
HAL Id: hal-02367492
https://hal.science/hal-02367492v1

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How many parallel TCP sessions to open: a pricing
perspective

Bruno Tuffin, Patrick Maillé

To cite this version:
Bruno Tuffin, Patrick Maillé. How many parallel TCP sessions to open: a pricing perspective. 5th
international workshop on Internet Charging and QoS Technology, Jun 2006, Saint Malo, France.
�hal-02367492�

https://hal.science/hal-02367492v1
https://hal.archives-ouvertes.fr


How Many Parallel TCP Sessions to Open:
A Pricing Perspective

Bruno Tuffin1 and Patrick Maillé2
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Abstract. TCP is one of the main transmission protocols used in the
Internet. It has also been recently observed that opening parallel TCP
sessions might be of interest for a user in order to increase his overall
average throughput. We suggest in this paper to charge users per TCP
session, and we investigate the resulting game in a homogeneous con-
text: how many sessions should each user open? Given the discrete (and
even finite) space of strategies, we propose to implement a probabilis-
tic adaptation algorithm, analyze its theoretical properties and provide
numerical illustrations.

1 Introduction

Nowadays, the Internet has become a common tool in daily life. Several protocols 
may be used to transit data, one of the most prominent being the Transmission 
Control Protocol (TCP), in its early version [1] or in one of its numerous more 
efficient versions (slow start, Reno, Vegas...). Basically, a TCP session can be 
modelled by an Additive-Increase Multiplicative-Decrease (AIMD) process [2], 
where the rate at which packets are sent increases linearly in time, but suffers 
a multiplicative decrease as soon as a loss is detected. Then the rate increases 
linearly again until the next loss, and so on.

Recently, there has been a surge of interest in opening several TCP sessions 
in order to increase a user’s overall throughput for bulk data transfers and 
by then decreasing transfer time. This concept is used by applications such as 
GridFTP (dev.globus.org/wiki/GridFTP), or the MultTCP proposed by Oech-
lin and Crowcroft [3]. The question is thus, how many TCP sockets to open 
simultaneously? Increasing this number increases the overall throughput, but 
the gain can be topped by some ”technological cost” or, as we will introduce, 
some financial cost. This induces a game between selfish users, where each user 
looks at the optimal number of sessions he should open, this number of sessions 
influencing the overall throughput of other users. The natural framework of anal-
ysis is thus the one of non-cooperative game theory (see for instance [4] for an 
introduction).



In this paper, we assume that each user has to pay a fixed price per open ses-
sion. Of course, a charge based on the connection duration has to be considered
too, but since we consider here the system in steady-state, it can be discarded
in the present analysis, and is therefore out of the scope of this paper. Our goal
is to analyse the game depending of the pre-specified price (and cost). We want
to study the convergence to a so-called Nash equilibrium, that is a point where
no user has an interest in unilaterally changing his strategy for the number of
open parallel sessions. Though, the number of choices (the number of sessions to
open) is discrete, which makes the analysis a little more difficult than in a contin-
uous context. We consider here the use of a discrete learning algorithm to solve
the problem in a distributed manner [5, 6]. This algorithm adjusts the number
of sessions over time using some feedback on the user’s average throughput. It
presents the advantages of (i) operating in a probability space to search the best
number of sessions, so that it is not stuck into a local optimum (ii) being able to
discover mixed strategies (iii) handling deterministic and stochastic situations
(iv) being computationally simple and efficient.

In a second step, we discuss the prices that the network manager (the Internet
Service Provider (ISP)) should settle in order to maximize social welfare. The
corresponding coordination ratio, representing the loss of social welfare due to
non-cooperation with respect to a centralized optimum, is also considered.

Related Work. Non-cooperative game theory has received a lot of attention in
the Internet community within the last decade. It has for instance been used to
model the selfish behavior of TCP users (see, among others, [7, 8]), each player
of the game representing generally a single TCP session, playing with the AIMD
parameters. Notice that, in parallel to our work, other authors have also just
paid attention the game on the number of TCP connections [9]. Though, their
work uses another throughput formula (applied mainly with symetric users too),
with strong assumptions on the goodput at the bottleneck that we do not have
to impose here. Furthermore, it does not have a pricing perspective and is mainly
devoted to a continuous game and thus does not have to use a learning algorithm
as we do.

Pricing has also been recently regarded as a natural way to control congestion
in the Internet and to incentivize users to fairly use the resource [10, 11], but few
of them have been especially devoted to the relation with TCP (see for example
[12]). Again, none of them were dealing with parallel TCP sessions.

Finally, the learning algorithm that we use has successfully been applied in
wireless packet networks for prediction and tracking [13, 14], as well as for power
control in CDMA networks [15].

Outline. The paper is organized as follows. In Section 2 we introduce the basic
model leading in [16] to the key formula for the average throughput in the case
of homogeneous sessions. In the same section, we then introduce the game on the
number of sessions that each selfish user should open, and present the pricing
scheme. Section 3 is devoted to the theoretical analysis of the game. Section 4
illustrates the convergence of the algorithm for different values of parameters.



It also aims at finding out optimal prices when maximizing network revenue or
social welfare. Finally we conclude and present some perspectives of research in
Section 5.

2 Model

2.1 TCP Model

The basic model comes from [2, 16, 17]. It represents elastic users competing for
bandwidth at a link of capacity C, and controlling their send rates via a additive-
increase, multiplicative-decrease (AIMD) process. Those processes are often used
to model the behavior of TCP sessions. We consider here a homogeneous pop-
ulation of AIMD users, meaning that all users have identical additive increase
parameter η and multiplicative decrease parameter β. When dealing with TCP
sessions, η is proportional to the inverse of the square of the round-trip time
(RTT ) [17], so that we assume here that they all have the same RTT .

Assume that there are N such sessions in competition. Let Xi(t) be the send-
ing rate of session i (1 ≤ i ≤ N) at time t. All sessions increase their sending
rate according to the additive-increase parameter η until capacity C is reached.
This corresponds to a congestion epoch if we assume that no buffering is used
in the model. Then exactly one session is selected to immediately decrease its
sending rate according to the multiplicative-decrease parameter β. Let Tn be the
time of the n-th congestion epoch, and let Xi,n be the send rate of user i just
after time Tn.

The dynamics of the model is then formalized as follows. Let Zi,n be equal
to 1 if the user i undergoes multiplicative decrease at time Tn, and Zi,n = 0
otherwise. We have

Xi(t) = (1 − (1 − β)Zi,n)Xi,n + η(t − Tn), Tn ≤ t < Tn+1,

and the send rate at congestion times obeys the recurrence, for i = 1, 2, . . . , N ,

Xi,n+1 = (1 − (1 − β)Zi,n)Xi,n + ηSn

with Sn = Tn+1 − Tn obtained from
∑N

i=1 Xi,n+1 = C.
It has been shown in [16] that the average aggregated throughput in steady-

state is

x̄(N) = C

(

1 − 1
1 + N 1+β

1−β

)

. (1)

Remarkably, this formula is shown to be true in [16] whatever the drop policy
used (the choice of the session selected to decrease its rate at each congestion
epochs). Several specific policies are also investigated in more details: the propor-
tional one, where the decreased session is chosen with a probability proportional
to its sending rate at the congestion epoch; the fixed one, where each one is
selected with a fixed (state-independent) probability; or the largest one, where
the session with the largest sending rate at a congestion epoch is selected.



One of the conclusions of formula (1) was that opening too many sessions
is not worthwhile, because of the management overhead it introduces, given
that for N large, the throughput increase is very small when adding a session.
The goal of our paper is to investigate this point in more details in the case of
users in competition, and assuming that users. Assume that we have I people in
competition for the capacity C, and that user i opens Ni sessions. Then, from
(1), the total number of sessions is N =

∑I
i=1 Ni and, in the homogeneous case,

the total throughput of user i is

xi = C
Ni

N

(

1 − 1
1 + N 1+β

1−β

)

(with our previous notations).

2.2 Pricing Scheme and Game-Theoretic Formulation

The question asked in the paper is: what is the best strategy for user i? In
other words, how many sessions should user i open? The analysis requires the
framework of non-cooperative game theory assuming that he reacts selfishly,
since user i’s throughput depends on the total number of sessions of other users.

We additionally assume that the network operator wishes to control this num-
ber of sessions by incorporating a charge depending on the number of open ses-
sions in order to prevent a too large number. Users’ choices are then driven by
their utility functions, representing a measure of the happiness or satisfaction
gained from the service Ui = f(xi) − d(Ni) where

– f is the valuation function representing the gain that user i gets from a
throughput xi. We can for instance assume that f(xi) = log(1 + xi) [18].

– d is the charge for opening Ni sessions. It seems here also reasonable to
consider it linear in Ni, d(Ni) = αNi. To this charge could be added a
(perceived) technological cost of operating several sessions at the same time,
in terms of management to “reorder” all data. We neglect it here, but it
could easily be incorporated for instance by adding a fixed value α′ to α.

User i’s utility function is thus considered to be:

Ui(N1, . . . , NI) = log

[

1 + C
Ni

N

(

1 − 1
1 + N 1+β

1−β

)]

− αNi. (2)

The space of strategies Si of each user i is then the number of sessions he
can open. We assume here that, for some technological reason, this number is
upper-bounded by Nmax. We thus have Si = {0, . . . , Nmax} ∀1 ≤ i ≤ I. this
discrete number of choices complicates the pure theoretical analysis of the game.
A learning alogorithm is therefore used in next subsection.

2.3 A Learning Algorithm to Approach Nash Equilibrium

To solve this problem, we propose to use a decentralized discrete stochastic
learning algorithm similarly to what was done in [15] for a power allocation game



in CDMA networks. The goal of each user/player is to maximize his utility. The
game is played repeatedly and the optimal strategy is learned.

Player i’s strategy is defined by a probability vector pi = (pi0, . . . , piNmax)
with pij the probability that user i chooses to open j sessions.

Let

gi(p1, . . . , pI) =
∑

N1,...,NI

Ui(N1, . . . , NI)
I∏

j=1

pjNj

be the expected utility for player i given strategy probability vectors. We will
say that a I-tuple of strategies (p∗1, . . . , p

∗
I) is a Nash equilibrium if ∀1 ≤ i ≤ I

and for all probability vector p defined over {0, . . . , Nmax},

gi(p∗1, . . . , p
∗
i , . . . , p

∗
I) ≥ gi(p∗1, . . . , p, . . . , p∗I).

Similarly to [15], we assume that the following discrete learning algorithm is
used by each player:

1. Set the initial probability vector pi(0) for each user i. In this paper we will
(arbitrarily) choose uniform initial distributions over {0, . . . , Nmax}.

2. At each time step k, the number Ni,k of sessions open by user i is chosen
according to probability vector pi(k).

3. User i then monitors his throughput xi and computes his utility function
Ui,k at time step k.

4. User i updates his probability vector according to the rule

p
(k+1)
ij =

{
pij(k) − bui,kpij(k) if j �= Ni,k

pij(k) + bui,k

∑
� �=Ni,k

pi�(k) otherwise.

In words, this step consists in adjusting the probability of choosing one’s
strategy in the next step, considering the utility brought by the current
strategy: if that utility is high then the probability of the current strategy
is increased, otherwise it is lowered.

5. If the algorithm has not converged goto step 2., otherwise stop.

In the algorithm, parameter b is the step size of the updating rule, and ui,k

is a normalized utility

ui,k =
Ui,k − Ai,t

Bi,t − Ai,t

with Ai,t = mink≤t Ui(k) and Bi,t = maxi,t Ui(k).
Note that no knowledge of the number of players I is required, nor any specific

knowledge of other users’ strategies.

2.4 Social Welfare Issues

We furthermore assume that it is computationally costly for the network to
support too many simultaneous TCP sessions. This can be taken into account
by introducing a (converted to monetary) network cost per open session, that



we denote γ. Remark that this cost is not perceived by the users, who are only
sensitive to their throughput and to the price they pay. The overall social welfare
SW when each user i chooses to open Ni sessions is therefore expressed by1

SW =
∑

i

fi

(

1 + C
Ni

N

(

1 − 1
1 + N 1+β

1−β

))

− γN, (3)

with N =
∑

i Ni. All the simulations presented in this paper were run with
C = 1, β = 1/2, Nmax = 5 and γ = 0.05.

3 Game Analysis

The game studied in this paper is quite complex, and difficult to study analyti-
cally. In this section, we therefore summarize the general results and properties
concerning this type of game, and state what could be expected from the use of
the algorithm described in the previous section.

3.1 Game Without Pricing (α = 0)

When no pricing is introduced, the game becomes easy to solve, since each
user has a dominant strategy which consists in opening the maximum number
Nmax of TCP sessions (indeed, from (1), the larger the number of sessions user
i opens, the larger his throughput is, whatever the number of other sessions).
Such a Nash equilibrium may not be efficient in terms of social welfare, since
the computational cost incurred to the network will be maximal. This motivates
the use of pricing as a tool to incentivize users to reduce their number of open
connexions.

3.2 General Game: Existence of an Equilibrium

When the number of sessions each user can open is upper-bounded by a finite
value Nmax, the game that is played between users is a finite game [19]. It is a
classical result in game theory that there always exists at least a Nash equilibrium
in mixed strategies for such a game. Nevertheless, for general utility functions,
no results of unicity can be given.

3.3 Nash Equilibrium of the Continuous Game

When the strategy set of each user is continuous (which would mean here that
a user could open a non-integer number of sessions), the concavity of utility
functions can be used to prove the existence and unicity of the Nash equilibrium
[20]. This is the case with the utility functions given in (2). Therefore, for any
price per session α, there exists a unique Nash equilibrium. Since all users are
1 Social welfare is defined as the sum of the utilities of all agents (users+network).

Here the prices paid by users do not appear, since they are paid to the network and
would appear in his utility.



identical, for that equilibrium each user would open the same number N∗ of
sessions, with N∗ satisfying

N∗ = argmax
x∈[0,Nmax]

{

fi

(

C
x

x + (I − 1)N∗

(

1 − 1
1 + (x + (I − 1)N∗)1+β

1−β

))

− αx

}

.

(4)

3.4 Expected Outcome of the Learning Algorithm

From Theorem 1 in [15], we know that the algorithm can converge only to a
point that is a Nash equilibrium of the game. The convergence of the algorithm
is proved in [15] when the game has a unique pure Nash equilibrium, which
is not the case here, as we will see in the following. In [6] (theorem 3.3), the
convergence is established under some assumptions on the utility functions that
we were not able to verify.

We ran the algorithm several times for identical initial conditions, and it
turned out that, though the probability vectors pi seem to converge (and actually
to converge to pure strategies), the attained distributions may differ, illustrating
the fact that there may be several Nash equilibria for the game. Two examples of
those distributions with 3 players are displayed in Table 1. Those distributions
correspond to pure strategies (Dirac distributions on a single point), leading to
different Nash equilibria.

An interesting remark (from the left-hand side of Table 1) is that two iden-
tical players may have different optimal strategies at equilibrium, depending on
others’ choices (due to the discrete nature of the game).

Table 1. Two different outcomes (strategy probability vectors pi,· after 10000 rounds)
of the same algorithm with the same initial conditions (b = 0.03, α = 0.1)

# sessions Player 1 Player 2 Player 3
0 0 0 0
1 1 0 1
2 0 1 0
3 0 0 0
4 0 0 0
5 0 0 0

# sessions Player 1 Player 2 Player 3
0 0 0 0
1 0 0 0
2 1 1 1
3 0 0 0
4 0 0 0
5 0 0 0

4 Numerical Results

This section aims at illustrating the behavior of the learning algorithm, and at
highlighting the interest of pricing in the considered context.

Figure 1 shows a trajectory of the number of sessions chosen by three players
in competition up to k = 300, with α = 0.1 and b = 0.1. The curve suggests the
convergence to a Dirac distribution for each player, which corresponds to what
was observed in Table 1. Again, identical users may have different equilibrium
values due to the discrete nature of the game.
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Fig. 1. Number of sessions used by three players in competition: convergence phase
(b = 0.1, α = 0.1)

Table 2 shows how the number I of players affects the equilibrium probability.
We have chosen to show the mean distribution (all Dirac, but at different values)
over all players. As expected, the number of open sessions tends to decrease as
I increases, since the marginal throughput gain of opening an additional session
is smaller, whereas the marginal cost remains fixed to α = 0.1.

Table 3 illustrates the modifications on the aggregated strategy distributions
for different values of price α.

As expected, we observe a decrease in the number of sessions when the price
increases. The impact on the revenue is shown in the last line of Table 3. Due to
the discontinuity of the equilibrium strategies in the per session price α (those
strategies are Diracs as previously observed), the revenue is not a concave func-
tion of the per session price, and therefore it is not obvious to a network manager
to discover the price that will yield the largest revenue.

The introduction of prices aims at incentivizing users to better use the net-
work. In other terms, we expect pricing to help reduce the coordination ratio,

Table 2. Equilibrium probabilities for various numbers of players, with α = 0.1

Number of TCP sessions I = 2 I = 4 I = 6 I = 8 I = 10
0 0 0 0 0.125 0.2
1 0 0.5 0.833 0.875 0.8
2 1 0.5 0.167 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0



Table 3. Equilibrium probabilities (aggregated distribution) for various prices α

Number of TCP sessions α = 0 α = 0.05 α = 0.1 α = 0.2 α = 0.3
0 0 0 0 0.333 0.333
1 0 0 0.333 0.333 0.667
2 0 0 0.667 0.333 0
3 0 0.333 0 0 0
4 0 0.667 0 0 0
5 1 0 0 0 0

Corresponding revenue 0 0.55 0.5 0.6 0.6
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Fig. 2. Coordination ratio for different values of the charge per session (3 players,
b = 0.05)

defined as the ratio of the maximum attainable social welfare and the actually
reached social welfare (at a Nash equilibrium).

Remark: several Nash equilibria are likely to exist in the discrete game we are
studying. The coordination ratio gives the loss of efficiency with respect to a
centralised decision corresponding to the equilibrium attained by the algorithm.
Depending on the algorithm progress, different equilibria can be reached as high-
lighted in Table 1, giving different values of the coordination ratio. For that
reason, Koutsoupias and Papadimitriou [21] suggested to take the Nash equi-
librium with the worst social welfare. The coordination ratio associated to the
worst Nash equilibrium is called price of anarchy. In this paper, we only plot the
coordination ratio with the equilibrium given by the learning algorithm, since
we cannot derive all Nash equilibria.

Here, computing the maximal social welfare can be hard when considering
discrete strategy sets. We therefore computed an upper bound, corresponding
to the continuous strategy set case. The effects of the charging factor α on



the coordination ratio can be seen in Figure 2. As expected, the case where
the per session charge is null is very bad, since it corresponds to every user
opening Nmax sessions. We also remark that for a judiciously chosen value of α,
the social welfare is very close to the optimum value that could be reached if
users would collaborate (the coordination ratio is very close to 1). The shape of
the coordination ratio curve plotted in Figure 2 is typical of congestion games:
while the introduction of prices helps lowering the demand and leads to a better
utilisation of resources by reducing the negative externalities (descending phase
of the curve), setting too large charges prevents users from entering the game
and the resource becomes underused (ascending phase of the curve).

We can therefore conclude that introducing a very simple pricing scheme
(fixed per-session price) can lead the initially inefficient Nash equilibrium to an
efficient one (where efficiency is in the sense of social welfare), therefore arguing
in favor of the use of pricing in such contexts.

5 Conclusions

In this paper, we have considered a game where TCP users compete for band-
width by opening parallel sessions in order to increase their QoS. The game is
controlled by imposing a fixed charged for each open session. We consider that
each user implements a (decentralized) discrete learning algorithm to find out
his best strategy, and convergence to a Nash equilibrium is discussed. We have
also discussed the pricing strategy for the network manager.

As directions for future research, we aim at investigating the more realistic
case of heterogeneous sessions, with different round-trip times, meaning different
additive-increase parameters. A closed-form expression for the average throught-
put does not exist in full generality yet, but we could numerically look at the
resulting equilibrium, as well as at pricing solutions for incentivizing users to
fairly share the ressource (this pricing scheme probably using the RTT values).
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