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The Semantic Web and the Linked Open Data (LOD) initiatives promote the integration and combination of RDF data on the Web. In some cases, data need to be analyzed and protected before publication in order to avoid the disclosure of sensitive information. However, existing RDF techniques do not ensure that sensitive information cannot be discovered since all RDF resources are linked in the Semantic Web and the combination of different datasets could produce or disclose unexpected sensitive information. In this context, we propose a framework, called RiAiR, which reduces the complexity of the RDF structure in order to decrease the interaction of the expert user for the classification of RDF data into identifiers, quasi-identifiers, etc. An intersection process suggests disclosure sources that can compromise the data. Moreover, by a generalization method, we decrease the connections among resources to comply with the main objectives of integration and combination of the Semantic Web. Results show a viability and high performance for a scenario where heterogeneous and linked datasets are present.

Introduction

With the advance of the Semantic Web and the Linked Open Data initiatives, more and more RDF documents are available on the Web. RDF describes resources as triples: subject, predicate, object , where subjects, predicates, and objects are all resources identified by their IRIs. Objects can also be literals (e.g., a number, a string), which can be annotated with optional type information, called datatype. Since the last decade, RDF is attracting more and more people, and data is gathered and published by different sources (e.g., companies, governments) for many purposes such as statistics, testing, and research proposals. For instance, according to [START_REF] Hausenblas | Linked open government data[END_REF], more governments are becoming e-governments, since they are part of the LOD initiatives, providing their data to have a more flexible data integration, increasing the data quality, and offering new services. However, as more data is available, sensitive information (e.g., diseases, salaries, or bank accounts) could be sometimes provided or inferred leading to compromise the privacy of related entities (e.g., patients, users, companies).

Data can be analyzed and protected before being published on the Web [START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF][START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF], or limited in access for queries over controlled scenarios [START_REF] Papakonstantinou | Securing access to sensitive RDF data[END_REF][START_REF] Reis | A differentially private approach for querying rdf data of social networks[END_REF]. In this work, we only focus on the protection of RDF data, expressed as documents, by the analysis of the data before publication. A privacy protection of the RDF data is tricky, since the use of different published heterogeneous datasets could break some protection. For instance, the combination of well-known datasets as DBpedia and Enipedia1 produces sensitive information of places of interest (e.g., schools, hospitals, production factories), regarding their proximity to nuclear power plants (high contamination resource).

According to [START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF], anonymization is one common and widely adopted technique for sensitive data protection that has been successfully applied in practice. It consists on protecting the entities of interest by removing or modifying identifiable information to make them anonymous before publication, while keeping the utility of the data. This latter is modified according to certain criteria of the existing values (e.g., taxonomies, ranges) to satisfy some conditions of anonymity (e.g., k-anonymity1 , l-diversity2 ). To apply anonymization, it is necessary to identify and classify the data (see D in Fig. 1) into: (i) main entities, which are the entities of interest, and (ii) related data that is directly or indirectly associated to the main entities and can compromise their privacy. The related data can also be classified as [START_REF] Bettini | The role of quasi-identifiers in k-anonymity revisited[END_REF]: (i) Identifiers, data that directly identify a main entity (e.g., security social number); (ii) Quasi-identifiers, data that can be used to link with other data to identify a main entity (e.g., birthday, postal code, gender); (iii) Sensitive information, which is the data that compromise a main entity (e.g., diseases); and (iv) Unsensitive information that does not have a particular role or impact.

Figure 1 Anonymization framework inspired from [START_REF] Laura Maag | Graph anonymization using machine learning[END_REF]; D is the data to be published, BK is the Background Knowledge; and pD the protected data obtained by the anonymization process, considering the classification made by the Expert User A classification, which is performed by an expert user (see Expert User in Fig. 1) who knows previously the data and is responsible of protecting model, is based on predefined assumptions about how an adversary can take advantage over these data. These assumptions are called Background Knowledge. The background knowledge (see BK in Fig. 1) is the information related to the published data, which can be used by adversaries to discover sensitive information of the main entities. Due to the huge complexity of the RDF structure, a classification requires a high interaction of the expert user. Moreover, all RDF's elements can be considered as main entities, and they can also be classified into identifiers, quasi-identifiers, sensitive information, etc., making the RDF protection complex.

Works on RDF anonymization are limited [START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF][START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF]. They mainly apply generalization and suppression operations over taxonomies (each RDF's element has a defined taxonomy) to anonymize the RDF document. Defined areas (neighborhood) are also provided [START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF], where anonymization properties as k-anonymity are satisfied. Various anonymous RDF documents are generated by the combination of all values from the taxonomies and a measure is required to choose the best option. However, the exhaustive method to select the best anonymous RDF document makes these approaches unsuitable for complex cases, since a greater quantity of values to take into account, needs a more elaborate anonymization process (more possible solutions).

Since RDF forms a directed, labeled graph structure with data, where the edges (predicates) represent the named link between two resources, represented by the graph nodes (subjects and objects) [START_REF] Peter | RDF 1.1 Semantics, W3C Recommendation 25[END_REF], databases and graphs anonymization techniques could be applied, but they are limited and inappropriate for privacy protection in the Semantic Web, as we detail in Section 3.

Thus, in the context of RDF data, the following limitations are identified:

1. RDF anonymization techniques are limited and designed for a particular and ideal scenario, which is inappropriate when having several linked heterogeneous datasets [START_REF] Yotam | Information privacy for linked data[END_REF][START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF][START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF][START_REF] Reis | A differentially private approach for querying rdf data of social networks[END_REF]; 2. The non-consideration of IRIs as external and reachable resources makes the current RDF solutions unsuitable for protection on the Web, since other available resources could link or infer sensitive information; 3. The presence and consideration of resources (IRIs and Blank nodes), which are a fundamental part of the RDF data, makes the database oriented methods [START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF][START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF][START_REF] Masoumzadeh | Lbs (k, t)-anonymity: A spatio-temporal approach to anonymity for location-based service users[END_REF][START_REF] Nierman | Evaluating structural similarity in XML documents[END_REF][START_REF] Sei | Randomized addition of sensitive attributes for l-diversity[END_REF] unsustainable for a large quantity of resources due to the number of JOIN functions needed to satisfy the existing normalized models; 4. Graph anonymization techniques assume simple, undirected and unlabeled graphs [START_REF] Backstrom | Wherefore art thou r3579x?: Anonymized social networks, hidden patterns, and structural steganography[END_REF][START_REF] Campan | A clustering approach for data and structural anonymity in social networks[END_REF][START_REF] Chester | k-anonymization of social networks by vertex addition[END_REF][START_REF] Hay | Resisting structural re-identification in anonymized social networks[END_REF][START_REF] Liu | Towards identity anonymization on graphs[END_REF][START_REF] Liu | Privacy preserving in social networks against sensitive edge disclosure[END_REF][START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF][START_REF] Yuan | Protecting sensitive labels in social network data anonymization[END_REF][START_REF] Zhou | Preserving privacy in social networks against neighborhood attacks[END_REF]; thus, the reduction of complexity of the RDF structure to a simple graph is necessary for the application of graph solutions, but inappropriate for the Semantic Web, since properties and semantic relations among resources would be ignored; 5. The complexity of the RDF structure requires a high interaction of the expert user to identify and select the RDF's elements to be protected (main entities), and the ones related to the main entities (identifiers, quasi-identifiers, sensitive information, and unsensitive information); and 6. Approaches based on conceptual RDF representations are needed in order to provide more general solutions that can be serialized later on different formats (e.g., RDF/XML, Turtle, N3, JsonLD).

To overcome these limitations, we propose a framework, called RiAiR (Reduction, Intersection, and Anonymization in RDF) , which is independent of the serialization formats and providers. The proposal is designed for RDF documents, considering their elements (IRIs, blank nodes, literals) and the scenario, where a huge quantity of information is available. The complexity of the RDF structure is reduced to make possible the task of classification and to suggest potential disclosure sources to the expert user, decreasing his interaction. Moreover, by a generalization method, we reduce the connections among datasets, preserving the main objectives of the Semantic Web (integration and combination), and protecting the sensitive information at the same time.

We validated our anonymization approach through several experiments. We evaluated the viability and the performance of the proposal with respect to the related work. Results show a real viability of our approach for linked heterogeneous datasets and a high performance of the anonymization process of quadratic order with respect to the triples of the the data to be published (n) and the ones from the background knowledge (m) (i.e., O(n 2 + m 2 )).

The paper is organized as follows. Section 2 presents a motivating scenario to illustrate the disclosure of sensitive information on the Web. Section 3 surveys the related literature. Terminologies and concepts are presented in Section 4. Section 5 describes our approach. Section 6 shows the experiments to evaluate the viability and performance of our approach. Finally, we present our conclusions in Section 7.

Motivating Scenario

The goal of the Semantic Web is to publish datasets, mainly as RDF, describing and combining resources on the Web for an open access. The datasets are usually treated and protected before being published; however, sensitive information could be deduced using related information available from other datasets. To illustrate this, let's consider a scenario in which a data manager X works for a government to publish a dataset A, related to energy production and its applications, on the Web2 .

An extract of the dataset A to be published is shown in Table 1. Figure 2 shows the schema of the dataset A to be published. Note that the properties prop:Latitude, prop:Longitude, rdfs:label, and cat:radioactive define values, while the properties prop:City, prop:Country, and cat:Fuel type define resources. As a data manager, X should pay attention about the side effect of publishing the dataset A on the Web, since it can produce sensitive information for entities already published. For instance, DBpedia3 , which is a linked open dataset extracted from Wikipedia, can be used as background knowledge in order to discover sensitive information related to places of interest. This dataset can be easily connected by the use of properties, such as prop:Latitude and prop:Longitude present in the dataset A as well. Table 2 shows some places of interest available in the DBpedia dataset. By the intersection among coordinates (prop:Latitude and prop:Longitude) of nuclear power plants (dataset A) and the ones of places of interest (dataset DBpedia), one can easily identify their proximity in a defined Region. A Region is an area obtained by the maximum distance between a nuclear power plant and a place of interest. The following SPARQL query produces the intersection between the dataset A to be published and the dataset DBpedia. Note that a Region of 100km was used to obtain the results.

SELECT DISTINCT ?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat.")) AS ?distance FROM <http://dbpedia.org> WHERE {?p rdfs:label ?Place ; geo:geometry ?g ; rdf:type dbo:School . FILTER (bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100) && (lang(?Place) = \"en\"))} ORDER BY ASC(?distance) Table 3 is the result of the intersection between the dataset A and dataset DBpedia. It shows in row 1 that a school is less than 500 meters distance from a power nuclear plant in United Kingdom. It also shows which hospitals, universities, and any other crowded places are close to power nuclear plants in a defined area. One can even identify which are the dirtiest power nuclear plants (prop:Carbonemissions) and the places next to them. If this combined information is available on the Web, it can be misused against the nuclear power plants to stop their production and management, and even against the places of interest near to them.

Figure 3 illustrates graphically the intersection between dataset DBpedia and the dataset A. The resource Region links School, University, Hospital and Power Plant resources.

To protect the dataset A to be published, X needs to identify and classify the data, according to the assumptions of how an adversary can obtain or produce sensitive information, using the background knowledge, as follows. The information of a Power Plant resource of type nuclear (art:Nuclear) Once X has established the classification, a protection technique based on this classification, should be used to protect the disclosure of sensitive information. Thus, the following challenges are defined in this study.

• Provide an easy classification of the RDF data (keys, sensitive information and unsensitive information); • A similarity measure able to evaluate the intersection between the data to be published and the background knowledge, to suggest disclosure sources; and • Select the most appropriate protection taking into account the complexity of the RDF data and the objectives of the Semantic Web.

Our contribution in this study is as follows:

• A general framework designed for RDF documents, independent of the serialization formats, in a scenario where linked and heterogeneous resources are presented; i.e., the Web; 1. A method to reduce the complexity of the RDF structure of the data to be published, simplifying the task of analysis, performed by the expert user; 2. A method to suggest disclosure sources to the expert user, based on node similarity, reducing the task of data classification; and 3. An anonymization operation, based on a generalization method, to decrease the relations among resources from different datasets, to preserve the main objectives of integration and combination of the Semantic Web.

The following section presents the related work of RDF anonymization.

Related Work

In this work, we focus on anonymization techniques as a solution to protect the sensitive information since it has been widely adopted for sensitive data protection [START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF]. To the best of our knowledge, works on RDF document anonymization are limited [START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF][START_REF] Rachapalli | Redact: A framework for sanitizing rdf data[END_REF][START_REF] Rachapalli | Rdf-x: A language for sanitizing rdf graphs[END_REF][START_REF] Rachapalli | Redaction based rdf access control language[END_REF][START_REF] Rachapalli | Towards fine grained rdf access control[END_REF][START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF][START_REF] Reis | A differentially private approach for querying rdf data of social networks[END_REF]; however, due to the particularity of the RDF data, other domains where anonymization has been extensively studied could be applied, such as: databases [START_REF] Gao | Research on k anonymity algorithm based on association analysis of data utility[END_REF][START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF][START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF][START_REF] Masoumzadeh | Lbs (k, t)-anonymity: A spatio-temporal approach to anonymity for location-based service users[END_REF][START_REF] Sei | Randomized addition of sensitive attributes for l-diversity[END_REF][START_REF] Yang | An enhanced l-diversity privacy preservation[END_REF] and graphs [START_REF] Backstrom | Wherefore art thou r3579x?: Anonymized social networks, hidden patterns, and structural steganography[END_REF][START_REF] Campan | A clustering approach for data and structural anonymity in social networks[END_REF][START_REF] Chester | k-anonymization of social networks by vertex addition[END_REF][START_REF] Hay | Resisting structural re-identification in anonymized social networks[END_REF][START_REF] Liu | Towards identity anonymization on graphs[END_REF][START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF][START_REF] Zhou | Preserving privacy in social networks against neighborhood attacks[END_REF]. To evaluate and classify the existing works, we identified the following criteria of comparison according to the challenges and objectives of this work:

1. The complexity of the data, which should be aligned with the one of RDF structure, considering heterogeneous nodes and relations, increasing the expressibility and difficulty of the representation; 2. The type of classification method for identifiers, quasi-identifiers, sensitive and un-sensitive information due to the high quantity of entities, properties and values available on the Web, making difficult the task of the expert user; and 3. The conditions of anonymity that are proposed in the current proposals to identify the most appropriate ones for the Semantic Web.

Following sections describe the RDF, databases, and graph approaches in the context of anonymization.

RDF Document Anonymization

For RDF documents, the authors in [START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF] provide an overview of RDF's elements over the role in anonymization (e.g., explicit identifiers, quasiidentifiers, sensitive data). They propose a framework to anonymize RDF documents, which satisfies the k-anonymity condition. They consider the use of taxonomies for values and relations (each type of value and relation has its own taxonomy). Generalization and suppression operations are applied over these taxonomies to anonymize the RDF document. Once the operations are applied, several anonymous RDF documents are produced by the use of all value combinations from the taxonomies. A measure for anonymous solutions that satisfied the k-anonymity condition, is proposed to select the best option. In [START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF], the authors extend the previous work defining an area (neighborhood), where the k-anonymity condition is satisfied. The exhaustive method to select the best option makes these approaches unsuitable for complex cases, since a greater quantity of values to take into account, needs a more elaborate anonymization process (more possible solutions). Moreover, the authors assume a classification of the data provided by the model and they do not specify how this classification was performed.

Additionally, there are some works on the context of statistical queries [START_REF] Yotam | Information privacy for linked data[END_REF][START_REF] Reis | A differentially private approach for querying rdf data of social networks[END_REF] based on grouping operators (e.g.,SUM, AVG,MAX) and others based on expert-defined sanitization queries [START_REF] Rachapalli | Redact: A framework for sanitizing rdf data[END_REF][START_REF] Rachapalli | Rdf-x: A language for sanitizing rdf graphs[END_REF][START_REF] Rachapalli | Redaction based rdf access control language[END_REF][START_REF] Rachapalli | Towards fine grained rdf access control[END_REF] to remove identifiers, but we only focus on the protection of RDF documents.

Database Anonymization

In some cases when one has small RDF data, a common practice can be to convert the RDF to a structured dataset as tables to reuse existing techniques. Anonymization in databases has been extensively studied and many works are available in the literature. One of the most used work is proposed in [START_REF] Samarati | Protecting respondents' identities in microdata release[END_REF], the authors define a condition, called k-anonymity, where an entity cannot be identified, since there is at least k -1 other similar entities. However, the problem of satisfying the k-anonymity condition is NP-hard, producing different studies where the complexity and an efficient solution are addressed. For instance, to anonymize the data, the authors in [START_REF] Nierman | Evaluating structural similarity in XML documents[END_REF] apply techniques based on neural networks, the authors in [START_REF] Abdrashitov | Sensor data anonymization based on genetic algorithm clustering with l-diversity[END_REF] apply genetic algorithms, while in [START_REF] Nierman | Evaluating structural similarity in XML documents[END_REF] the authors use matching learning. Non-perturbative operations, such as generalization and suppression methods, where data is modified according to certain criteria of the existing values (e.g., taxonomies, ranges), are mainly used to satisfy the k-anonymity condition [START_REF] Angiuli | Statistical tradeoffs between generalization and suppression in the de-identification of large-scale data sets[END_REF]. Other studies use perturbative operations, such as Micro-aggregation/clustering methods, where the entity values are replaced or modified by the centroid of the clusters, adding in some cases new entities to satisfy conditions of anonymization in each cluster [START_REF] Shin | Electronic medical records privacy preservation through k-anonymity clustering method[END_REF][START_REF] Zhang | A k-anonymity clustering algorithm based on the information entropy[END_REF].

According to [START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF], k-anonymity condition does not protect the sensitive values, since k similar entities can have the same sensitive information, which is the one required by the adversary. For that, the authors in [START_REF] Machanavajjhala | l-diversity: Privacy beyond k-anonymity[END_REF] extend the k-anonymity condition considering a diversity (l) of sensitive values for each set of similar entities (l-diversity). However, the disclosure is still possible due to the attribute distribution of the dataset. The authors in [START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF] propose a condition where the distribution of each sensitive attribute should be close/similar to the whole attribute distribution in the dataset (tcloseness). Other studies extend the previous mentioned conditions to address particular assumptions of the background knowledge. The authors in [START_REF] Masoumzadeh | Lbs (k, t)-anonymity: A spatio-temporal approach to anonymity for location-based service users[END_REF] propose a (k,T)-anonymization model over spatial and temporal dimensions. Other works apply the conditions of anonymity to different values as the authors [START_REF] Sei | Randomized addition of sensitive attributes for l-diversity[END_REF] do, where l-diversity condition is satisfied by the sensitive information as well. The l-diversity condition is extended in the clustering proposal work [START_REF] Yang | An enhanced l-diversity privacy preservation[END_REF], defining a (k, l, θ)-diversity model, which takes into account the cluster size, the distinct sensitive attribute values, and the privacy preserving degree of the model. An improvement of certain conditions is made for special scenarios; for instance, the authors in [START_REF] Han | An improved l-diversity model for numerical sensitive attributes[END_REF] divide numerical sensitive values into several levels, getting a better protection for numerical values. Also, properties of the data such as utility, value distribution, etc., are considered to propose anonymization models. The work in [START_REF] Gao | Research on k anonymity algorithm based on association analysis of data utility[END_REF] takes into account the association between quasi-identifiers and the sensitive information as a criterion to control the use of generalization hierarchy. Some semantic features are added in recent works. The authors in [START_REF] Oishi | Proposal of ldiversity algorithm considering distance between sensitive attribute values[END_REF] provide a (l, d)-semantic diversity model based on a clustering method. They analyze the distance among sensitive values (d) to consider more actual diversity.

According to [START_REF] Sei | Anonymization of sensitive quasi-identifiers for l-diversity and t-closeness[END_REF], a value can be quasi-identifier and sensitive information at the same time, proposing a method that can treat "sensitive quasi-identifier" and satisfying the conditions of l-diversity and t-closeness.

Differential Privacy as k-anonymity is another well-used technique to provide privacy. The authors in [START_REF] Dwork | Calibrating Noise to Sensitivity in Private Data Analysis[END_REF] propose a perturbation method for true answer of a database query by the addition of a small amount of distributed random noise. This method is extended by other authors as in [START_REF] Hay | Boosting the accuracy of differentially private histograms through consistency[END_REF], where they improve the accuracy of a general class of histogram queries while satisfying differential privacy. The work in [START_REF] Mohammed | Differentially private data release for data mining[END_REF] is a non-interactive setting model, generalizing probabilistically the raw data and adding noise to guarantee differential privacy. Other studies are focused on the privacy of anonymized datasets, since a dataset, in the context of databases, can be affected by updating and removing operations, which can expose the sensitive information. The authors in [START_REF] Shah | Privacy-preserving deletion to generalization-based anonymous database[END_REF] propose an architecture which protects the main entities for databases that require removing operations frequently. They apply generalization operations based on hierarchies (non-perturbative method). The model satisfies k-anonymity condition; however, the architecture needs to verify the anonymous data for each new deleting request in order to protect the privacy of the original datasets. A centralized scenario is required to apply this proposal.

Works on database anonymization approaches that satisfy k-anonymity and its variations, assume that the classification of data into identifiers, quasiidentifiers, sensitive and un-sensitive information is provided by a user expert, who knows the data, focusing mainly on the method to satisfy the conditions of anonymization. In the Semantic Web, it is unable to understand the detailed characteristics of external datasets, and assume all the background knowledge possessed by adversaries. Moreover, as more information is involve, more complex is the task of converting the RDF data to a structured normalized model, since a high granularity (many tables) is produced due to the use of IRIs, acting as foreign-keys.

Following section describes the works related to graph anonymization.

Graph Anonymization

RDF data can be represented as a graph structure, having labeled-nodes, and directed and labeled-edges. In the literature, there are several works in the context of social media, where the authors assume a simple network as undirected, node-unlabeled and edge-unlabeled structure [START_REF] Campan | A clustering approach for data and structural anonymity in social networks[END_REF][START_REF] Liu | Towards identity anonymization on graphs[END_REF][START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF] (see Group 9 in Table 4). These works focus on the privacy through the number of edges among nodes, since an adversary can have the information about the relations, which can be the only one with a particular number (k-degree condition). The work in [START_REF] Campan | A clustering approach for data and structural anonymity in social networks[END_REF] proposes a greedy algorithm to satisfy the k-degree by partitioning all nodes to n clusters. Each cluster becomes uniform with respect to the quasi-identifier attributes and the quasi-identifier relationship (generalization). To choose the best n values, two criteria are taken into account: (i) each cluster has to contain at least k nodes and (ii) minimize the information loss of the data. The authors in [START_REF] Liu | Towards identity anonymization on graphs[END_REF] propose an algorithm to satisfy the k-anonymity condition over the number of edges of each node. They also rename the k-anonymity as k-degree condition. The proposal consists in two steps: (i) Degree Anonymization, where a degree sequence of the graph (descending order) is generated to group similar nodes with the same degree and (ii) Graph construction, where an algorithm decides among which nodes a new edge is added according to satisfy the k-degree condition. In [START_REF] Ying | Randomizing social networks: a spectrum preserving approach[END_REF], the authors anonymize a graph by adding random edges. They provide an analysis on the spectrum of the graph to measure the impact of the anonymization solution.

The spectrum is directly related to the topological properties such as diameter, presence of cohesive clusters, long paths and bottlenecks, and randomness of the graph. Works in this group only take into account the number of relations as a condition of anonymity (k-degree), but in a scenario where a diversity of nodes is present, the number of operations to satisfy the k-degree condition increases exponentially. Moreover, diversity of edges values is not analyzed and the authors assume that the classification of the data is provided by the expert user.

Other works manage more complex graphs by assuming labeled-node structure as in [START_REF] Backstrom | Wherefore art thou r3579x?: Anonymized social networks, hidden patterns, and structural steganography[END_REF][START_REF] Chester | k-anonymization of social networks by vertex addition[END_REF][START_REF] Hay | Resisting structural re-identification in anonymized social networks[END_REF][START_REF] Zhou | Preserving privacy in social networks against neighborhood attacks[END_REF] (see Group 10 in Table 4). The authors in [START_REF] Backstrom | Wherefore art thou r3579x?: Anonymized social networks, hidden patterns, and structural steganography[END_REF] demonstrate assuming several attacks that removing identifiers and renaming the nodes in an arbitrary manner, from a social graph, is an ineffective anonymization mechanism. Walk-based attacks are able to compromise the privacy for modest numbers of node (around 90%); thus, it has been proven for the authors that removing identifiers of the data is not a well protection. The authors in [START_REF] Chester | k-anonymization of social networks by vertex addition[END_REF] assume that the adversary knows only degree-based in-formation, which is the number of relations (edges) that has each node. To anonymize the graphs, they add new nodes instead of edges, since they affirm that "introducing new nodes does not necessarily have an adverse effect. To the contrary, adding new nodes with similar properties could better preserve aggregate measures than will distorting the existing nodes". To satisfy the k-anonymity condition, an algorithm following four steps is provided: (i) Optimally partition degree sequence (descending order), (ii) Augment graph with new dummy nodes, (iii) Connect original graph nodes to new dummy nodes, and (iv) Insert inter-dummy-node edges to anonymize dummies. In [START_REF] Hay | Resisting structural re-identification in anonymized social networks[END_REF], the authors propose an anonymization technique that protects against re-identification by generalizing the input graph. They generalize the graph by grouping nodes into partitions, and then publishing the number of nodes in each partition, along with the density of edges that exist within an across partitions. To preserve the privacy of individuals, which are represented as nodes in a social network, the authors in [START_REF] Zhou | Preserving privacy in social networks against neighborhood attacks[END_REF] assume that an adversary may have the background knowledge about the neighborhood of some target individuals. Two properties are taking into account: (i) node degree in power law distribution [START_REF] Faloutsos | On power-law relationships of the internet topology[END_REF] and (ii) small-world phenomenon [START_REF] Wasserman | Social network analysis: Methods and applications[END_REF] to ensure a low loss of data. They greedily organize nodes into groups and anonymize the neighborhoods of nodes in the same group to satisfy the k-anonymity condition.

Works in this group have the same drawbacks as the previous one, which are related to the modeling of social graphs as a simple structure (even if the graph is node-labeled), and the assumption of the classification, which is provided by the expert user.

The authors in [START_REF] Liu | Privacy preserving in social networks against sensitive edge disclosure[END_REF] work also on the context of social networks by ensuring the privacy of main entities, which are the nodes in the graph (see Group 11 in Table 4). They consider a weight over edges, since it can represent affinity among two nodes, frequency among two persons, or similarity between two organizations. They propose a Gaussian Randomization Multiplication strategy due to its simple implementation in practice and responds to the dynamic-evolution nature of social networks, since it is very hard and costly to collect the information in advance in a huge and dynamic scenario. This work represents in a better way the scenario present in the Semantic Web. However, edges-labeled are reduced to values and they are not considered as reachable resources which can be used to disclosure the sensitive information. Also, this work assumes that the classification of the data is provided by user expert.

Another work is presented in [START_REF] Yuan | Protecting sensitive labels in social network data anonymization[END_REF] (see Group 12 in Table 4), the authors assume a more complex graph than the previous described groups. In fact, in addition of the node degree, they also assume the values of the nodes as sensitive data. They propose a framework, which satisfies k-anonymity and l-diversity conditions. They generate a sequence of 3-tuples (id, nodedegree, and its respective sensitive value). A grouping algorithm is applied over the list to group similar triples, following certain criteria to satisfy the conditions of anonymization (k-anonymity and l-diversity). The sequence is called KDLD sequence, when all the defined conditions are satisfied. From the KDLD sequence, the graph is rebuilt. Then, they propose a graph construction technique adding nodes to preserve utilities of the original graph. Two key properties are considered: (i) Add as few noise edges as possible; (ii) Change the distance between nodes as less as possible.

In general, graph anonymization approaches assume a simple structure of the data as an undirected and unlabeled-edge social media graph. Also, k-degree is a one of the common conditions of anonymity used for the authors; however, considering a diversity of nodes as in RDF and using the existing solutions to satisfy the k-degree condition, the complexity increases considerably.

The following section summarizes and discusses the works related to anonymization.

Summary and Discussion

Existing techniques in the context of RDF document anonymization are really limited. In [START_REF] Heitmann | k-rdf-neighbourhood anonymity: Combining structural and attribute-based anonymisation for linked data[END_REF][START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF], the authors reduce the complexity of RDF structure to micro-data, where a huge quantity of information such as heterogeneous nodes and relations is simplified and anonymized. However, in a scenario where thousands of heterogeneous resources are present, the current solutions are not appropriate due to the greedy algorithm to generate all possible solutions (anonymous RDF) and then, their measure to evaluate and select the most adequate one.

Since RDF data can be converted, in some cases, to a structured data as databases, database anonymization techniques could be also applied. Small RDF data can be managed by these solutions; however, reducing the complexity of big RDF data into structured models can produce a high semantic information loss (properties), and a huge granularity of the structured normalized-model. Moreover, solutions are proposed for simple cases where data satisfy conditions of anonymity, but when a diversity of values is present, the complexity of the solutions increases exponentially. As RDF data can be also represented as a graph, anonymization graph approaches have been explored in this work. The simplicity of the graph structure assumption makes the current approaches not adequate for the Semantic Web, where heterogeneous nodes and relations are present. Some criteria of anonymization, such as k-degree, can be adopted to the Semantic Web, but the solutions to satisfy these criteria have to be modified according to the complexity of the RDF structure.

Most of the works in RDF documents, databases and graphs anonymization assume that the classification of the data required to satisfy the conditions of anonymity, is provided by expert user. However, the scenario of the Se-mantic Web complicates the task of classification, since it is difficult to understand the detailed characteristics of external datasets, and assume all the background knowledge possessed by adversaries.

Table 4 shows our analysis in this regard. Note that none of the works on database and graph anonymization satisfies the criteria of complexity of data (heterogeneous nodes and relations). Moreover, the classification on the data is mainly provided by the proposals and there is no information about how it was performed. We assume that the process to classify the data has been manual. Thus, a new anonymization approach able to cope all requirements is needed to provide an appropriate protection of sensitive information for the Semantic Web.

Before describing how our approach addresses these requirements, the following section introduces some common terminologies and definitions of anonymization in the context of RDF.

Terminologies and Definitions

For the Semantic Web, RDF is the common format to describe resources, which are abstractions of entities (documents, persons, companies, etc.) of the real world. RDF uses triples in the form of subject, predicate, object expressions also named statements, to provide relationships among resources. The following elements compose the RDF triples:

-An IRI, which is an extension of the Uniform Resource Identifier (URI) scheme to a much wider repertoire of characters from the Universal Character Set (Unicode/ISO 10646), including Chinese, Japanese, and Korean character sets [START_REF] Duerst | Internationalized Resource Identifiers (IRIs)[END_REF].

-A Blank Node, representing a local identifier used in some concrete RDF syntaxes or RDF store implementations. A blank node can be associated with an identifier (rdf:nodeID) to be referenced in the local document, which is generated manually or automatically.

-A Literal Node, representing values as strings, numbers, and dates. According to the definition in [START_REF] Cyganiak | RDF 1.1 Concepts and Abstract Syntax[END_REF], it consists of two or three parts:

• A lexical form, being a Unicode string, which should be in Normal Form C5 to assure that equivalent strings have a unique binary representation.

• A datatype IRI, being an IRI identifying a datatype that determines how the lexical form maps to an object value.

• A non-empty language tag as defined by "Tags for Identifying Languages" [START_REF] Chbeir | Tags for Identifying Languages[END_REF], if and only if the datatype IRI is http://www.w3.org/1999/02/22-rdf-syntax-ns#langString. Table 5 describes the sets of RDF's elements that we use in our approach description. After the definition of sets of RDF'elements, we formally describe a triple in Def 1.

Definition 1. Triple (t):

A Triple, denoted as t, is defined as an atomic structure consisting of a 3-tuple with a Subject (s), a Predicate (p), and an Object (o), denoted as t :< s, p, o >, where: -s ∈ I ∪ BN represents the subject to be described, that can be an IRI or a blank node; -p ∈ I is a predicate defined as an IRI in the form namespace prefix:predicate name, where namespace pref ix is a local identifier of the IRI, in which the predicate (predicate name) is defined. The predicate (p) is also known as the property of the triple.

-o ∈ I ∪ BN ∪ L describes the object, that can be an IRI or a blank node.

From our motivating scenario, we can observe several triples with different RDF resources, properties, and literals: -t 1 : <genid:S1,rdf:type,dbo:School> -t 2 : <genid:S1,rdfs:label,"Hartlepool College of Further Education"> -t 3 : <genid:S1,prop:latitude,1.4545> -t 4 : <genid:S1,prop:longitude,0.40244> A set of triples defines an RDF document, by encoding the triples, using a predefined serialization format complying with the RDF W3C standards, such as RDF/XML, Turtle, N3, etc. According to the structure of triples, RDF document can be represented as an RDF Graph, since the structure allows node-edge-node relations. An RDF graph is defined in Def 2. Definition 2. RDF Graph (G):An RDF graph of an RDF document is denoted as G d (N, E), where each triple t i from d is represented as a nodeedge-node link. Therefore, G nodes (N), denoted as n i , represent subjects and objects, and G edges (E), denoted as e j , represent corresponding predicates: n i ∈ t i .s∪t i .o and e j ∈ t i .p [START_REF] Ticona-Herrera | Toward RDF Normalization[END_REF].

The following subsection presents the formal concepts used in this work.

Problem Definition

As we show in the motivating scenario, there are cases in which sensitive information can be disclosed through the data published from different sources on the Web (due to data intersection). Thus, the data to be published, denoted as D, should be protected before, in order to avoid compromising the disclosure or production of sensitive information.

The available information on the Web is called background knowledge. It can be provided automatically or semi-automatically by the expert user and can contain simple or complex resources (e.g., one RDF resource, RDF graph, text files). The background knowledge is formally defined in Def. 3. Definition 3. Background Knowledge (BK): It is a set of IRIs, considered as nodes and denoted as BK: {n 1 , n 2 , ..., n i | ∀n i , n i is a IRI}.

In this work, we assume that the intersection between D and BK can disclose or produce sensitive information, hence identifiers and quasi-identifiers appear in D due to the connection among its subjects and objects. We rename both concepts to keys, defined in Def. 4, since they allow the disclosure of sensitive information. Definition 4. Keys (K): Keys are identifiers and quasi-identifiers, denoted as

K : {k i | ∀k i ∈ I ∪ BN ∪ L, k i produces sensitive inf ormation}.
We formally define our assumption concerning the intersection between D and BK datasets in Ass.1.

Assumption 1. Key Detection (Intersection) (IN):

The intersection between a set of triples T and a set of IRIs I is defined as a set of nodes (subjects and objects of triples) that belong to the RDF graph of T (G T ), denoted as IN , where each node of IN has another similar one in I. The similarity among the two nodes is measured by a similarity function (simFunc), whose value is equal or greater than an established threshold.

IN : T I = {n i ∈G T |sim(n i ∈T,n j ∈I,α,β,γ)≥threshold} Where:

-is an operator that defines the intersection between triples and IRIs; -n i is a subjects or object that belong to T ; -n j is a IRI that belong to I; -sim is the similarity function defined in Def. 5.

The similarity function between two nodes is defined in Def. 5.

Definition 5. Similarity function (simFunc):

The similarity between two nodes is defined as a float value, denoted as simFunc that takes into account three different aspects of the nodes: (i) syntactic; (ii) semantic; and (iii) context analysis, such that: simF unc(n i , n j , α, β, γ) = α × syntactic similarity(n i , n j ) + β × semantic similarity(n i , n j ) + γ × context similarity(n i , n j )) Where:

n i ∈ I ∪ BN ∪ L and n j ∈ I; -Syntactic similarity is a function which considers the syntactic aspect of the node, whose values are in [0, 1]; -Semantic similarity is a function which considers the semantic aspect of the nodes, whose values are in [0, 1]; -Context similarity is a function which considers the incoming and outgoing relations of the nodes, whose values are in [0, 1]; -α + β + γ = 1.

According to the type of nodes of BK (IRIs), different similarity functions should be provided to discover similar nodes. For instance, similarity in the context of RDF information retrieval has been widely studied and several work analyze queries (e.g., a node, graphs) with respect to RDF structure [START_REF] Gayathri | Semantic search on summarized rdf triples[END_REF][START_REF] Zhang | A similarity-oriented rdf graph matching algorithm for ranking linked data[END_REF]. Moreover, images, texts, and other multimedia files could be converted to RDF to facilitate the comparison of RDF nodes [START_REF] Fluhr | From text to rdf[END_REF][START_REF] Hassanzadeh | T2r: System for converting textual documents into rdf triples[END_REF][START_REF] Huang | Streaming transformation of xml to rdf using xpath-based mappings[END_REF]. The nodes belonging to the intersection between D and BK (IN), are potential keys according to our assumption, then K = IN . For example, according to our motivating scenario, the properties prop:Longitude and prop:Latitude from Enipedia dataset (D) are keys since the position identifies a particular Power Plant and have intersection with the ones from DBpedia dataset (BK). The triples from D that contain at least a key are considered as disclosure sources, defined in 6, since the triples are connected to other resources. Definition 6. Disclosure Sources (DS): It is a set of triples, which contains at least a key from K, denoted as DS : {ds i | ∀ds i ∈ D ∧ (ds i .s ∈ K ∨ ds i .o ∈ K), ds i is a disclosure source that disclose or produce sensitive information}.

However, all triples in D that contain at least a key, cannot be considered as disclosure sources, since it depends of the scenario; thus, the interaction of the expert user is needed to identify only the ones that compromise the data to be published. For example, the triple ..., prop:lat, 54.6824 , from Enipedia dataset (D), is considered as a potential disclosure source since it has a key (prop:lat) as predicate. Def. 7 formally explains the result of the expert interaction.

Definition 7. Disclosure-Source Query (EU): It is a selection/projection query applied over DS ( DS ), that returns triples considered as disclosure sources by the expert user according to the scenario. This set of triples is denoted as EU : {eu i | ∀eu i ∈ DS, eu i is considered as a disclosure source by the expert user}.

Using the classification of the expert user, anonymization methods can be applied on the selected triples in order to prevent the disclosure of sensitive information. Note that even the original set of triples (D) could be protected, it should be re-protected considering the already published data (BK) and their intersections with the original one. A protection operation is formalized in Def. 8.

Definition 8. Protection Function (ProtFunc):

It is a function applied on a triple that returns another similar one, by modifying either the subject, the predicate, the object, or all the three RDF elements, to avoid the disclosure of sensitive information. It is denoted as P rotF unc(t ∈ D, op, par), where op is a protection operation (e.g., generalization, suppression) and pr are the parameters of configuration (e.g., level of generalization).

By the result of applying the protection process on the set of triples selected by the expert user, the protected data is obtained. This latter is formalized in Def. 9 and it does not allow the disclosure of sensitive information.

Definition 9. Protected data to be published (pD): It is a set of triples denoted as pD, which is the result of applying any protection technique on the set of triples selected by the expert user (EU) of D; i.e., the data to be published are protected if their intersection with the BK does not produce the triples selected by the expert user, using the same threshold established during the intersection:

pD = D {P rotF unc(eu i ) | eu i ∈ EU } Where:
-D is the data to be published; -defines the replacement of the set EU ⊂ D with the one obtained by applying a operation function over its elements; -EU is the set of triples considered as disclosure sources by the expert (see Def. 7); -ProtFunc is a function that applies a protection operation (e.g., generalization, suppression) on either the subject, predicate, object, or all three values.

Following the previous example, let's protect the triple ..., prop:lat, 54.6824 considered as a disclosure source, selected by the expert user, by applying a generalization function over the predicate to reduce its similarity with the DBpedia dataset (BK):

..., prop:coordinate, 54.6824 . The next section describes our protection process.

Protecting Process: Our Proposal

Our protection process mainly relies on a four phases approach (see Fig. 4), called RiAiR, where the input, a set of RDF documents in any serialization format (D), is converted into a graph representation, used by all modules: (i) Reducing-Complexity phase in which the graph is analyzed to reduce its complexity-structure to extract a compressed one; (ii) Intersection phase, where similar nodes between the input graph (reduced or not) from D and the one from the BK are identified as potential keys (IN); (iii) Selecting phase in which the expert user analyzes and selects the disclosure sources (EU), which contains at least one potential key; and (iv) protection phase that executes a protection process over the selected triples (EU). A description of each phase is presented in the following sections.

Figure 4 Framework of our RDF anonymization process

Reducing-Complexity Phase

Since the expert user needs to classify thousands of triples available in D, a reduction step is needed in order to simplify the interaction and make easy the task of classification. As some triples are essential to describe concepts, they cannot be removed from the data and are considered as constraints. These latter are a set of triples, defined by the expert user, that have an important role over the data. The set of constraints is defined in Def. 10.

Definition 10. Constraints (C):

It is a selection/projection query applied over D ( D ) the indicate the triples to be preserved. It is denoted as C:{c i :< s i , p i , o i >| ∀c i ∈ D, c i is a triple to be preserved}.

For example, we define as a constraint the triples whose predicates are equal to the value http://www.w3.org/1999/02/22-rdf -syntax-ns#type, since it describes the concept of a resource.

The set of triples T={t i : s i , p i , o i } of D is analyzed by the similarity function simFunc defined in Def. 5, considering the set of IRIs as a simple node (e.g., a resource). This similarity should take into account the context of the value (e.g., a similarity function based on the incoming and outgoing relations) instead of the analysis of the value itself in order to identify a more general resource. From two similar nodes, the one that subsumes the other is kept. A sorting step to organize the triples in a defined order is needed to return a unique output (e.g., Depth-Subject-Predicate-Object order). As sensitive information can be present in resources and literal values as well, we classify the nodes into two categories: internal nodes, which are the ones that are subjects and objects at the same time, and external nodes that are only objects in the set of triples (T).

We propose Algo. 1 and Algo. 2 to reduce the complexity of each category of nodes. The reducing-complexity algorithm applied on internal nodes, receives a set of triples T={t i : s i , p i , o i }, a threshold th 1 , a similarity function simFunc, and returns another set of triples T'={t i : s i , p i , o i }. In Algo. 1, each triple (t i ) in T is analyzed by the simFunc applied to its subject (node) with other subjects from T (lines 4-5 of Algo. 1). If the simFunc is equal or greater than the defined threshold (th), the triple (t i ) is added to the list processedListTriples and the subject of t i will be replaced by the one from t j in all triples from T (lines 8, 9 of Algo. 1). The replacing function is performed in line 11 of Algo. 1 and the modified set of triples is returned in line 13. The algorithm for external nodes receives a set of triples T={t i : s i , p i , o i }, a threshold th 1 , a similarity function simFunc, and returns another set of triples T'={t i : s i , p i , o i }, according to the threshold (th) provided by the expert user. A list, called removeListTriples, is used to store temporarily the triples to be removed in the last step of the algorithm (line 1 in Algo. 2). As the previous algorithm, a sorting step is needed to return an unique output. Each subject (node) from triple t i in T is compared with other subjects that belong to the triples in T, using the similarity function simFunc defined in Def. 5 for simple nodes. To verify if the triple has an external node, its depth 6 is calculated. If the depth of t i is different than 0, then the object node is not external, and we move forward to the next triple in T (lines 4-5 of Algo. 2). If the simFunc between t i and t j is equal or greater than the defined threshold and t i does not belong to the set of constraints (C in Algo. 2) defined by the expert user (see Def.10), the triple t i is added to the removeListTriples list (lines 8-10 in Algo. 2). Finally, the triples are removed in line 11 in Algo. 2). removeListTriples.add(ti); //Adding triples to be removed.

10 break; //Since a similar node was found, the next ti is analyzed.

11 T' = T.removeTriples(removeListTriples); //Triples of removeListTriples list are removed. 12 return T'; Note that Algo. 1 and Algo. 2 are independent and they can be used in any order.

The reducing-complexity algorithms are applied to the data to be published (D). Once the reductions are obtained, the intersection among this set and the BK can be performed. Following phase describes the intersection phase.

Intersection Phase

The previous phase reduces the complexity-structure of D; the number of triples of D to decrease the interaction of the expert user over the data. However, identifying the triples that are disclosure sources in the reduced set of D, is still a difficult task for the expert user. To identify the nodes of the reduced set D that belong to the intersection with the background knowledge (BK), we propose Algo. 3, based on the intersection among two datasets assumption (see Ass. 1) and using the similarity function defined in Def.5.

IN.add(ti.o);

//The object of T is added.

10 return IN;
Algo. 3 receives a set of triples T ={t i : s i , p i , o i }, a set of IRIs I, a threshold th 2 , a similarity function simFunc, and returns a set of nodes IN, according to the threshold defined by the expert user. Each subject and object from triple t i in T is analyzed by using the similarity function (simFunc) with the IRI i j in I. If simFunc is equal or greater than the defined threshold (th), the subject or object from triple t i in T are added to the list IN (lines 4-9 in Algo. 3). The set IN is returned in line 10.

The nodes of IN are considered as potential keys (see Def.4), since they allow the connection of the data to be published with other datasets. Following section presents the selecting phase which is executed by the expert user.

Selecting Phase

According to Def. 6, triples that contain at least a key are disclosure sources and can disclose or produce sensitive information; however, not all triples that belong to this definition can reveal sensitive information; therefore, the interaction of the expert user is needed to select only the triples that compromise the data. The selection can be performed by a query or any other method.

To further simplify the expert user interaction, we propose the use of a Graphic User Interface (GUI) based on the set of potential disclosure sources (DS). By a visual interface, the expert user can analyze and select only ti.p = ta.getPredicate(g); // Predicate from taxonomy ta.

5

T'.add(t); // The modified triple is added to T'.

6 return T';
the triples which are disclosure sources for the scenario. The set of triples obtained by the selection of the expert user, is the set EU (see Def. 7). Following section describes the protecting phase applied over the set of triples EU.

Protection Phase

Once the disclosure sources are selected by the expert user, a protection process on these triples can be performed. We propose the use of generalization operations on the predicate of each triple, to only reduce the connections among datasets (D and BK), preserving the objectives of integration and combination of the Semantic Web. A taxonomy for each type of relation from the set of triples EU (see Def. 7), has to be provided by the expert user. Moreover, a measure to calculate the level of generalization, applied to the taxonomies (to choose a predicate form a set of values), is needed (e.g., hierarchical and taxonomy measures) in order to provide an appropriate, customized and measured protection according to different scenario. Algo. 4 describes the protection process by applying a generalization operation on each selected triple of EU (see Def.8).

Algo. 4 receives a set of triples T={t i : s i , p i , o i }, a set of taxonomies T A, a level of generalization g, which is a value among [0, 1], and returns a set of modified triples T'={t i : s i , p i , o i }, according to the taxonomies and the level of generalization provided by the expert user. From the set of taxonomies provided by the expert user (TA), the taxonomy which corresponds to the predicate of t i (t i .p) is used to obtain another predicate that satisfy the level of generalization (g) (lines 3 and 4 in Algo. 4). The modified triple is added to the list T (line 5 in Algo. 4) and the whole list is returned in line 6.

Note that to obtain the protected RDF data, the compressed triples selected by the expert user, have to be released to apply the protection process over their triples.

Our whole proposal overcomes the limitations identified in the context of RDF protection, such as the assumptions of simple data that is not similar to the one available on the Web, and the high interaction of expert user for the classification. The proposal is designed for RDF data, considering their elements (IRIs, blank nodes and literals) and the scenario, where linked and heterogeneous resources are available. The complexity of the RDF structure is reduced in order to decrease the interaction of the expert user and to make easy the task of classification. Potential keys are identified and disclosure sources are provided to the expert user. Moreover, by a generalization method, we reduce the connections among datasets, preserving the main objectives of the SW (integration and combination), and protecting the sensitive information at the same time.

The following section evaluates the complexity of our proposal.

Complexity Analysis of the whole Anonymization Process

A complexity analysis of our anonymization approach indicates a quadratic order performance in terms of number of triples of the data to be published (n) and the ones from the background knowledge (m), i.e., O(n 2 + m 2 ). A detailed complexity analysis was done on each phase of the process to get the complexity of the whole process:

• For the Reducing-complexity phase, each triple (n) is analyzed by searching another similar one in the set of triples, then their execution order is O(n 2 ). • The Intersection phase based on the reduced set of triples from D, has an execution order O(n × m), D and BK respectively, for the worst case where no triple was removed by reducing-complexity phase. • The Configuration phase, which is made by the expert user, depends of the number of triples from D that contain potential keys, which are obtained by the intersection between D and BK. Thus, this phase has an execution order O(n) where all triples are considered as disclosure sources.

• The anonymization phase, applied over the triples selected by the expert user, has an execution order of O(n), if all triples from D are considered as disclosure sources.

As the four phases are executed sequentially, the whole protection approach exhibits a quadratic order complexity, i.e., (O(

n 2 + m 2 + n × m + 2 × n)).
The following section evaluates the viability and demonstrate the quadratic order performance of our proposal.

Experimental Evaluation

To show the viability and performance of the approach for heterogenous datasets available on the Web, we performed an experimental evaluation.

Prototype and Implementation

To evaluate and validate our protection approach, a desktop prototype system, called RiAiR, was developed using Java. Fig. 5 shows a visual interface of our prototype, which has several customizable options according to userpreferences. For example, the expert user can apply the reducing-complexity process to either internal, external nodes, or only one of them. The thresholds for the reduction, intersection, and protection processes can be also customized by the expert user, selecting a value among [0,1] in the left area of the visual interface. For the reducing-complexity and intersection phases, we implemented the similarity function, called simFunc (Def. 5), considering only the context similarity to be independent of the domain and to address more heterogeneous datasets. The function is defined by using the incoming and outgoing properties (relations) from the nodes, since the behavior of a node can be determinate through its relations (context). We present the similarity function as follows.

simF unc(n i , n j , α=0, β=0, γ=1) = α × syntactic similarity + β × semantic similarity + γ × (0. -incomingP roperties is a function that returns the incoming relations of a node; -outgoingP roperties is a function that returns the outgoing relations of a node;

Note that for the reducing-complexity phase, the intersection and union among properties is made by a syntactic string comparison; while for the intersection phase (see Def. 4), since the datasets are provided from different sources, the syntactic comparison is performed to only the property name of the incoming and outgoing properties (e.g., http://www.domain1.com/name-Prop is equal to http://www.domain2.com/nameProp, since both property names are equals -nameProp).

For the anonymization phase, we implemented a generalization operation based on taxonomies provided by the expert user. The taxonomies are processed by the approach through the use of a simple document in XML format, presented as follows. <taxonomies> <taxonomy_1> <taxonomy_1a> </taxonomy_1a> <taxonomy_1b> </taxonomy_1b> </taxonomy_1> <taxonomy_2> <taxonomy_2a> </taxonomy_2a> </taxonomy_2> ... ) is analyzed by applying a similarity measure that returns another similar relation (predicate) according to a defined threshold. We use the similarity measure of work [START_REF] Dongo | Semantic Web Datatype Similarity: Towards Better RDF Document Matching[END_REF], since it takes into account the deepness, the distance, and the children in common of the taxonomies.

Datasets and Environment

Our prototype was used to perform several experiments to evaluate the viability and the performance (execution time) of our approach in comparison with the related work. To do so, we considered three datasets: Using Data 1, Data 2, and Data 3, we evaluated the viability and performance of the reducing-complexity process, while for the intersection phase, we used Data 2 and Data 3. The protection phase is applied over the reduced set of triples obtained by the reducing-complexity phase and the set of nodes of the intersection phase between Data 3 and Data 2. Since in this particular case the BK is also a set of triples (a complex node), we applied the reducingcomplexity process over the dataset as well. Experiments were undertaken on a MacBook Pro, 2.2 GHz Intel Core(TM) i7 with 16.00GB, running a MacOS High Sierra and using a Sun JDK 1.7 programming environment.

Evaluation metrics

Accuracy in disclosure sources

In order to evaluate the accuracy of our approach when a set of triples are suggested as disclosure sources to the user expert, we calculated the F-score, based on the Recall (R) and Precision (PR). These criteria are commonly adopted in information retrieval and are calculated as follows:

PR = A A + B ∈ [0, 1] R = A A + C ∈ [0, 1] F-score = 2 × P R × R P R + R ∈ [0, 1]
where A is the number of correctly suggested triples; B is the number of wrongly suggested triples; and C is the number of triples not suggested by our approach but considered as disclosure sources. According to our scenario, Data 3 contains eight properties, from which only two properties (prop:lat and prop:long) are considered as disclosure sources. Thus, 142 triples need to be selected by the user expert, since 71 power plants are present. We describe the accuracy evaluation in subsection Configuration Phase.

Protection Data Verification

To consider a data as a protected one, it should not contain disclosure sources which compromise the data; thus, to verify the data, we propose a measure based on the sensitive triples returned by applying a query over the datasets. The verification is performed as the relation between the sensitive information produced by the original data with respect to the one produced by protected data; i.e., where D is the data to be published and pD the protected one (see Def. 9). For our evaluation, we use the query presented in our motivating scenario, considering any type of resources (e.g., dbo:School, dbo:Hospital). A total of 364 entities, represented by 1456 triples, are sensitive information.

SELECT DISTINCT ?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat.")) AS ?distance FROM <http://dbpedia.org> WHERE {?p rdfs:label ?Place ; geo:geometry ?g. FILTER (bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100) && (lang(?Place) = \"en\"))} ORDER BY ASC(?distance) Test 2: In order to select the best threshold for the reducing-complexity process of each dataset, we evaluated the number of triples, Jena parsing-time, and the size of the output by using a threshold value between [0.01 -1.00] with a step of 0.01. Table 9 shows the results obtained for Data 1. As we can observe, we obtained the best result for the thresholds from 0.01 to 0.29, where only nine properties are used in the whole database. The Jena parsingtime of the output was reduced to 0.49 ms, while the size was reduced to 834 bytes.

For Data 2 and Data 3 (see Tables 10 and11), the best results were obtained for a wide range of thresholds [0.01 -0.49]. By regarding the datasets, in Data 2 and Data 3, all resources were described by the same properties (four and eight properties, respectively), while in Data 1, there are some to observe the influence of the threshold over the reduction time. Figure 6 shows that from a threshold 0.49, where the number of triples is reduced to only 148, the reduction time decreases to 4,977.91 ms until 3,668.54 ms for a threshold value of 0.01. As more triples are reduced during the reducingcomplexity process, less comparisons are performed, since for each iteration less operations of similarity are needed to discover another similar node. Test 4: In this test, we evaluated the impact of the number of triples, from Data 1, on the execution time of the reducing-complexity phase. We used a threshold value of 0.29, which was one of the thresholds that reduced more triples, and a step of 10,000 triples for the iterations. Figure 7 shows the execution time with respect to the number of triples. For 60,000 triples, the execution time is 302.65s. The result obtained confirms the quadratic performance of this process. The following section evaluates the intersection phase.

Intersection Phase

Using the reduced datasets of Data 2 and Data 3, obtained by the reducingcomplexity process (4 and 8 triples, respectively), we perform the intersection process considering Data 3 as the data to be published (D), while Data 2 as the background knowledge (BK).

Viability Evaluation

To evaluate the viability of applying this process over real scenarios, we chose randomly a threshold value (0.65) and later we analyzed the behavior of this process with respect to several threshold values. Test 5: By using a threshold value of 0.65, the intersection process did not return any intersection node. Regarding the reduced datasets, the nodes that represent the latitude and longitude properties are terminal nodes, thus they do not have outgoing properties and its similarity is less than 0.50. Additionally, the similarity between the node which represents a power plant (Data 3) and the one which represents a place of interest (Data 2) is calculated based on two properties in common (intersection -latitude and longitude) from ten properties (union -eight properties in D and four properties in BK), thus their similarity value is 0.20. Test 6: We evaluated the viability of this process using several thresholds from 0.01 to 1.00 with a step of 0.01 (see Table 12). From a threshold value between 1.00 and 0.50, no node was returned. For [0.49, 0.21], two nodes which represent the coordinates of the nuclear power plant resource in D, are returned as potential keys, which is what we expect. For [0.20, 0.01], three nodes are returned (coordinates and the node which represents the nuclear power plant). 

Performance Evaluation

Test 7: The time required to discover the nodes that can be potential keys, was measured. An average of 10 execution indicates a time of 0.24 ms for this process.

Selecting Phase

A GUI based on triples was built to reduce the effort of the expert user.

The interface selects automatically the triples which contain at least one key, considered as potential disclosure sources. Test 8: We measured the average of verifying the selected triples, which contain the nodes detected during the intersection process, of 10 people that have under-and post-graduate degrees in Computer Science. Since only eight triples are available in the reduced dataset of Data 3, the verifying average time was 8.23 s. Test 9: We evaluated the accuracy of the set of triples suggested as disclosure sources by our approach, using the F-score measure. Table 13 shows that for a threshold between [0.49 , 0.21] all triples which compromise the data to be published are suggested (Data 3), obtaining a F-score 100%. For a threshold between [0.20 , 0.01] also the triples which compromise the data are suggested, but other triples were suggested as well. These thresholds have a F-score of 40%. 

Protection Phase

The relations (properties) that belong to the triples considered as disclosure sources by the expert user, have to be protected in order to reduce the risk of disclosure of sensitive information. According to the configuration process, the eight triples from the reduced set of Data 3 were pre-selected in the (intersection phase), and suggesting potential disclosure sources through a graphic user interface to the expert user. Moreover, we evaluated our approach with respect to the state of the art, demonstrating that our proposal overcomes existing solutions, and these latter are not able to manage linked and heterogeneous resources.

To select an adequate threshold for the reducing-complexity and intersection phases, the structure of the dataset needs to be analyzed before. For instance, the dataset Data 1, from our experimental evaluation, has a depth equal to 2 and it is composed by sub-graphs that are not linked, so to compare the root nodes, a threshold similarity less than 0.50 is required since they do not have incoming properties.

We are currently working on a new graphic user interface based on graph visualization to better illustrate the relations among the datasets. Furthermore, we are testing different similarity function to provide a better reducingcomplexity and intersection processes for heterogeneous datasets. For the intersection phase, new semantic similarity functions are required to recognize potential keys that are not from the same domain (e.g., SameAs service). Additionally, the datasets can be enriched with new properties (relations) or extra inferred information as a pre-step in order to better perform the similarities (e.g., syntactic and semantic datatype inference as in [START_REF] Dongo | Rdf-f: Rdf datatype inferring framework[END_REF][START_REF] Gunaratna | Gleaning types for literals in rdf triples with application to entity summarization[END_REF], respectively).
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 2 Figure 2 Structure of the data extracted of the Enipedia dataset
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 3 Figure 3 Intersection between Energy Production dataset and other datasets

Algorithm 1 :

 1 Reducing Complexity -Internal Nodes Input: Set of triples T={t: s,p,o }, threshold th1, Function simFunc Output: Set of triples T' 1 processedListTriples = {}; //List of processed triples. 2 replaceListNodes = {}; //List to replace nodes in the set of triples. 3 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order. 4 foreach ti in T do 5 foreach tj in T-{ti} do 6 if tj / ∈ processedListTriples then 7 if simFunc(ti.s, tj.s)≥ th1 then 8 processedListTriples.add(ti); 9 replaceListNodes.add(Pair(ti.s,tj.s)); 10 break; //Since a similar node was found, the next ti is analyzed. 11 T' = T.replaceNodes(replaceListNodes); // Nodes are replaced. 12 T' = T'.removeDuplicateTriples(); //Duplicate triples are removed. 13 return T';

Algorithm 2 :

 2 Reducing Complexity -External Resource Input: Set of triples T={t: s,p,o }, threshold th1, Function simFunc Output: Set of triples T' 1 removeListTriples = {}; //List to remove triples. 2 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order. 3 foreach ti in T do 4 if ti ∈ removeListTriples ∨ depth of ti = 0 then 5 continue; //Next triples is analyzed. 6 foreach tj in T -{ti} do 7 if tj / ∈ removeListTriples then 8 if simFunc(ti.s, tj.s)≥ th1 and ti / ∈ C then 9

Algorithm 4 :

 4 Protection Process Input: Set of triples T ={ti: s,p,o }, Set of taxonomies TA, Level of generalization g Output: Set of triples T 1 T' = {}; // Set of triples. 2 foreach ti in T do 3 Taxonomy ta = TA.getTaxonomy(ti.p); // Taxonomy of predicate ti.p.

4

 4 
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 5 Figure 5 Visual interface of our Protection Approach

  RiAiR: A Framework for Sensitive RDF Protection 31 </taxonomies> A taxonomy for each triple of the set EU (see Def.
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  AnonV(D,pD) = N. of sensitive triples f rom D -N. of sensitive triples f rom pD N. of sensitive triples f rom D ∈ [0, 1].
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 63 Figure 6 Test 3: Execution time of the Reducing-complexity process using a threshold between 0.01 and 1.00

Figure 7

 7 Figure 7 Test 4: Execution time of the Reducing-complexity process using a threshold value of 0.29

Table 1

 1 An example of the data extracted from Enipedia dataset

	N	cat:Fuel -type	cat:radio-active	rdfs:label	prop:City (rdfs:label)	prop:Country (rdfs:label)	prop:lat.	prop:long.
	1	art:Nuclear	true	Hartlepool	Hartlepool Cleveland	United Kingdom	54.6824	-1.2166
	2	art:Nuclear	true	Limerick	Pottstown	United States	40.2257	-75.5866
	3	art:Nuclear	true	Neckar	Neckarwestheim	Germany	49.0411	9.1780
	4	art:Nuclear	true	Beaver Valley	Shippingport	United States	40.6219	-80.4336

Table 2

 2 Some places of interest available in the DBpedia dataset

	N	rdf:type	rdfs:label	prop:lat.	prop:long.
	1	dbo:School	Hartlepool College of Further Education	54.6839	-1.2109
	2	dbo:School	English Martyrs School and Sixth Form College	54.6754	-1.2362
	3	dbo:School	Coventry Christian Schools	40.2505	-75.5930
	4	dbo:School	Hlderlin-Gymnasium Lauffen am Neckar	49.0704	9.1394
	5	dbo:School	Pennsylvania Cyber Charter School	40.6385	-80.4549

Table 3

 3 Some places of interest next to Nuclear Power Plants

	Nuclear PowerPlant	City	Country	School	Distance (Km)
	Hartlepool	Hartlepool Cleveland	United Kingdom	Hartlepool College of Further Education	0.40244
	Hartlepool	Hartlepool Cleveland	United Kingdom	English Martyrs School and Sixth Form College	1.48812
	Beaver Valley	Shippingport	United States	Pennsylvania Cyber Charter School	2.5761
	Limerick	Pottstown	United States	Coventry Christian Schools	2.81988
	Neckar	Neckarwestheim	Germany	Hlderlin-Gymnasium Lauffen am Neckar	4.2998

Table 4

 4 

			Related Work Classification	
	G	Work	Conditions of Anonymity	Requirements Complexity of data	Classification Method
	1	[41]	k-anonymity	RDF	Manual (I, QI, SI, USI)
	2	[24]	k-anonymity neighborhood	RDF	Manual (I, QI, SI, USI)
	3	[48]	Differential privacy	RDF	Manual (SI)
	4	[4]	Differential privacy	RDF	Manual (SI)
	5	[33]	k-anonymity	Structured data	Manual (I, QI, SI, USI)
	6	[26, 30, 31, 44]	k-anonymity and variations	Structured data	Manual (I, QI, SI, USI)
	7	[13]	Differential privacy	Structured data	Manual SI
	8	[23, 32, 46]	Differential privacy and variations	Structured data	Manual (SI)
	9	[7, 27, 52]	k-degree	Undirected, node-unlabeled, edge-unlabeled	Manual (I, QI, SI, USI)
	10	[5, 8, 22, 56]	k-degree	Undirected, node-labeled, edge-unlabeled	Manual (I, QI, SI, USI)
				Undirected,	
	11	[28]	k-degree	node-labeled, edge-labeled	Manual (I, QI, SI, USI)
				(weight)	
	12	[53]	k-degree l-diversity	Undirected, node-labeled, edge-unlabeled	Manual (I, QI, SI, USI)
	13	[37, 38] [39, 40]	Sanitization	RDF	Manual (I, QI, Si, USI)
	14	Our proposal	Intersection	RDF	Automatic (I, QI)

Table 5

 5 Description of sets IRIs is defined as: I = {i 1 , i 2 , ..., i l } | ∀i i ∈ I, i i is an IRI. L A setof literal nodes is defined as: L= {l 1 , l 2 , ..., lm} | ∀l i ∈ L, l i is a literal node. BN A set of blank nodes is defined as: BN = {bn 1 , bn 2 , ..., bnn} | ∀bn i ∈ BN , bn i is a Blank Node.

	Set	Description
	I	A set of

  5 × |incomingP roperties(n i )∩incomingP roperties(n j )| |incomingP roperties(n i )∪incomingP roperties(n j )| + 0.5 × |outgoingP roperties(n i )∩outgoingP roperties(n j )| |outgoingP roperties(n i )∪outgoingP roperties(n j )| ) Where:

•

  Data 1: the DBpedia person data 7 with 16,842,176 triples (used to evaluate the reducing-complexity phase due to the huge number of triples); • Data 2 (BK): the DBpedia geo coordinates 8 with 151,205 triples; and • Data 3 (D): an extraction of Enipedia dataset (power plants), con-

sidering properties art:Nuclear, cat:radioactive, prop:City, prop:Country, prop:lat, prop:long, and prop:year, with 568 triples.

Table 8

 8 Test 1: Reducing-Complexity process for Data 3, using a threshold 0.44

	Data 3		Input			Output	
	Threshold Triples	Jena Time (ms)	Size (bytes) Triples	Jena Time (ms)	Size (bytes)
	0.44	568	4.99	37645	8	0.68	769

Table 12

 12 Test 6: Intersection process for Data 3 with a step 0.01

	Threshold	Number of Nodes
	[1.00 -0.50]	0
	[0.49 -0.21]	2
	[0.20 -0.01]	3

Table 13

 13 Test 9: Accuracy evaluation for the set of triples suggested as disclosure sources to the Expert User

	Intersec. Thres-hold	N. of potential keys	Triples suggested as disclosure sources Interface) User (Expert	Triples suggested Mapping) (Internal as disclosure sources	Valid	Not Valid	Not sugges-ted	Prec. (%)	Rec. (%)	F-s. (%)
	[1.00 , 0.50]	0	0	0	0	0	142	0	0	0
	[0.49 , 0.21]	2	2	142	142	0	0	100	100	100
	[0.20 , 0.01]	3	8	568	142	426	0	25	100	40

Enipedia is a dataset containing data related to the production of energy and its applications. The information available on Enipedia is provided by governments, which support the LOD. http://enipedia.tudelft.nl

k-anonymity is one of the most used common condition, that consists on making entities undistinguished from at least k -1 other entities, because they have similar information[START_REF] Samarati | Protecting privacy when disclosing information: kanonymity and its enforcement through generalization and suppression[END_REF] 

l-diversity is an extension of the k-anonymity model that protects the corresponding sensitive values within a homogeneous group.

The example provided uses an extract from Enipedia dataset.

DBpedia does not contain sensitive information, since all data correspond mainly to wellknown entities (e.g., places, governments, actors, singers).

Considering only DBpedia dataset as external related information (background knowledge).

It is one of the four normalization forms, which consists on a Canonical Decomposition, followed by a Canonical Composition -http://www.unicode.org/reports/tr15/

The depth of a triple is considered as the biggest path of its object to a terminal node.

Information about persons extracted from the English and Germany Wikipedia, represented by the FOAF vocabularyhttp://wiki.dbpedia.org/Downloads2015-10.

[START_REF] Chester | k-anonymization of social networks by vertex addition[END_REF] Geographic coordinates extracted from Wikipediahttps://wiki.dbpedia.org/ downloads-2016-10.

This metric evaluates the protected RDF data in the subsection Protection Phase. We describe and evaluate as follows each process to obtain a protected RDF data.

Reducing-Complexity Phase

We performed the reducing-complexity process over three real datasets available on the Web (Data 1, Data 2, and Data 3). We evaluated the Jena parsing-time (ms) and the size (bytes) of the input and output to compare the improvement of working over the output in terms of viability and performance.

Viability Evaluation

Test 1: We chose randomly the value 0.44 as the threshold for the reducingcomplexity process. We extracted 1,000 triples from each dataset and increased the number of triples by a step of 1,000 for the next iterations. Table 6 shows the results obtained for Data 1. This process reduced the complexity of more than 16 millions of triples to only 132 triples, since the values were extracted from Wikipedia following a schema with a finite number of properties. The Jena parsing-time of the input is reduced to 1.03 ms (132 triples) and its size to 9333 bytes. Note that applying the same threshold for different sets of triples extracted from Data 1, we obtain the same output for all the cases, showing that the general schema of the resources (finite number of properties) is returned by this process. For Data 2, Table 7 shows the results of applying the reducing-complexity process. The dataset of 151,205 triples is reduced to only 4 triples, i.e., the 151,205 triples follow the schema represented by the 4 returned triples. The Jena parsing-time and the size of the input were reduced to 0.40 ms and 455 bytes, respectively. In Data 3, the output contains only 8 triples from 568 triples as we can observe in Table 8. The Jena parsing-time and the size of the dataset was reduced to 0.68 ms and 769 bytes, respectively. Similarly to the two previous data sets, the 8 returned triples represents the scheme of all triples in the set. resources described by only three or four properties from a total of nine, therefore in Data 1, the optimal threshold was obtained in a smaller range [0.01 -0.29], since for the range [0.30 -0.49], some resources were not considered as similar to the general schema due to their less number of properties. 

Performance Evaluation

To evaluate the performance of of the reducing-complexity phase, we measured the average time of 10 executions for each test. Test 3: We evaluated the time of the reducing-complexity process of 10,000 triples from Data 1 by using several thresholds between [0.01 -1.00] in order selecting interface, showing that they can be potentially used to disclose sensitive information. By the verification of the expert user, the anonymization process is performed. Since there are eight triples with different properties (predicates), eight taxonomies need to be provided by the expert user.

Test 10: We measured the average time of 10 executions, by using a random threshold of generalization (0.36). A time of 1.12 ms was required to perform this process.

Test 11: Additionally, we evaluated the protected data by using the AnonV function defined in subsection evaluation metrics. Table 14 shows that for a threshold less than 0.50 in the intersection phase, the protected data (pD) does not produce sensitive information, obtaining the maximum evaluation value (100%). In these subsections, we evaluated the viability and performance of our approach by using datasets available on the Web. We demonstrated a huge reduction of the expert-user interaction suggesting disclosure sources. Also, a high performance was obtained for all the phases. Following subsection evaluates our approach with respect to related work.

Related Work Comparison

In order to compare the viability and the performance of our approach with respect to the state of the art, we selected a work for each identified group of the related work section. For RDF data, we selected the work in [START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF], for structured data (database) the work in [START_REF] Sei | Randomized addition of sensitive attributes for l-diversity[END_REF], while for graph data the work in [START_REF] Yuan | Protecting sensitive labels in social network data anonymization[END_REF]. Thresholds of 0.49, 0.10, and 0.36 were used for the reducing-complexity (D and BK), intersection, and generalization processes, respectively in our approach. The implementation of each work was done following the same development environment used for our approach, such as computer specifications and programming language. Test 12: We evaluated the average time of 10 executions of the anonymization processes. From Data 2, 10,000 triples are considered as the background knowledge (BK) and the whole Data 3 as the data to be published (D).

Table 15 shows the results obtained for this comparison. The non-viability of the works in [START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF][START_REF] Sei | Randomized addition of sensitive attributes for l-diversity[END_REF][START_REF] Yuan | Protecting sensitive labels in social network data anonymization[END_REF] for real scenarios, was clearly demonstrated in this evaluation, since the interaction of the expert user to classify the data, required a high effort (more than three hours), making this task almost impossible. Moreover, the execution time of the anonymization processes, without considering the classification, was greater than one hour for [START_REF] Radulovic | Towards the anonymisation of rdf data[END_REF][START_REF] Sei | Randomized addition of sensitive attributes for l-diversity[END_REF][START_REF] Yuan | Protecting sensitive labels in social network data anonymization[END_REF] (the executions were stopped after one hour of processing), while for our solution was only 5.28 s. Note that we considered the time of classification similar to the time of verification which was obtained in our configuration-phase evaluation (∼1 second for triple). Following section presents our conclusions of this paper.

Conclusions

In this paper, we investigated the protection of sensitive information for RDF documents before publication on the Web. We proposed a protection approach, consisting on four phases: (i) Reducing-Complexity phase, where the input, a set of RDF documents (D) in any serialization format, is analyzed to reduce its graph complexity; (ii) Intersection phase, where similar nodes (IN ) between the reduced graph from the data to the published (D) and the one from the background knowledge (BK) are identified as potential keys;

(iii) Configuration phase in which the expert user analyzes and selects the triples that contain at least one potential key, considered as disclosure sources (EU ); and (iv) protection phase that executes an generalization operation over the selected triple. We evaluated the viability and performance of our anonymization approach with several datasets available on the Web. Results show that our approach decreases the interaction of the expert user by reducing the complexity of the graph structure (reducing-complexity phase), identifying potential keys