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Abstract

We apply Malliavin Calculus tools to the case of a bounded below
elliptic rightinvariant Pseudodifferential operators on a Lie group. We
give examples of bounded below pseudodifferential elliptic operators on
Rd by using the theory of Poisson process and the Garding inequality.
In the two cases, there is no stochastic processes besides because the
considered semi-groups do not preserve positivity.
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1 INTRODUCTION

Let G be a compact connected Lie group, with generic element g endowed with
its binvariant Riemannian structure and with its normalized Haar measure dg.
e is the unit element of G.

Let f i be a basis of TeG. We can consider as rightinvariant vector fields.
This means that if we consider the action Rg0 h → (g → h(gg0)) on smooth
function h on G, we have

Rg0(f ih) = f i(Rg0h) (1)

We consider a rightinvariant elliptic pseudodifferential bounded below ellip-
tic operator L of order larger than 2k on G . It generates by elliptic theory a
semi group Pt on L2(dg) and even on Cb(G) the space of continuous functions
on G endowed with the uniform norm.
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Theorem 1 If t > 0,

Pth(g0) =

∫
G

pt(g0, g)h(g)dg (2)

where g → pt(g0, g) is smooth if h is continuous.

This theorem is classical in analysis , but it enters in our general program to
implement stochastic analysis tools in the theory of Non-Markovian semi-group.
See the review [7] and [13] for that. See [10], [11] for another presentation.

In [12], we have considered the case of rightinvariant differential operators.
The algebraic statzement of the proof is an improvement of the proof of [12],
but the estimates are the same, based upon a suitable Davies gauge transform.

Unlike the Malliavin Calculus for jump processe [1], [5], [6]), there is no
limitation here on the size of jumps. We give an example of bounded below
pseudodifferential operator, whose origin comes from the theory of Poisson pro-
cesses in the last part of this work. Unlike as it is traditional in stochastic
analysis, where power between 0 and 1 of diffusion operator can be studied as
jump process, we can apply this work to any positive power of a right invariant
strictly positive differential operator on G ([14]).

2 PSEUDODIFFERENTIAL OPERATORS

Let us recall what is a pseudodifferential operator on Rd ([3], [5], [6], [15]). Let
be a smooth function function from Rd × Rd into C a(x, ξ). We suppose that
for all x

|Dr
xD

l
ξa(x, ξ)| ≤ C|ξ|m−l + C (3)

We suppose that for all x
|a(x, ξ)| ≥ C|ξ|m

′
(4)

for |ξ| > C for a suitable m′ > 0. Let ĥ the Fourier transform of the continuous
function h. We consider the operator L defines on smooth function h by:

L̂h(x) =

∫
a(x, ξ)ĥ(ξ)dξ (5)

L is said to be a pesudodifferential operator elliptic of order larger than m′

with symbol a. This property is invariant if we do a diffeomorphism on Rd
with bounded derivatives at each order. This remark allows to define by using
charts a pseudodifferential operator elliptic of order larger than m′ on a compact
manifold M .

On a compact Riemannian manifold, we can consider the Riemannian mea-
sure. In local coordinates, the Riemannian metric is given by a smooth map

x→ gi,j(x) (6)

in the set of strictly positive matrix and the Riemannian measure is given by

dx = det(g.,.)
−1/2dx1 ⊗ ..⊗ dxd (7)
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We can normalize the Riemannian measure to be of total mass 1.
The fact that L is symmetric on L2(M) means that∫

M

< h1(x), Lh2(x) > dx =

∫
M

< Lh1(x), h2(x) > dx (8)

The fact that L is bounded below means that for some C > 0:∫
M

< h(x), Lh(x) > dx ≥ −C
∫
M

< h(x), h(x) > dx (9)

In such a case L has a self adjoint extension. This generates a semi-group of
bounded operators Pt on L2(M) satisfying the heat equation:

∂

∂t
Pth = −LPth (10)

for h ∈ L2(M) and t > 0. Moreover we suppose that P0h = h. It generates
moreover a semi-group on Cb(M) by ellipticity.

An example can be given on Rd if we use the Garding inequality ([15]).
Suppose that we consider the Lebesgue measure on Rd and that for |ξ| > C0 we
have

Re(a(x, ξ)) > C|ξ|m
′

(11)

for some C > 0. In such a case if we suppose L symmetric, it is bounded below.

3 PROOF OF THE THEOREM

The algebraic part of this work is slighly different of [12]. We give the details
and we don’t write to write the details of the difficulty which comes from the
fact we use no bounded functions in the enlarged semi-group whose treatment
is exactly the same as in [12].

We consider the family of operators on C∞(G× Rn):

L̃nt = L+

n∑
i=1

f ji
∂

∂ui
αit +

n∑
i=1

∂2k

∂u2ki
(12)

αit are smooth function from R+ into R. By elliptic theory, L̃nt generates a
semi-group P̃nt on Cb(G×Rn). This semi-group is time inhomegeneous.

P̃n+1
t [h(g)hn(u)v](., ., 0) =

∫ t

0

P̃nt,s[f
j+1αn+1

s P̃ns [h(g)hn(u)](., .) (13)

Moreover

P̃n+1
t [uh(.)hn(.)](., ., un+1) =

P̃n+1
t [uh(.)hn(.)](., ., 0) + P̃nt [h(.)hn(.)](., .)un+1 (14)
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h is a function of g, hn a function of u1, ..., un. This comes from the fact that
∂

∂un+1
commute with L̃n+1

t

Therefore the two sides of (13) satisfy the same parabolic equation with
second-member. We deduce that

P̃n+1
t [un+1

n∏
j=1

ujh(.)](., ., 0) =

∫ t

0

dsP̃nt,s[f
jn+1αn+1

s P̃ns [h

n∏
j=1

uj ]](., .) (15)

This is an integration by parts formula. We would like to present this formula
in a more appropriate way for our object.

We consider the operator

L
n

= L+
n∑
j=1

∂2k

∂u2kj
(16)

It generates a semi-group P
n

t . In the sequel we will skip the problem of sign
coming if k is even or not. Since

∏n
j=1 uj is a polynomial, the Volterra expansion

associated to P̃s[h
∏n
j=1 uj ] is finite and converge. We get

P̃s[h

n∏
j=1

uj ](., .) =
∑

(−1)l
∫
s>s1>..>sl>0

I ls1,..,slds1..dsl (17)

where

I ls1,..,sl = P
n

s−s1 [

n∑
i=1

f jiαis1
∂

∂ui
[P

n

s1−s2 [

n∑
i=1

f jiαis2

∂

∂ui
[P

n

s3−s2 [[

n∑
i=1

f jiαis2
∂

∂ui
[...[P

n

sl
[h

n∏
j=1

uj ]..](., .) (18)

Moreover

P
n

s [h

n∏
j=1

uj ](g0, .) = P
n

s [h(.g0)

n∏
j=1

uj ](e, .) (19)

such that

f ijP
n

s [h

n∏
j=1

uj ](g0, .) =

P
n

s [f ijh(.g0)

n∏
j=1

uj ](e, .) = P
n

s [f ijh(.)

n∏
j=1

uj ](g0, .) (20)

We remark that in (17) the series is finite and stop at n because we con-
sider a polynomial in vi and because ∂

∂ui
commute with P t. If we consider

Pt(h1(g)h2(v)) it is a product of the Pt(h1)Qt(h2(v)) where Qt is generated by
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∑n
j=1

∂2k

∂u2k
j

. We deduce that in the term of the Volterra expansion of length l

smaller than n, we get (Pt−s(f
lh(g))Qt−s(h1(v) where h1(v) is an homogeneous

polynomial with coefficient independent of g of degree n− l.
We do the following recursion hypothesis on l:
Hypothesis (l) There exists a positive real rl such that if (α) = (i(α), .., i(α)).

is a multiindex of length smaller than l constituted of |(α)| the same element

|Pt[f (α)h
n∏
i=n

ui](g, v.)| ≤ Ct−rl‖h‖∞(1 +

n∏
i=n

|vi|) (21)

where ‖.‖∞ is the uniform norm of h.
It is true for l = 1 by (01) and the next part.
If it is true for l, it is still true for l + 1, by using (15) and the Volterra

expansion above for f (α)h and taking αn+1
s = srl

By choosing suitable αjt , we have according the framework of the Malliavin
Calculus for any basis of the Lie algebra f i, for any l

|Pt[
∑
i

(f i)lh](g0)| ≤ C(α)‖h‖∞ (22)

in order to conclude, because the operator
∑
i(f

i)l is an elliptic operator whose
degree tends to infinity when l→∞.

.

4 STUDY OF AN EXAMPLE ON THE LIN-
EAR SPACE

We give in this part a big category of examples on Rd of symmetric bounded
below pseudodifferential operators which takes its origin in the theory of Poisson
process ([5], [6]).

We consider the space C∞(Rd) of smooth functions h with bounded deriva-
tives at each order.

We introduce a smooth function from Rd×Rd into R (x, y)→ g(x, y) which
is equals to 0 if |y| > C > 0 and with bounded derivatives at each order. This
allows us to introduce the integro-differential operator on C∞(Rd):

Lh(x) = (−1)l+1

∫
Rd

(h(x+ y)− h(x)

−
2l∑
i=1

1/i! < y⊗i, h(i)(x))g(x, y)|y|−(2l+d+α)dy (23)

for α ∈]− 1, 0[.
We do the following hypothesis: for all x ∈ Rd, h(x, 0) > C > 0.
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In such a case, we have shown ([8], [9]) that L is a pseudodifferential elliptic
operator with symbol

a(x, ξ) = (−1)l+1

∫
Rd

(exp[
√
−1 < y, ξ >]−

2l∑
i=1

1/i!(
√
−1 < y, ξ >)i)g(x, y)|y|−(2l+d+α)dy (24)

L is elliptic and satisfies to Garding assumption (11) with m′ →∞ when l→∞.
We produce a large class of examples of such operators which are moreover
symmetric in L2(dx).

Let be Xj(x) , j = 1, .., d be some vector firlds without divergence, with
bounded derivatives of each order and which are uniformly in x in Rd a basis of
Rd.

Let φt(y)(x) be the dynamical system generated by the vector field X(y, x) =∑d
j=1 yjXj(x); φ0(y)(x) = x and

dφt(y)(x) = X(y, φt(y))dt (25)

We suppose g(x, y) = g(y) = g(−y) with a small support.
We introduce the operator

L1h(x) = (−1)l+1

∫
Rd

(h(φ1(y)(x))− h(x)−

l∑
i=1

1/(2i!)(X(y, x))(2i)h(x))g(y)|y|−(2l+d+α)dy (26)

In the previous formula, the vector field X(y, x) is considered as a one order
differential operator in x.

Lemma 2 Under the symmetry condition on g, L1 is symmetric and is defined
on C∞(Rd).

Proof: The fact that L1 is defined on C∞(Rd) comes from the fact that the
asymptotic expansion of y → h(φ1(y)(x) near 0 is

h(x) +

2l∑
i=1

1/i!X(y, x)(i)h(x) (27)

and from the fact that g(y) = g(−y) such that only even integers remain in the
sum (23).

The fact that L1 is symmetric comes from two fact: the vector field X(y, x)
is divergence free such that∫

Rd

h1(x)X(y, x)(2i)h2(x)dx =

∫
Rd

h2(x)X(y, x)(2i)h1(x)dx (28)
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by integrating by part. Moreover x→ φ1(y)(x) preserves the Lebesgue measure
such that ∫

Rd

h1(x)h2(φ1(y)(x))dx =

∫
Rd

h1(φ1(−y)(x))h2(x)dx (29)

and the result arises from the equality g(y) = g(−y).
♦

Theorem 3 L1 is an operator of the type (23) which is symmetric bounded
below.

Proof: It remains only to show that L1 is an operator of the type (23). For
that we remark that the map

y → φ1(y)(x)− x (30)

is a local diffeomorhism at every point y and a local diffeomorphism of a neigh-
borhood of 0 in Rd onto a neighborhood of 0 in Rd.
♦
Remark: Let us give some heuristic explanation which explain this part.

Let us consider a formal path measure dQ on a ”space” of paths yt with jumps
starting from 0 which represents the semi-group Pt associated to the operator

Lh(x) = (−1)l+1

∫
Rd

(h(x+ y)− h(x)−

l∑
i=1

1/(2i!) < y⊗2i, h(2i)(x) >)g(y)|y|−(2l+d+α)dy (31)

such that formally

Pth(x) =

∫
h(yt + x)”dQ(y.)” (32)

We consider the ”formal stochastic differential with jumps” whose solution
(starting from x) y1,t(x) satisfies

∆y1,t(x) = φ1((∆yt))(y1,t−(x))− y1,t−(x) (33)

where yt− = lims→t− ys and ∆yt = yt − yt−. We should get

P1,th(x) =

∫
f(y1,t(x)”dQ(y.)” (34)

Moreover, a lot of compensation should appear in the formal equation giving
y1,t. We refer to [5] in the case where the path integrals are rigorously defined
(In such a case only one compensation appears!)
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