

y

vx(t)
[A′ −K ′(y)C] w̃, (14)

where K ′ is yet to be defined. The state variable of this system
is w̃. Hence, for the purpose of analysis, we write (14) as
a linear time-varying system by replacing y with the output
trajectories y(t), i.e.,

˙̃w =
y(t)

vx(t)
[A′ −K ′(y(t))C] w̃. (15)

Provided that y(t) is defined for all t ≥ 0, this system is well
posed since vx(t) is bounded and separated from zero —cf.
[19], [20, p. 627].

Let us assume momentarily that y(t) 6= 0. Multiplying both
sides of (15) by vx(t)/|y(t)| we obtain

vx(t)

|y(t)|
dw̃

dt
= sgn(y(t)) [A′ −K ′(y(t))C] w̃ (16)

2Strictly speaking, in [16] the functions A and K only depend on t; hence
exponential stability is established. Such property, however, is out of reach
for (11).
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and it becomes natural to introduce the new time variable τ =
ν(t), where

ν(t) :=

∫ t

0

|y(ς)|
vx(ς)

dς. (17)

Although, at a first glance, it may appear erroneous to
define a state-dependent time variable, this approach is not
without precedent in the literature. It is inspired from the
concept of orbital equivalence, which was popularized during
the sixties and seventies as a tool for analyzing the qualitative
properties of differential equations [21, p. 19]. Since then,
it has been used to design control laws [22], adaptive filters
[23], and observers [24], [25]. It is important to stress that the
proposed change of time variable is not needed to implement
the observer (10), but is only an artifice used in order to
analyze the error dynamics. Therefore, whether the time scale
depends on a state trajectory that is measurable or not is not a
problem, as long as it is well defined (a property that will be
guaranteed by Assumption 1 —see [26] for a detailed analysis
of this last point). Hence, using

dτ

dt
=
|y(t)|
vx(t)

, τ(0) = 0, (18)

and t = ν−1(τ), we may rewrite (16) as

dw̃

dτ
= A(τ)w̃ (19)

where A(τ) = sgn(y(ν−1(τ)))
[
A′ −K ′(y(ν−1(τ))C

]
w̃.

Note that sgn(y(ν−1(τ))) =: σ(τ) takes values in {−1, 1};
hence, it may be regarded as a switching signal. In that light,
it is also natural to define the control gain K ′ as

K ′(y) =



[
k+1
k+2

]
, if y > 0[

k−1
k−2

]
, if y < 0

(20)

where k±1,2 are parameters to be defined so that (19) become
an exponentially-stable switched system defined by

dw̃

dτ
= Aσ(τ)w̃, (21)

where

Aσ(τ) =


A+ =

[
−k+1 −a
−k+2 0

]
, if y(τ) > 0

A− =

[
k−1 a

k−2 0

]
, if y(τ) < 0.

Stability of switched systems is a well-studied subject [27];
sufficient conditions for this system to be exponentially stable
are that σ(τ) admits a dwell time and that the dynamics
of the system for each value of σ is exponentially stable.
Nevertheless, for standard theory on switched systems to
apply to the system (21), several technical aspects must be
taken into account. So far, we have assumed that the output
trajectory y(t) 6= 0; this is needed for (16) to be well defined.
Furthermore, we have implicitly assumed that the time-scale
defined in (17) is well-posed.

Indeed, for this transformation to be well defined, the time
τ must never evolve backwards relative to the actual time t,
it must not go to infinity in finite time t, and it must not have
a finite limit. The first condition holds because ν(t) is non-
decreasing —see (18) and (4). The second condition is guar-
anteed by the fact that y is bounded and the vehicle’s velocity
satisfies (4) —see (17). To guarantee the third condition we
rely on typical wheel acceleration profiles that correspond to
the operation of commercial ABS —see, e.g., [28, pp. 82-89]
and [29, § 30.1.3].

Assumption 1. During an ABS braking maneuver the wheel
acceleration offset y satisfies the following:

(i) y is persistently exciting (PE), i.e., there exist µ0 > 0
and T0 > 0 such that∫ t+T0

t

y(ς)2dς ≥ µ0, ∀ t ≥ 0; (22)

(ii) y crosses zero only at isolated points, i.e., for all tk ≥ 0
such that y(tk) = 0,

dy

dt
(tk) 6= 0 (23)

and, moreover, any two such points are separated by an
interval of length no smaller than TD > 0, i.e., for all
tk, tl ≥ 0, such that y(tk) = 0 and y(tl) = 0 with
tk 6= tl, ∣∣tk − tl∣∣ ≥ TD. (24)

The hypothesis that y is PE guarantees that τ(t) does
not tend to a constant as t → ∞. Thus, the time-scale
transformation (17) is well posed. Finally, the conditions (23)
and (24) guarantee that the switching signal ρ(t) := sgn(y(t))
has a minimal dwell-time TD. This, and the continuity of ν
in (17), implies that σ(τ) also has a minimal dwell-time τD.

We are now ready to present our first statement, for the case
in which the parameters are known.

Proposition 1. Consider the system (12) with K(t, y) given
by (13), (20), and

k+1 > 0, k+2 < 0, k−1 = −k+1 < 0, k−2 = k+2 < 0.
(25)

If vx satisfies (4) and Assumption 1 holds, for the system (12),
the origin {w̃ = 0} is globally asymptotically stable.

Proof. The proof is inspired by [10] and [30]. The conditions
k+1 > 0, k+2 < 0, k−1 < 0, k−2 < 0 ensure that the matrices
A+, A− are Hurwitz, and a direct computation shows that
the pairs (A+, C), (A−, C) are observable. Hence, there exist
two symmetric positive-definite matrices P+, P− such that
A>+P+ +P+A+ = −C>C and A>−P−+P−A+ = −C>C are
satisfied [31, Prop. 5.4]. Furthermore, a direct computation
shows that by imposing k−1 = −k+1 , k

−
2 = k+2 , the solutions

of the above Lyapunov equations satisfy P+ = P− =: P .
Thus, P defines a nonstrict (because C>C is positive semidefi-
nite) common Lyapunov function for the switched system (21).
Under these conditions, and since the switching signal σ(τ)
has a minimal dwell time τD, it follows from [32, Th. 4] that
the origin for the system (21) is globally exponentially stable,
uniformly with respect to the switching signal. Thus, in the
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Fig. 2. Wheel slip measured during an experiment at 65 km/h. A five-phase
hybrid ABS algorithm is active between t = 3.85 s and t = 7.27 s.

original time-scale, the origin for the system (12) is globally
asymptotically stable.

C. Analysis under unknown road conditions

Proposition 2. Consider the system (8) and the observer given
by (10), (13), (20), and (25). Assume that vx satisfies (4),
Assumption 1 holds, and Ψ(t, u(t), y(t)) is PE. Then, the
origin (w̃, θ̃) = (0, 0) of (11) is globally asymptotically stable.

Proof. The proof is inspired by Zhang [16]. Define the linear
combination of the estimation errors η := w̃−Υθ̃. From (11b)
and the definition of η, one has

˙̃
θ = −ΓΥ>C>C

[
Υθ̃ + η

]
. (26)

Differentiating η and using (11a), (11b) and (10c) one obtains

η̇ =
[
A(t, y)−K(t, y)C

]
η. (27)

Note that the system formed by (26) and (27) has a cascade
structure. Moreover, note that the dynamics of η given by (27)
has exactly the same form as that of the system (12). Thus, it
follows from Proposition 1 that the origin of (27) is globally
asymptotically stable. Now, consider the unforced system

˙̃
θ = −ΓΥ>C>CΥθ̃. (28)

As Ψ(t, u(t), y(t)) is bounded and PE, Υ(t, u(t), y(t)) gov-
erned by (10c) is also bounded and PE [33]. Hence, the
origin of (28) is globally exponentially stable and (26) is
input-to-state stable with respect to the input η. Moreover,
the interconnection term −ΓΥ>C>C is bounded. It follows
that the origin (θ̃, η) = (0, 0) of the cascade (26)–(27) is
globally asymptotically stable [34]. Finally, to see that the
same property holds for the origin (w̃, θ̃) = (0, 0) of (11), we
observe that w̃ = η + Υθ̃.

IV. EXPERIMENTAL RESULTS

The performance of the proposed observer has been tested
on experimental data acquired from the tyre-in-the-loop test
rig of the Delft University of Technology during the evaluation
of ABS strategies [35]. The test rig consists of a tyre rolling
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Fig. 3. Real vs estimated states and parameters of the system (8).

on top of a 2.5 m diameter steel drum (see [36, Fig. 12.7]).
The tyre is mounted on a rim attached to a rotating axle that
is, in turn, supported by a fixed frame through mechanical
bearings. To emulate the displacement of the vehicle with
respect to the road, the drum rotates about its axis driven
by an electric motor. The braking of the wheel is performed
via a hydraulic disk brake mounted on one side of the axle.
The forces acting on the tyre are measured via piezoelectric
force transducers, while the wheel and the drum speeds are
measured by encoders.

Fig. 2 shows the wheel slip of an experiment [35] conducted
at a drum speed of approximately 65 km/h. A five-phase hybrid
ABS control algorithm [37] that modulates the brake pressure
based on measurements of the wheel acceleration offset is
active between t = 3.85 s and t = 7.27 s; thus the switched
adaptive observer is tested during that interval. To validate
the estimation results, the data of Fig. 1 was fitted to the
friction model (5) in order to identify the coefficients ci. This
allows to compute the XBS offline by evaluating the derivative
of the fitted curve over the wheel slip. Then, the states and
parameters of the system (8) can be computed offline from the
wheel-acceleration-offset measurements and the parameters of
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Fig. 4. Real vs estimated XBS. The switched adaptive observer exhibits an
overall better performance than the augmented-state observer of [10].

the fitted friction curve.
The estimation results are illustrated in Fig. 3. The estimates

of the states w1 and w2 converge to their real values within
0.5 s, even though the estimates of the parameters θ1 and
θ2 do not converge to a constant value. It should be noted,
however, that the estimated parameters do approach their
real values and remain close to them during the rest of the
experiment. As a result, a good estimation of the XBS is
obtained, as illustrated in Fig. 4. The results obtained via the
augmented-state observer proposed in [10] are shown as well.
The switched adaptive observer clearly exhibits an overall
better performance.

V. SIMULATION RESULTS: TWO-AXLE VEHICLE MODEL

In this section we present simulation results using a two-axle
vehicle model [38]. The objective is to test the performance
of the observer under changes in the road conditions (a pertur-
bation that cannot be implemented in the test rig) and in the
presence of vehicle dynamics that were not considered during
the design stage. These include the suspension dynamics, as
well as load transfer phenomenon and tyre relaxation length.
Moreover, the simulations consider that the vehicle speed is
estimated from the measurements of the angular velocities of
the wheels and the longitudinal acceleration of the vehicle.

Figs. 5 to 7 illustrate a hard-braking scenario of a vehicle
traveling at an initial speed of 180 km/h. The vehicle starts
braking at t = 0.25 s. The braking on each wheel is
individually controlled by a six-phase ABS control algorithm
that is activated at t = 0.75 s in the front axle, and at t = 0.50
s in the rear axle. Changes in the road conditions occur at times
2.5 s and 5 s: during the first part of the simulation the vehicle
runs on dry asphalt, then on snow, and then on wet asphalt.
The vehicle speed at the end of the simulation is 15 km/h.

As with the experimental tests, the XBS estimation is
performed during the interval in which the ABS is active. To
evaluate the observer under realistic conditions, the vehicle
speed is not considered to be directly measured. Instead, it
is estimated using the Kalman-filter approach of [39], which
takes as inputs the measurements of the linear velocity of the
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Fig. 5. Longitudinal speed of the vehicle and linear speed of the tyres at the
wheel-ground contact point during an ABS braking scenario.

front wheel (computed as Rω) and the longitudinal accelera-
tion ax(t). The latter is affected by an additive dynamic bias
with a turn-on component of 0.5 m/s2, which is common in
modern accelerometers [40]. The estimate of vx(t) used in the
implementation of the observer is shown in Fig. 5. Because of
the harsh braking conditions, the estimate displays an average
error of 18% relative to its true value.

Moreover, in order to take into account the load transfer
phenomenon in the implementation of (10), the parameter a
that depends on the vertical load on each wheel is computed
online using the measurements of the vehicle longitudinal
acceleration. That is, the vertical loads Fzf and Fzr in the
front and rear wheels are computed as [13, § 2.4]

Fzf = Wf −∆Fz
ax(t), (29a)

Fzr = Wr + ∆Fz
ax(t), (29b)

where Wf and Wr are the static vertical loads at the front
and rear wheels, and ∆Fz is the coefficient of load transfer
due to the vehicle acceleration. These three parameters are
constant and depend on (known) geometrical and mechanical
characteristics of the vehicle. Thus, the above expressions can
be computed with the measurements of ax(t). Fig. 7 shows
the vertical load on each wheel during the considered braking
scenario. The dotted lines correspond to the values of Fzf and
Fzr computed using (29). Even though the measurements of
ax(t) are subject to the accelerometer’s bias, the computed
values follow closely the real values of the vertical load in
each wheel, thus they provide a reasonable approximation for
the parameter a to be used in the observer.

The observer’s robustness to the uncertainties described
above is illustrated in Fig. 8. The graphic shows a comparison
between the XBS estimated using the true signals vx(t)
and ax(t) and that estimated using the vehicle’s estimated
speed (Fig. 5) and measured acceleration subject to sensor
bias. Note in the latter case that even though the vehicle
speed is underestimated by 18%, the observer still provides
a reasonable approximation of the XBS. Notably, the zero-
crossing of the estimate coincides with that of the real XBS.
This is important because the observer properly detects when
the system transitions from one region of the tyre to the other.
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Fig. 6. Brake pressure in the front and rear wheels during an ABS braking
scenario. The pressure is drastically reduced between t = 2.5 s and t = 5 s
when the vehicle runs on a low-friction surface (snow).
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Fig. 7. Vertical load in the front and rear axles during an ABS braking
scenario. The dotted lines correspond to the values of Fzf and Fzr computed
using (29) that are used in the implementation of the observer.
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Fig. 8. Real vs estimated XBS of the front wheel. Comparison of the results
obtained using the true signals vx(t) and ax(t) against those obtained using
the estimated vehicle speed and the acceleration perturbed by measurement
bias.

The observer’s overall performance (i.e., considering all the
aforementioned uncertainties and perturbations) is illustrated

in Fig. 9. During the initial transient, the estimate of the front
tyre exhibits a better performance than that of the rear tyre.
Because the abrupt changes in the road conditions (and thus in
the parameters c and d of the model (8)) cause a sudden growth
of the error y − Cŵ between the measured and the expected
output in (10), the estimates are highly perturbed after the
road transitions. However, they are able to converge to their
true values within 0.5 s after the perturbation has occurred.

VI. CONCLUSION

This paper presented a switched adaptive observer for the
estimation of the tyre XBS. The design is based on a simplified
dynamic model that retains a good degree of accuracy during
an ABS-controlled braking scenario. The performance of the
observer has been tested in a tyre-in-the-loop test rig as well as
via numerical simulations with a two-axle vehicle model with
satisfactory results. Moreover, the observer is able to recover
a good estimate of the XBS even after large changes in road
conditions and can be easily implemented in a real vehicle
equipped with an ABS without the need of additional sensors.

The approach presented here has however an important
limitation. Because of the conditions of Assumption 1 related
to the PE and zero-crossing transversality of the measured
output, the XBS observer might not be used, for instance,
in conjunction with a controller that aims at stabilizing the
trajectories of the system (7) at the origin. It is possible,
nevertheless, to exploit the XBS observer to improve the
performance of ABS using hybrid control algorithms, is such
a way that Assumption 1 be trivially satisfied. Work in this
direction is currently under way. Additional future work will
also consider the effects of combined slip and lateral forces
on the estimation results.
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