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Cascades-based leader-follower formation-tracking and stabilization of multiple nonholonomic vehicles

I. INTRODUCTION

In control of nonholonomic vehicles three essential control problems may be identified: that of trajectory tracking, setpoint stabilization, and, what we call, robust stabilization.

In the first case the vehicle is required to follow a trajectory generated by a virtual vehicle [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF] and such trajectory is imposed not to vanish nor to be equal to zero [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF]. In [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], for the first time in the literature, the condition of persistency of excitation (a concept well-known in adaptive control textbooks [START_REF] Ioannou | Robust adaptive control[END_REF]) was introduced as a condition on the reference angular velocity, in order to achieve the tracking control objective (in that reference uniform global asymptotic stability is proved). Persistency of excitation is now recognized as a fundamental property to achieve tracking for nonholonomic systems [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF]; see also [START_REF] Dixon | Global exponential tracking control of a mobile robot system via a pe condition[END_REF], [START_REF] Yamaguchi | A distributed control scheme for multiple robotic vehicles to make group formations[END_REF], [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF].

Nonetheless, using a (tracking) controller that relies on persistency of excitation of the reference velocity is futile in the second scenario, that of set-point stabilization. As it is known from [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF], apart from non-differentiable set-point controllers, these must be time-varying. In the seminal paper [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] the problem is solved for n-dimensional chain-form systems (for n = 3 we recover the kinematics model of the nonholonomic vehicle) using smooth control laws that rely on a function that depends on time and state. This function, roughly speaking, induces a certain excitation in the system that persists as long as the set-point objective is not attained. Inspired by [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF], in [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] the concept of δ-persistency-of-excitation and the setpoint controllers of the same name were introduced.

The third problem, robust stabilization, covers set-point stabilization and it pertains to the case in which the reference velocities vanish asymptotically. The terminology is motivated by the idea of regarding a vanishing reference as a set-point "perturbed" by a vanishing function. In that regard, robust stabilization is tantamount to establishing robustness of setpoint stabilizing controllers with respect to (slowly) vanishing perturbations. Robust stabilization also generalizes the parking control problem, in which it is usually assumed that the reference velocities converge "fast", in the sense that they are assumed to be integrable functions of time -see, e.g., [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF] and [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF].

Because tracking both persistently-exciting and vanishing trajectories are mutually exclusive scenarios, the controllers in the above cited-references apply only to one case or another only, and this is true for the greater part of the literature. Indeed, after the milestone paper [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF], it is known that nonholonomic systems are not asymptotically stabilizable to arbitrary leader's trajectories with piece-wise continuous velocities via continuous controllers, not even if they are time-varying (the possibility of using discontinuous controllers is not analyzed in that reference and we are not aware of any other work for that matter). Therefore, designing a controller that applies indistinctly to tracking and (robust) stabilization is a very challenging problem that, to the best of our knowledge, has only been studied in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF]- [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF] for the case of one leader and one follower and under various more stringent assumptions (such as integrability of vanishing reference velocities).

In this note we solve the simultaneous formation trackingrobust stabilization control problem (which includes tracking of both, persistently exciting and non-integrable vanishing trajectories, as well as set-point stabilization) for multiagent systems. This problem pertains to the case in which a swarm of autonomous unicycles are required to follow a trajectory generated by a virtual leader, while keeping a formation.

To the best of our knowledge, the only article in which the simultaneous tracking and robust stabilization control problem has been addressed for multiagent systems is [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF]. The control design method in the latter reference follows the framework of [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF] and establishes that the formation-errors converge to an arbitrarily small compact ball centered at the origin. Furthermore, the controller from [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF] is centralized; hence, it is assumed that the leader's velocities are accessible to all the agents in the network.

In this note we adopt an efficient strategy of leader-follower formation-tracking control in which each vehicle follows only one leader, but each agent can have multiple followers. This approach leads naturally to a directed spanning-tree topology. Our controller is inspired by a clever idea introduced in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] (albeit for one leader and one follower only), which consists in combining two control laws, one for tracking and one for parking (a particular case of robust stabilization where the reference velocities are assumed to be integrable). Although our main results are established under fairly relaxed conditions on the reference velocities (for instance no need of integrability), beyond the controller itself, our primary contribution is to establish strong stability and robustness properties, such as integral input-to-state stability (iISS) and small input-to-state stability (small ISS) -see [START_REF] Angeli | A characterization of integral input-to-state stability[END_REF]- [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF] for definitions and statements. Significantly, we establish these properties by designing strict Lyapunov functions, based on the Mazenc construction -see [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF], [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF]. Furthermore, for the first time in the literature, we establish uniform global asymptotic stability, specifically, in the multiagent setting.

In the following section we describe the simultaneous tracking-and-robust-stabilization problem. In Section III we present our main results, for the case of two systems and for swarms of vehicles. We conclude with some remarks in Section IV. Due to page constraints much material has been left out of the original manuscript, see [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF] for a more complete version of this work.

II. MODEL AND PROBLEM FORMULATION

Consider N nonholonomic vehicles moving on the plane with kinematics model

   ẋi = v i cos(θ i ) ẏi = v i sin(θ i ) θi = ω i , i ∈ {1 . . . N }. (1) 
The coordinates x i ∈ R and y i ∈ R determine the Cartesian position of a point on the ith vehicle with respect to a fixed reference frame and θ i ∈ R denotes the vehicle's orientation.

The vehicle moves about with forward velocity v i = [ ẋi + ẏi ] 1/2 and angular velocity ω i = θi . Some times in the literature it is assumed that the vehicle's motion is fully described by the so-called simplified model (1) -see, e.g., [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] and [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF]. That is, v i and ω i are considered to be control inputs. In a more realistic model, however, the control inputs, which we denote here by u i ∈ R 2 , are functions of the input torques applied at the steering wheels. In this case, the equations (1) are complemented by velocitydynamics equations of the generic form

ηi = F i (t, η i , z i ) + G i (t, η i , z i )u i (2a) η i := [v i ω i ] , z i := [x i y i θ i ] , (2b) 
where the functions F i : R ≥0 ×R 2 ×R 3 and G i : R ≥0 ×R 2 ×R 3 may be defined in various ways. Most typically, (2a) are determined by the Euler-Lagrange equations, as for instance in [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF], or they are expressed in terms of the system's Hamiltoniansee, e.g., [START_REF] Vos | Formation control and velocity tracking for a group of nonholonomic wheeled robots[END_REF]. Our main statements are not restricted to either form; it is only assumed that F i and G i satisfy Caratheodory's conditions of local existence and uniqueness of solutions over compact intervals. Now, it is assumed that the vehicles communicate according to a directed spanning-tree topology. That is, for each i ≤ N , the ith robot receives the states of exactly one leader, labeled (i -1). For the root-node vehicle, labeled i = 1, the leader is the virtual reference robot, which is labeled r and whose kinematics model is :

ẋr = v r cos(θ r ) (3a) ẏr = v r sin(θ r ) (3b) θr = ω r . ( 3c 
)
That is, the vector z r := [x r , y r , θ r ] denotes the position and orientation reference coordinates and v r , ω r are given piece-wise continuous functions mapping R ≥0 → R that represent the forward and angular reference velocities respectively.

For such swarm of nonholonomic vehicles the leaderfollower formation control problem consists in making the vehicles: (i) acquire and maintain a specified physical formation relative to one another and (ii) follow the reference trajectories, z r (t), generated through Eqs. (3) after a pair of given reference velocities, (v r , ω r ). As for the case of one pair of vehicles, the task of acquiring and maintaining a formation may be formulated in function of the relative positions, orientations and velocities of all the vehicles. For each i ≤ N , let d xi and d yi denote given positive numbers and let

p θi := θ i-1 -θ i , p xi := x i-1 -x i -d xi , p yi := y i-1 -y i -d yi ;
by convention, ( • ) 0 := ( • ) r . That is, the distances d xi and d yi define the position of any leader vehicle with respect to any follower and the swarm leader follows the virtual reference vehicle. Then, as in [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF], we transform the error coordinates (p θi , p xi , p yi ) for each leader-follower pair from the global coordinate frame to local coordinates, i.e., let

  e θi e xi e yi   :=   1 0 0 0 cos(θ i ) sin(θ i ) 0 -sin(θ i ) cos(θ i )     p θi p xi p yi   . (4) 
In these new coordinates the position errors,

e i := [e θi e xi e yi ] , (5) 
satisfy the dynamics equations

ėθi = ω i-1 -ω i (6a) ėxi = ω i e yi -v i + v i-1 cos(e θi ) (6b) ėyi = -ω i e xi + v i-1 sin(e θi ), (6c) 
where v i-1 and ω i-1 are, respectively, the forward and angular velocities of the leader vehicle. Thus, the leader-follower formation control problem reduces to steering the trajectories of (6) to zero, i.e., ensuring that

lim t→∞ e i (t) = 0 ∀i ≤ N. (7) 
If the vehicle is considered to be velocity-controlled, this is tantamount to designing a control law 6), the property (7) hold. In the case that the vehicle is force-controlled (as in this note) the leader-follower control problem consists in designing control inputs u i := [u i1 u i2 ] , for all i ≤ N , such that (7) hold for the system (1)-(2), so η * i is considered as a reference trajectory for η i in [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF]. More precisely, we address the following (open) problem.

η * i := [v * i ω * i ] such that, setting [v i ω i ] = [v * i ω * i ] in (
Definition 1 (UGAS leader-follower formation control): Let η r := [v r ω r ] be a piece-wise continuous function mapping R ≥0 → R 2 that generates, through Eqs. (3), trajectories t → z r (t). For the system (1)-( 2), design a controller u i (t, z i-1 , η i-1 , z i , η i ), as well as virtual controls v * i and ω * i , such that, defining

ṽi := v i -v * i , ωi := ω i -ω * i ,
and ηi := [ṽ i ωi ] , (8) the origin for the closed-loop system, i.e., the equilibrium (e i , ηi ) = (0, 0) , with i ∈ {1 . . . N }, is uniformly globally asymptotically stable.

The UGAS leader-follower formation control problem for arbitrary piece-wise continuous reference velocities is impossible to solve even in the case that N = 1 (oneleader-one-follower scenario) via continuous controllers [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF]. Nonetheless, below we identify a wide class of stabilizable reference velocities (bounded with bounded derivatives) that includes persistently-exciting, as well as set-points and slowlyvanishing ones.

Let the function η r : R ≥0 → R 2 , η r := [v r ω r ] be continuously differentiable and bounded with bounded first derivative. Then, the tracking control and robust stabilization problems evoked in the Introduction are defined as follows.

Tracking control problem: The control objective is to ensure [START_REF] Yamaguchi | A distributed control scheme for multiple robotic vehicles to make group formations[END_REF] under the generic assumption that η r ≡ 0. This may be formulated, as in [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF], as the condition that

lim t→∞ |η r (t)| = 0, (9) 
or, as in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], [START_REF] Dixon | Global exponential tracking control of a mobile robot system via a pe condition[END_REF], in terms of requiring that η r be persistently exciting, that is, that there exist T and µ > 0 such that

t+T t |η r (τ )| 2 dτ ≥ µ ∀ t ≥ 0. (10) 
Robust stabilization problem: It is required to guarantee [START_REF] Yamaguchi | A distributed control scheme for multiple robotic vehicles to make group formations[END_REF] under the assumption that

lim t→∞ |η r (t)| = 0. ( 11 
)
This case covers the thoroughly-studied set-point stabilization problem as well as the so-called parking control problem, in which case the leader vehicle comes to a full stop. Remark 1: The robust stabilization problem covers the parking problem in which is assumed that the reference velocities converge sufficiently fast, in the sense that there exists β > 0 such that

∞ 0 |η r (τ )|dτ ≤ β. ( 12 
)
The parking problem is solved for instance, in [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF]- [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF]. •

III. CASCADES-BASED LEADER-FOLLOWER CONTROL

Our control approach relies on the separation of two control loops: one involving the kinematics equations ( 1) and one involving the dynamics equations (2), whence the term "cascades-based". The controllers are decentralized; for each vehicle we design a local controller that uses measurements of its own states z i and η i as well as the states of its leader, z i-1 and η i-1 .

A. One leader, one follower

Let i ≤ N be arbitrary, but fixed. It is required for the ith vehicle to follow its leader, indexed i -1 or, equivalently, to guarantee that (7) hold for the system [START_REF] Dixon | Global exponential tracking control of a mobile robot system via a pe condition[END_REF]. Inspired by the control method proposed in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] we define

v * i = v i-1 cos(e θi ) + k xi e xi (13a) ω * i = ω i-1 + k θi e θi + k yi e yi v i-1 φ(e θi ) +ρ i (t)k yi p i (t)|e xyi |, (13b) 
where e xyi := [e xi e yi ] and the rest of the variables are defined as follows. The function p i : R ≥0 → R ≥0 is once continuously differentiable, bounded, and with bounded derivative ṗi . The function φ : R ≥0 → R ≥0 corresponds to the so-called sinc( • ) function, which is defined by φ(x) = sin(x)/x, and k xi , k yi , k θi are positive constants. Furthermore, we define

ρ i (t) := exp - t 0 F η i-1 (τ ) dτ (14) 
where F : R 2 → R ≥0 is a piece-wise continuous function that satisfies the following conditions, by construction:

• if (10) holds then there exists T 1 > 0 and µ 1 > 0 such that

t+T1 t F η r (s) 2 ds ≥ µ 1 , ∀t ≥ 0; (15) 
• if [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] holds then there exists β > 0 such that

∞ 0 F η r (s) ds ≤ β. ( 16 
)
The first three terms on the right-hand side of (13b) guarantee the achievement of the tracking control goal of persistently-exciting reference velocities, while the fourth is added to achieve the robust stabilization goal in the case that the leader's velocities converge. That is, the function ρ i plays the role of a "weighing" function in the sense that if the reference velocities are persistently exciting, ρ i ≈ 0 and the action of the third term in (13b), k yi e yi v i-1 φ(e θi ), is enforced over that of the last. If, on the contrary, the leader velocities converge, ρ i (t) is designed to remain separated from zero so that the term ρ i (t)k yi p i (t)|e xyi | compensate the effect of the third term, which is regarded as a vanishing perturbation. In other words, the expression (13b) merges two appropriately weighted control laws that, as we shall prove, are robust with respect to one another.

The role of the function F in the control design is highlighted by the following statement.

Proposition 1: Let ηr ≥ sup t≥∞ |η r (t)| and α ∈ K. Then, the functional

F (η r ) := 0 if η r ∈ (0, µ 2T ηr ] α(|η r |) otherwise ( 17 
)
is persistently exciting (i.e. ( 15) holds) if [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] holds and F (η r ) is integrable (i.e. ( 16) holds) if ( 11) holds.

Proof. Note that F (η r (t)) is integrable if η r converges since F (η r (t)) = 0 for all η r ≤ µ 2T ηr and (11) holds by assumption. To prove that F (η r ) is persistently exciting under [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] we use [29, Lemma 2], which states that if a function η r is persistently exciting then, for every t ≥ 0, there exists a nonnull-measure interval

I t := {τ ∈ [t, t + T ] : |η r (τ )| ≥ a := µ/(2T ηr )} , such that meas(I t ) ≥ b := T µ/(2T η2 r -µ). Therefore, t+T t F (η r (s)) 2 ds ≥ α(a) 2 b > 0.
The idea of introducing a weighing function depending on the nature of the reference velocities is borrowed from [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF]. The controller ( 13) is reminiscent of the controller in [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF], which is restricted to the case of one leader and one follower in the particular scenarios of tracking and parking (integrable reference velocities). In the robust stabilization scenario, the controller (13) may also be compared, to some extent, to the controller in [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF]. However, there are several important differences with respect to these references that must be underlined. Firstly, the definition of the "weighting" function ρ i , in terms of F , gives extra degrees of freedom to the control design, relatively to that in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] and [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF], as shown by Proposition 1 above. On the other hand, our conclusions are more general in the sense that we show integral input-tostate stability -see Proposition 2 below-and uniform global asymptotic stability (UGAS) of the origin -see Corollary 1 and Proposition 3 farther down.

UGAS is fundamental because it guarantees total stability (also known as local input-to-state stability). Furthermore, constructive Lyapunov-based proofs, as we provide, permit to establish global properties such as strong integral inputto-state stability which, in turn, lead to establishing general statements for the full-dynamics model ( 1)-( 2) -see Corollary 2 and Proposition 3; this is not possible from weaker statements on non-uniform convergence. To the best of our knowledge results of this nature have not been reported in the literature before.

Proposition 2: Let i ≤ N be arbitrarily fixed and consider the system [START_REF] Dixon | Global exponential tracking control of a mobile robot system via a pe condition[END_REF] with state e i , inputs ω i and v i , and exogenous signal

η i-1 = [v i-1 , ω i-1 ] such that max {|η i-1 | ∞ , | ηi-1 | ∞ } ≤ ηi-1 , (18) 
where |ϕ| ∞ := ess sup t≥0 |ϕ(t)|. Consider the virtual control laws (v * i , ω * i ) as given by ( 13), ( 14)-( 16), with the functions p i and ṗi being bounded and persistently exciting. Then, if ṽi and ωi are bounded, the trajectories are forward complete (they exist on [t • , ∞) ). Moreover, 1) if [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] holds with η r replaced by η i-1 , the closed-loop system is integral input-to-state stable with respect to the input ηi . Furthermore, if ηi tends to zero and is square integrable, the limit in (7) holds. 2) If, alternatively, [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] holds with η r replaced by η i-1 the closed-loop system is small input-to-state stable [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF] with respect to the input ηi . Thus, if ηi converges to zero the limit in ( 7) holds.

Sketch of proof of Proposition 2 (for a detailed proof see [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF]): we use ω i = ωi + ω * i and v i = ṽi + v * i in ( 6), together with [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF] to write the error-dynamics equations as

ėi = A vi-1 (t, e i )e i + B 1i (t, e i )ρ i (t) + B 2i (e i )η i , (19) 
where

A vi-1 :=   -k θi 0 -v i-1 (t)k yi φ(e θi ) 0 -k xi ϕ i (t, e i ) v i-1 (t)φ(e θi ) -ϕ i (t, e i ) 0   , B 1i :=   -k yi p i (t)|e xyi | k yi p i (t)|e xyi |e yi -k yi p i (t)|e xyi |e xi   , B 2i :=   0 -1 -1 e yi 0 -e xi   , and ϕ i (t, e i ) := ω i-1 + k θi e θi + k yi e yi v i-1 φ(e θi ).
Forward completeness of (19) (i.e., that the solutions exist for all t ≥ 0) may be established by evaluating the total derivative of the positive-definite function

V 1i (e i ) := 1 2 e 2 xi + e 2 yi + 1 k yi e 2 θi , i ∈ {1, . . . , N } to obtain V1i = -k xi e 2 xi - k θi k yi e 2 θi -p i ρ i e θi |e xyi | - 1 k yi e θi ωi -e xi ṽi .
After the uniform boundedness of p i , ρ i , ωi , and ṽi and the triangle inequality, it follows that there exist positive constants a i and b i such that

V1i (e i (t)) ≤ a i V 1i (e i (t)) + b i which, upon integration from any t • to ∞ leads to the conclusion that the solutions have no finite escape-time.

The rest of the analysis is made separately, for the tracking and robust-stabilization scenarios. In the first case [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF], and consequently [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF], hold with η r replaced by η i-1 (recall that in this proof η i-1 is an exogenous signal). Then, the analysis of the closed-loop equation ( 19) follows these steps:

1) to design a strict Lyapunov function V i (t, e i ) for the "nominal" system ėi = A vi-1 (t, e i )e i ; 2) based on the latter, to construct a strict Lyapunov function W i (t, e i ) for the system

ėi = A vi-1 (t, e i )e i + B 1i (t, e i )ρ i ; (20) 
3) in turn, to use W i (t, e) to construct a Lyapunov function W 1i (t, e) to establish integral input-to-state stability of ( 19) with respect to ηi , as well as the boundedness of the trajectories of ( 19) under the assumption that ηi ∈ L 2 . Due to space constraints, we only provide the main guidelines to these steps.

Step 1) Uniform global asymptotic stability for

ėi = A vi-1 (t, e i )e i (21) 
is established in [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF] via Lyapunov's direct method. Indeed, after [30, Proposition 1], there exists a positive definite radially unbounded function

V i : R ≥0 × R 3 → R ≥0 , V i (t, e i ) := P [2] (t, V 1i )V 1i (e i ) -ω i-1 (t)e xi e yi +v i-1 (t)P [1] (t, V 1i )e θi e yi , (22) 
satisfying 

F [3] (V 1i (e i )) ≤ V i (t, e i ) ≤ S [3] (V 1i (e i )), (23) 
P [k] (•, V 1i
) is uniformly bounded. Furthermore, a direct computation shows that the total derivative of V 1i along the trajectories of (21

) satisfies V1i (e i ) = -k xi e 2 xi - k θi k yi e 2 θi . (24) 
Hence, mimicking [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF] one finds that the total derivative of V i (t, e i ) along the trajectories of ( 21) satisfies

Vi (t, e i ) ≤ -σV 1i (e i ) -k xi e 2 xi - k θi k yi e 2 θi
where σ > 0 is a design parameter that depends on µ and T introduced in [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF]. Uniform global asymptotic stability follows.

Step 2) Let Q [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF] : R ≥0 → R ≥0 be another third-order polynomial in V 1i with strictly positive coefficients and define

Z i (t, e i ) := Q [3] (V 1i )V 1i (e i ) + V i (t, e i ). (25) 
In view of the fact that ∂Q [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF] /∂V 1i ≥ 0, and after [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF], the total derivative of Z i along the trajectories of ( 21) yields

Żi (t, e i ) ≤ -Y i (e i ) Y i (e i ) := σV 1i (e i ) + Q [3] (V 1i (e i )) k xi e 2 xi + k θi e 2 θi .
Note that Y i is positive definite and radially unbounded.

On the other hand, from [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] we see that ρi = -F (η i-1 (t))ρ i . From this and (15) (in which we replace η r with η i-1 ) it follows that ρ i → 0 exponentially fast (and is uniformly integrable). Therefore, for any γ > 0, the function

G i (t) := exp -γ t 0 ρ i (s)ds ∀t ≥ 0
is bounded from above and below. Indeed, defining G m := lim t→∞ G i (t) > 0 and we have G(t) ∈ [G m , 1] for all t ≥ 0. In addition, since Z i (t, e i ) and V i (t, e i ) are positive definite radially unbounded -see ( 23) and ( 25), so is the function

W i (t, e i ) := G i (t)Z i (t, e i ).
After somewhat lengthy computations we find that the total derivative of W i along the trajectories of (20) verifies Ẇ (t, e i ) ≤ -G m Y i (e i ) for all t ≥ 0 and all e i ∈ R 3 , so uniform global asymptotic stability of the null solution of (20) follows. See [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF] for further details.

Step 3) In order to establish iISS of [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF] with respect to ηi we introduce the positive definite radially unbounded function

W 1i : R ≥0 × R 3 → R ≥0 , defined by W 1i (t, e i ) := ln (1 + W i (t, e i ))
.

After long, but straightforward computations one finds that the derivative of W 1i along trajectories of [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF] satisfies

Ẇ1i ≤ - G m 2 Y i (e i ) 1 + Q [3] (V 1i )V 1i + 2 D [3] (V 1i ) 1 + G m Q [3] (V 1i )V 1i |η i | 2
where D [START_REF] De Wit | Nonlinear control design for mobile robots[END_REF] is a third-order polynomial of V 1i . We conclude that there exist a constant c > 0 and a positive definite function

α : R 3 → R ≥0 such that Ẇ1i ≤ -α(e i ) + c |η i | 2 (26)
so the statement follows from [START_REF] Ito | A Lyapunov approach to cascade interconnection of integral input-to-state stable systems[END_REF]. This concludes the first part of the proof (in the tracking scenario).

In the stabilization scenario, for any fixed i we define ξ i := [η i-1 η i ] and we rewrite the closed-loop equation [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF] as

ėi = A i (t, e i )e i + B i (e i )ξ i ( 27 
)
where 27) is small-input-to-state stable respect to ξ i .

A i :=   -k θi -k yi q i (t) |exyi| exi -k yi q i (t) |exyi| eyi 0 -k xi π i (t, e i ) 0 -π i (t, e i ) 0   , B i :=   -k yi e yi φ(e θi ) 0 0 -1 k yi e 2 yi φ
Claim 2: The system ( 27) is integral-input-to-state stable with respect to ξ i . In view of these facts the system ( 27) is strong integralinput-to-state stable with respect to the input ξ i , hence the property also holds with respect to the input ξ • i := [η i-1 0] . By virtue of Lemma 1 in the appendix (with u = ξ • i ) and the condition that η i-1 → 0, which holds by assumption, it follows that the system subject to ηi = 0 is uniformly globally asymptotically stable. Then, to establish small-input-to-state stability of the system [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF] with respect to ηi , it is left to show that it possesses the so-called small-input-bounded-state property with respect to ηi , for any converging t → η i-1 . To that end, pick any small > 0 and let |η i | ≤ /2. Since the system is forward complete and η i-1 (t) → 0 it follows that there exists a sufficiently large T > 0 such that |η i-1 (t)| ≤ /2 for all t ≥ t • + T and |ξ i (t)| ≤ . On the other hand, the system ( 27) is small-input-to-state stable with respect to ξ i hence, the solutions are bounded. This concludes the proof of small-input-to-state stability with respect to ηi .

The proofs of Claims 1 and 2, on the other hand, rely on the construction of a strict Lyapunov function for the nominal closed-loop system ėi = A i (t, e i ) -cf. Eq. [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF]. Let ψ i : R ≥0 → R ≥0 be a twice-continuously-differentiable function,

satisfying ψi = -k θi ψ i + k yi q i (t) (28) 
and let e zi := e θi + ψ i (t)|e xyi |. Then, the nominal system ėi = A i (t, e i )e i becomes

ėxi ėyi = -k xi ψi |e xyi | -ψi |e xyi | 0 e xi e yi + e zi 0 k θi -k θi 0 e xi e yi (29a) ėzi = -k θi e zi -ψ i k xi e 2 xi |e xyi | (29b) 
We stress that, by construction, ρ i and ρi are bounded and, by assumption, so are p i and ṗi . It follows that q i and qi , and in turn ψ i and ψi , are also bounded. Moreover, since p i and ṗi are persistently exciting, so is qi -cf. [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF] and, consequently, there exist ψ M > ψ m > 0 such that ψ i (t) ∈ [ψ m , ψ M ] for all t ≥ 0 -see [START_REF] Srikant | Persistence filter-based control for systems with time-varying control gains[END_REF]. Furthermore, since qi is persistently exciting and ψi satisfies ψi = -k θi ψi + qi ,

it follows that ψi is also persistently exciting -see [START_REF] Ioannou | Robust adaptive control[END_REF]Lemma 4.8.3]. Thus, one can show that the following is a strict Lyapunov function for (29):

V 2i :=P [1] (V 1i )V 1i + Υ(t)V 2 1i -ψi V 1i e xi e yi + Q [1] (V 1i )e 2 zi ( 31 
)
where V 1i := e 2 xi + e 2 yi , the function Υ is defined as

Υ(t) :=1 + ψ2 i T - 1 T t+T t m t ψi (s) 2 dsdm, (32) 
-cf [START_REF] Mazenc | Strict Lyapunov functions for time-varying systems[END_REF], [START_REF] Mazenc | Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems[END_REF]

, ψi ≥ max |ψ i | ∞ , | ψi | ∞ , | ψi | ∞ , and P [1]
and Q [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF] : R ≥0 → R ≥0 are first-order polynomials of V 1i :

P [1] (V 1i ) := ψi V 1i + 1 (33) 
Q [1] (V 1i ) := P [1] (V 1i ) 2 + V 1i . (34) 
Note that since -ψi

√ V 1i e xi e yi ≥ -( ψi /2)V 1i [V 1i + 1] and Υ(t) ≥ 1, we have V 2i (t, e i ) ≥ Q [1] (V 1i ) V 1i + e 2 zi ( 35 
)
so V 2i is positive definite and radially unbounded. Furthermore, mimicking the proof of [13, Proposition 2], one finds that there exists σ > 0 such that the derivative of V 2i along the trajectories of [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF] 

with ξ i ≡ 0 satisfies V2i (t, e i ) ≤ - 1 2 k θi Q [1] (V 1i )e 2 zi -σV 2 1i + ∂V 2i ∂e i B i (e i )ξ i
and after lengthy but straightforward computations, one finds that

|ξ i | ≤ min{c 4 , c 5 , χ(|e i |)} =⇒ V2i ≤ - σ 4 V 1i (e i ) 2
where χ is a class-K function defined as

χ(|e i |) := min c 2 V 1i (e i ) 1/2 , c 3 V 1i (e i ), c 4 V 1i (e i ) 3/2
and c 2 , c 3 , and c 4 are positive constants. Small-input-to-state stability with respect to ξ i follows.

For the proof of Claim 2 we use the positive-definite radially unbounded function W 2i : R ≥0 × R 3 → R ≥0 , defined as

W 2i (t, e i ) = ln (1 + V 2i (t, e i ))
which satisfies

Ẇ2 ≤ -α(|e i |) + c |ξ i | .
-see [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF] for further details. This implies integral input-tostate stability.

It is worth to emphasize the following statements that cover others from the literature.

Corollary 1 (UGAS of the kinematics model): Under the conditions of Proposition 2, for the system (6) in closed loop with ( 13), ( 14)-( 16) and setting ηi = 0, the origin is uniformly globally asymptotically stable.

Corollary 2 (Robustness of the full model): Under the conditions of Proposition 2, for any bounded reference trajectories, may they satisfy [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] or [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], the control goal ( 7) is achieved under the action of any controller u i guaranteeing that

lim t→∞ |η i (t)| = 0 (36) 
holds and ηi ∈ L 2 .

Our strongest statement for the case of two vehicles in a leader-follower configuration, and which to the best of our knowledge has no precedent in the literature, is the following.

Proposition 3 (UGAS of the full model): Consider the system (2) under the action of any controller u i guaranteeing uniform global asymptotic stability of the origin {η i = 0} with error trajectories satisfying ηi (t) ∈ L 2 . Then, under the conditions of Proposition 2, for the system (1)-( 2) the origin { (ẽ i , ηi ) = (0, 0) i ≤ N } is uniformly globally asymptotically stable. Proof. We use cascades-systems theory (in particular, [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]Lemma 2]) and Proposition 2. Let u i be a given controller for the dynamics equations ( 2), depending on the leader and follower's states, as well as on the virtual control laws [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF]. Then, by a suitable change of variable the closed-loop equations take the generic form

ηi = F ηi (t, ηi , e i ), (37) 
while ( 21) may be written in the compact form ėi = F ei (t, e i ) + G ei (t, e i )η i .

Note that the dependence on t of the functions F ei and G ei comes from the fact that these depend actually on the leader trajectories η i-1 (t) and e i-1 (t) which are forward complete. Similarly, in [START_REF] Khalil | Nonlinear systems[END_REF] we replace e i by complete trajectories e i (t) so the overall closed-loop equations cover a cascaded form

ėi = F ei (t, e i ) + G ei (t, e i )η i (39) ηi = Fηi (t, ηi ) (40) 
where Fηi (t, ηi ) := F ηi (t, ηi , e i (t)) -cf. [START_REF] Loria | From feedback to cascade-interconnected systems: Breaking the loop[END_REF], [37, p. 627].

After [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]Lemma 2] the origin (e i , ηi ) = (0, 0) is uniformly globally asymptotically stable if so are the respective origins for the systems (40) and ėi = F ei (t, e i ) and if the solutions of (39) are uniformly globally bounded. UGAS for (40) holds by assumption. Then, after Proposition 2, if (10) holds the system (39) is integral-input-to-state stable while, if [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] holds it is small input-to-state stable. On the other hand, either of these conditions implies the so-called 0-UGAS property, that is, uniform global asymptotic stability of the origin without input -this corresponds to the statement of Corollary 1.

Finally, uniform global boundedness follows, under condition [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF], from the integral-input-to-state-stability property and the assumption that ηi ∈ L 2 . Under condition [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] it follows from the property of small input-to-state stability and forward completeness (see Proposition 2).

This completes the proof of Proposition 3.

B. Leader-follower formation control

Consider now a swarm of autonomous vehicles (N ≥ 2) which are required to follow a reference vehicle that is modeled by (3) and describes a trajectory that either converges, diverges or has both behaviors sequentially. The standing assumption is that the vehicles communicate with each other over a spanning-tree-topology network hence, each vehicle has only one leader but may have several followers.

Proposition 4: Consider the system (1), [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF]. Let η r = [v r ω r ] be a given piece-wise continuous function satisfying either [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] or [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] and assume that there exists ηr > 0 such that

max |η r | ∞ , | ηr | ∞ ≤ ηr . (41) 
For each i ≤ N consider the expressions of v * i and ω * i as in (13) (with v 0 := v r and ω 0 := ω r ) where:

(i) k xi , k yi , k θi are positive constants;

(ii) the functions p i and ṗi are bounded and persistently exciting. Then, for any given control laws u i1 and u i2 guaranteeing that ηi is square integrable and converges to zero, the control objective (7) holds.

Furthermore, define η 40) is uniformly globally asymptotically stable (UGAS) and η ∈ L 2 then, for the closed-loop system (39)-(40), {(e, η) = (0, 0)} is also UGAS. Consequently, if η ≡ 0 then {e = 0} for (1) in closed loop with η * is UGAS. Proof. The proof consists in applying recursively the statement of Proposition 2 for each i ≤ N that is, for each pair of leaderfollower vehicles whose closed-loop equations are given by [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF] 

:= [η 1 • • • ηN ] , η * := [η * 1 • • • η * N ] , and e := [e 1 • • • e N ] . If {η = 0} for (
Indeed, Proposition 2 guarantees the asymptotic convergence of the formation errors whether the leader velocities are persistently exciting or converging. Therefore, the properties of (i-1)th leader's velocities are propagated to the ith follower and, in turn, to the (i + 1)th vehicle down to the leaf nodes in the graph. As before, even though the ith vehicle the dynamics equations depend on e i and, through η i-1 = [v i-1 ω i-1 ] , on the states of the vehicles above in the graph, up to the reference vehicle, in view of forward completeness (see the proof of Proposition 2), for the purpose of analysis the velocities η i-1 may be regarded as exogenous signals. This allows us to consider the system as a multi-cascaded time-varying onesee [START_REF] Loria | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. Then, we may invoke Proposition 2 recursively. Such reasoning, however, relies on distinct analyses for the tracking and robust-stabilization scenarios.

Under the tracking scenario. Let (10) hold. Let i = 1 and consider the equation (42c) which corresponds to the dynamics of the error trajectories between the virtual vehicle and the swarm leader (indexed i = 1). By Proposition 2 the system (42c) is integral input-to-state stable with respect to the input η1 := [ṽ 1 ω1 ] . Moreover, since by assumption η1 (t) is square-integrable and converges to zero, it follows that e 1 → 0 so, consequently, v * 1 → v r , ω * 1 → ω r and, in turn, lim t→∞ v 1 (t) = v r (t), lim t→∞ ω 1 (t) = ω r (t).

(43) Furthermore, there exists c1 > 0 such that

max |v 1 | ∞ , | v1 | ∞ , |ω 1 | ∞ , | ω1 | ∞ ≤ c1 . ( 44 
)
For i = 2 we consider the equation (42b). We see that v 1 and ω 1 , regarded as functions of complete solutions, have the same properties as v r and ω r . Therefore, A v1 may be considered as a function of time and the state e 2 . Consequently, it has similar properties to those of A vr and, by Proposition 2, we conclude that (42b) is integral input-to-state stable with respect to the input η2 := [ṽ 2 ω2 ] , provided that η 1 is persistently exciting. The latter indeed follows from ( 10), ( 43) and (44) -see [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF]. Thus, after Proposition 2, the system (42b) is integral inputto-state stable with respect to η2 . Next, in view of forward completeness, the assumption that η2 (t) = [ṽ 2 (t) ω2 (t)] is square integrable and converges, we conclude that and, moreover, there exists c2 > 0 such that

max |v 2 | ∞ , | v2 | ∞ , |ω 2 | ∞ , | ω2 | ∞ ≤ c2 . (45) 
The previous arguments apply for any i ≥ 2 so the statement of Proposition 4 under condition [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF] follows by induction.

Under the robust-stabilization scenario. By assumption, (11) holds. As in the previous scenario, the proof follows using Proposition 2 recursively. Indeed, for i = 1, we conclude that the error dynamics corresponding to the swarm leader and the virtual reference vehicle is small-input-to-state stable with respect to η1 := [ṽ 1 ω1 ] . Consequently, after forward completeness of trajectories, we have η1 → 0 =⇒ e 1 → 0 =⇒ v 1 → 0, ω 1 → 0.

The last implication follows from [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]. In turn, in view of the convergence of v 1 and ω 1 , it follows that for i = 2 the closed-loop (42b) is small-input-to-state stable with respect to the input η2 := [ṽ 2 ω2 ] . Consequently, after forward completeness of trajectories, we have η2 → 0 =⇒ e 2 → 0 =⇒ v 2 → 0, ω 2 → 0.

The statement that (7) holds, follows by induction.

The proof of UGAS follows by applying the same cascades argument as in the proof of Proposition 3, recursively.

Remark 2: It should be clear from the proof of Proposition 3 that it is the construction of strict Lyapunov functions and the statement of Proposition 2 (integral input-to-state stability and small-input-to-state stability) which allow the generalization to the multi-agent case under a spanning tree communication topology. Therefore, such extension is not possible, e.g., for the main results in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] and [START_REF] Maghenem | A unique robust controller for tracking and stabilization of nonholonomic vehicles[END_REF] which rely on the assumption that the leader velocities are integrable.

Another fundamental statement in the proof is Lemma 1 in the appendix, which is one more original contribution of this note, but its proof is omitted due to page constraints.

•

lim t→∞ |e 2

 2 (t)| = 0, lim t→∞ v 2 (t) = v 1 (t), lim t→∞ ω 2 (t) = ω 1 (t).

  , S [k] , and P [k] (t, •) are smooth polynomials in V 1i with strictly positive coefficients of degree k, and

	where	V 1i (e i ) :=	1 2	e 2 xi + e 2 yi +	1 k yi	e 2 θi ,
	F [k]					

  (e θi ) e yi -1 e yi sin(e θi ) -k yi e xi e yi φ(e θi ) -e xi 0 -e xi

	
	 ,
	q

i (t) := ρ i (t)p i (t), ρ i is defined in (

14

), π i := k θi e θi + k yi q i (t)|e xyi |, and e xyi = [e xi e yi ] . Then, we have the following:

Claim 1: The system (

  which, all together correspond toėN = A v N -1 (t, e N )e N + B 1N (t, e N )ρ N + B 2N (e N )η N A v1 (t,e 2 )e 2 + B 12 (t, e 2 )ρ 2 + B 22 (e 2 )η 2 (42b) ė1 = A vr (t, e 1 )e 1 + B 11 (t, e 1 )ρ 1 + B 21 (e 1 )η 1

	. . .	(42a)
	ė2 =	

IV. CONCLUSION

We have established the stability and robustness of a controller for simultaneous tracking and stabilization of swarms of autonomous nonholonomic vehicles via Lyapunov's direct method for multiagent systems. We believe that they may contribute to pave the way to incorporate realistic scenarios, such as output-feedback control, more general interconnection topologies, and time-varying graphs; research in such directions is being carried out.

Other interesting extensions to be explored involve generalizing the setting considered here in terms of the graph topology: connected graphs, time-varying interconnections etc.
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APPENDIX

Lemma 1: Consider the dynamical system

where u : R ≥0 → D ⊂ R m is locally integrable and the function f : R n ×R m → R n is locally Lipschitz in x uniformly in v for all v ∈ D.

Assume that ẋ = f (x, u) is strong iISS with respect to u. Then, if in addition u(t) → 0 as t → ∞ then the origin of (46) is uniformly globally asymptotically stable. Proof. See [START_REF] Maghenem | Multi-agent simultaneous formation-tracking and stabilization of nonholonomic vehicles[END_REF].