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Optimal Thickness of a Porous Micro-Electrode Operating a
Single Redox Reaction
Tien D. Le,[a] Lin Zhang,[b, d] Stéphane Reculusa,[b] Gérard Vignoles,[c] Nicolas Mano,[d]

Alexander Kuhn,[b] and Didier Lasseux*[a]

This article reports on a procedure to predict the optimal

thickness of cylindrical porous electrodes operating a single

redox reaction. This is obtained from a macroscopic model for

the coupled diffusion-reaction process that is first validated

with voltammetry experiments of the H2O2/H2O reduction

reaction carried out with a series of porous electrodes

elaborated in this work. An analytical solution to this model is

developed in the steady regime and for electrodes featuring a

thickness to mean radius ratio small enough compared to unity.

An analytical expression of the optimal electrode thickness is

derived corresponding to the crossover value of two asymptotic

regimes characterizing the dependence of the volume current

density produced by the electrode upon its thickness. The

predictive tool of the optimal thickness is general, regardless of

the porous microstructure. The case of the electrodes used in

the reported experiments illustrates that the optimal thickness

is not intrinsic to the microsctructure characterized by the size

of the representative volume, its specific area and effective

diffusion coefficient. It also depends on the operating con-

ditions reflected in the kinetic number, Ki, and the thickness of

the diffusion layer surrounding the electrode. The dependence

of the optimal thickness on these two parameters is quite

significant in a range of very small values of Ki but remains

quasi constant beyond a threshold value.

1. Introduction

In the recent past decades, porous electrodes, which are of

major interest for the design of miniaturized electro-devices

such as bio-batteries or bio-sensors, have recieved considerable

attention both from modeling and experimental points of

view.[1–8] A well-defined pore size and pore distribution of the

porous material may be achieved by using the Langmuir-

Blodgett templating technique,[9–11] providing a high surface-to-

volume ratio (specific area).[9,12] Such a feature allows the

electrodes to produce much higher electrical current per unit

volume than classical flat electrodes of the same macroscopic

size.[11] In addition, the overall thickness of the electrode may be

well-controlled during the elaboration process with an accuracy

of about 10 nm.[13] However, prediction of the optimal electrode

thickness, yielding the best compromise between an optimal

electricity production and an economical manufacturing, is still

an open question. Intuitively, it can be easily understood that

the process of diffusion coupled to electrochemical reaction,

supplied by the external fluid layer containing the reactant and

in contact with the porous electrode, is becoming less effective

in the core of the electrode, far from the interface with this fluid

layer, as a result of reactant depletion. This calls upon a specific

analysis, based on a rational physical modeling, in order to

determine the optimal thickness compatible with this cut-off

mechanism.

Modeling of the macroscopic behavior of a porous

electrode has received much attention in the literature.[14,15] In

more details, the coupled diffusion-reaction mechanisms within

the porous medium have been addressed in different regimes

including the Direct Electron Transfer mode[2,16] or Mediated

Electron Transfer regime.[3,17] An empirical macroscopic model

was developed for a porous electrode composed of spherical

pores deposited on a disk under the assumption that the

process can be treated as if all the pores are behaving

independently from each others.[18] During almost the same

period, a pore-scale modeling of diffusion-reaction in a porous

electrode, composed of parallel cylindrical solid protrusions

deposited on an electrode surface, was presented together

with direct numerical simulations in order to analyse different

electrochemical scenarii of reversible and irreversible electron

transfer processes.[19,20] An empirical analytical macroscale

model for transport and reaction in an infinite porous rotating

disk electrode was also developed in the convection- and

diffusion-dominated regimes.[21,22] On a more formal basis, an

upscaling procedure was applied to a coupled transport-

reaction problem at play in a porous electrode containing three

phases (solid, liquid and gas) yielding governing equations at

the macroscale.[23] However, the macroscale model remains

unclosed as no closure was provided to estimate the effective

parameters. Recently, a rational upscaling procedure was
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applied to the initial boundary value problem governing the

coupled diffusion-reaction process at the pore-scale to obtain

the macroscopic model and the ancillary closure problem

providing the effective diffusivity.[24] Such an approach is

capable of capturing the microstructure properties of the

electrode and its influences on the effective parameters at the

macroscale. The macroscopic model obtained was validated by

comparison with 3D-Direct Numerical Simulations (DNS) of the

pore-scale model as well as with experimental data involving

the reduction reaction of oxygen to hydrogen peroxide.[24]

Although considerable progress has been made for porous

electrode manufacturing and electrochemical characterization

of the material, an empirical approach toward a systematic

prediction of an optimal design, in particular in terms of the

best effective electrode thickness, is not sufficient. Optimal

electrode thickness for a plane solid oxide fuel cell was

discussed in a work by Cai et al.[25] based on 3D direct

simulations at the pore-scale. Results for the optimal thickness

were obtained, indeed, on an empirical basis by performing

repeated simulations on a series of electrodes with different

thicknesses, yielding a conclusion very specific to the case

under study. In fact, no general formulation was proposed to

predict such an optimal thickness and the relevant reduced

parameters on which it depends were not highlighted while

operating conditions (temperature, reaction rates, electron and

ion transfer processes) were quite different from those consid-

ered in the present work. To the best of our knowledge, no

alternative approach has been followed in the literature

towards this goal. The present work aims at a progress to fill

this gap by developing a thorough approach to estimate the

optimal thickness of a porous electrode operating with a single

redox reaction using the macroscopic model formally derived

in a previous work.[24]

The article is organized as follows. The upscaled formal

model operating at the macroscale[24] is first briefly recalled and

its solution is compared to a series of experimental results of

hydrogen peroxide reduction to water, carried out in this work,

with the purpose of an additional further validation. Secondly,

this macroscopic model is used in the steady-state regime (a

situation which is of wide practical interest) to derive an

analytical model for the concentration profile of the dilute

species allowing to express the current intensity available at

the electrode. On this basis, an optimization procedure is finally

proposed to estimate the effective electrode thickness. This

yields an analytical expression of the optimal thickness that is

general for a cylindrical porous electrode, regardless the type of

microstructure of the electrode material. An illustration is

provided for the type of electrode used in the experiments

reported in this work.

2. Multiscale Diffusion-Reaction Model in a
Porous Electrode

In this section, the multiscale model developed in a previous

work[24] for a diffusion and electrochemical reaction problem

within a porous micro-electrode is briefly recalled. It consists in

a bottom-up approach which allows to take into account the

microstructural information together with the physics of

diffusion and reaction within the porous medium in order to

obtain a reduced model that retains the essential features of

the process at the underlying scale. In essence, this is achieved

by applying the volume averaging method[26] to upscale the

pore-scale initial and boundary value problem yielding a

macroscopic model operating at the electrode scale.

At the pore scale, a single reduction reaction at the solid-

fluid interface within the porous cathode is taken into account,

namely

Aþ ne@
k0K! B r 2 Isf ð1Þ

where Isf is the fluid-solid interface, r the position vector at Isf , n

and k0 the number of electrons transferred and the electron

transfer rate constant, respectively. The redox couple A=B

experiences a simple reduction reaction such as O2/H2O2, H2O2/

H2O, etc. Letting cA and DA be the concentration and diffusion

coefficient of species A in the pores within the electrode

occupying a domain W, the mass transfer of species A, diluted

in the fluid in which the electrode is immersed, is governed by

Fick’s law[27] and the overall process can be described by the

following initial and boundary value problem

@cA
@t

¼ = ? DA=cAð Þ in Wf % W ð2aÞ

B:C:1 @ n ? DA=cA ¼ k0 exp
@anF E @ E0ð Þ

RT

. -
cA at Isf ð2bÞ

B:C:2 cA ¼ GAðr; tÞ r 2 Afe; 8 t ð2cÞ

I:C: cA ¼ FA rð Þ r 2 Wf ; t ¼ 0 ð2dÞ

Here, a, E and E0 are the electron transfer coefficient,

electrode potential and standard potential respectively, n, F, R
and T the normal unit vector at the fluid solid interface pointing

out of the fluid phase, Faraday constant, ideal gas constant and

temperature. It should be noted that the interfacial condition

B.C.1 is based on the Butler-Volmer equation which provides a

relationship between the current density and the concentra-

tion.[28] In addition, in boundary condition B.C.2, Afe ¼ Wf \We

is the entrance and/or exit boundary of the fluid domain, Wf ,

from/into the diffusion layer, We, at the external boundary of

the electrode in contact with the bulk fluid.

For a given microstructure, a DNS of the above problem

can be performed[24] however to the cost of a very demanding

solution in terms of computational time and memory resources.

Alternatively, an upscaling procedure, based on the volume

averaging method can be employed to derive a macroscopic

model that may lead to a 1D simulation for a plane or circular

electrode and uniform boundary conditions for instance. Let

cAh if be the average concentration in the fluid phase defined

by
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cAh if ¼ 1

Vf

Z
Vf

cAdV ð3Þ

where Vf (of measure Vf) denotes the portion of the averaging

volume occupied by the fluid phase. The upscaling procedure

yields the following macroscopic mass conservation equation

ef
@ cAh if
@t

¼ = ? efDeff ? = cAh ifE C@ k0 exp
@anF E @ E0ð Þ

RT

. -
av cAh if

ð4Þ

In this equation, ef and av are the porosity and specific area

respectively; Deff is the effective diffusion tensor given by

Deff¼ DA Iþ 1

Vf

Z
Asf

nbdA

. -
ð5Þ

where b is the closure variable vector field relating the local

concentration to the gradient of its average and is solution of

an intrinsic closure problem on a representative elementary

volume of the porous electrode (see Eqs. (16) in Le et al.[24]). In

Eq. (5), I and Asf are denoting the identity tensor and the solid/

fluid interface in the averaging volume.

The macroscale diffusion-reaction Equation (4) is obtained

under the constraint that the process at the pore-scale occurs

in the mass-transfer limited regime, i.e., that the pore-kinetic (or

pore-Damköhler) number, Kip, which represents the reaction

rate to diffusion rate ratio (or the ratio between the character-

istic time associated to diffusion and the characteristic time

associated to reaction at the pore-scale) remains much smaller

than unity.[26,29] This is expressed as

Kip ¼ k0 exp
@anF E @ E0ð Þ

RT

. -
‘p=DA # 1 ð6Þ

‘p being the characteristic pore size, a constraint which is easily

met in practice. The form of Eq. (4) and stationarity of the

closure problem on b are also subject to a constraint on the

time scale given by DA t

‘2p
" 1. This indicates that the overall

process must be observed at a time larger than the character-

istic time for difussion at the pore-scale.[26]

Subsequently, the macroscopic mass transfer Equation (4)

may be solved together with Fick’s law in the external diffusion

layer and appropriate macroscopic boundary and initial con-

ditions, to obtain the macroscopic concentration profile of

species A inside the porous electrode at any time. This field can

then be used to compute the total current intensity delivered

by the electrode that is given by (see Le et al.[24] for the details)

I ¼ @nk0F exp
@an FðE @ E0Þ

RT

. -
av

Z
W

cAh ifdV ð7Þ

At this stage, it must be noted that the macroscopic model

is very general as it does not make any assumption neither on

the internal microscopic structure (provided a representative

elementary volume can be extracted) nor on the macroscopic

shape of the entire electrode.

Concentration profiles and current intensity obtained from

this macroscopic approach were compared to results of 3D

DNS of the pore scale model for a cylindrical porous electrode,

showing an excellent agreement between the two,[24] with,

however an enormous solution speed-up achieved with the 1D

macroscopic approach.

3. Application of the Macroscopic Model

Before using the macroscopic model to estimate the optimal

thickness of a cylindrical electrode in a general case, a

comparison with results of H2O2/H2O reduction experiments

performed on microporous electrodes is first carried out for

further validation purposes. It must be emphasized that the

experimental conditions are kept the same for the simulations

of the macroscopic model.

3.1 Comparison with Experimental Data

Five porous gold-coated electrodes made of 5, 7, 11, 15 and 19

half-layers (HL) of pores were manufactured according to a

three-step procedure.[10] An organized colloidal template of

silica beads of diameter ds ¼ ‘p ¼ 1:17 mm was first deposited

on a gold wire of radius R1=125 mm, using the Langmuir-

Blodgett technique and controlling the number of bead

layers.[13,30] It should be noted that two half-layers correspond to

one silica bead layer in the electrode manufacturing process. In

a second step, gold was electrodeposited in the space between

the beads before their dissolution in a third and final step. This

yields a spherical pore network close to a FCC structure with a

pore connection window of diameter dc, resulting from the

limitation of gold deposition. The connection window size was

estimated to be dc ¼ 0:15ds ffi 0:176 mm, a value that can be

considered as the minimum value for this type of manufactur-

ing process for these electrodes.[31] Given these values for ds

and dc and adopting a FCC structure, all other structural

parameters can be deduced, namely the porosity ef ¼ 0:763,

the specific area av ¼ 3:567> 106 m@1 and the size of the

geometrical periodic unit cell, corresponding to 4HL,

‘R ¼ 1:64 mm (see Figure 1).

Electrodes were then immersed in a 0.5 M H2 SO4 solution

containing dissolved 10 mM hydrogen peroxide (species A).

Voltammetry experiments were carried out at a temperature

T=298 K and a scan rate rE=0.5 mV/s, decreasing the potential

from 0.5 V to 0 V in order to observe the reduction of hydrogen

peroxide to water. The active surface area, Sact , for the 5HL, 7HL,

11HL, 15HL and 19HL electrodes, measured during the experi-

ments, are 1.63, 2.23, 3.5, 5 and 6.3 cm2 respectively which were

used for the numerical simulations.

To avoid a simplification which would consist in considering

the electrodes used in the experiments as quasi-planar (this

approximation will be considered latter in this article), the

macroscale model is solved in a 2D cross section as represented
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in Figure 1, yielding a rotationally symmetrical 1D radial

problem. By doing so, it is assumed that no significant effects

are induced by the electrode extremities in the axial direction.

For convenience, the problem is expressed in a dimensionless

form in which the dimensionless concentration, radial coordi-

nate and time, denoted with the superscript *, are respectively

normalized by the initial concentration of hydrogen peroxide,

c0A, the unit cell size of the FCC structure described above, ‘R,

and the characteristic time for diffusion, ‘2R=DA. In the config-

uration presented in Figure 1, r= ¼ 0 locates the gold wire axis,

r= ¼ R=
1 is the dimensionless gold wire radius while the

electrode, of normalized thickness L=e , occupies the region

R=
1 , r= , R=

2 ¼ R=
1 þ L=e , of section S= ¼ S=‘2R, where the macro-

scopic mass balance Equation (4) applies. Note that if Nh is the

number of half layers composing the electrode, L=e ¼ Nh=4,

taking into account the FCC model structure. In the bulk fluid

surrounding the electrode, the dimensionless diffusion layer, of

normalized thickness L=N, is present at R=
2 , r= , R=

3=

R=
1 þ L=e þ L=N where mass transport is governed by Fick’s law

(see Eq. (2a)). At the gold wire/electrode interface (r= ¼ R=
1) a no

flux condition is applied, while at the electrode/diffusion layer

interface (r= ¼ R=
2), continuity of the concentration and flux are

imposed and, at the external boundary of the diffusion layer

with the rest of the bulk fluid, a Dirichlet boundary condition is

considered, i.e., the H2O2 concentration remains equal to c0A. As

a consequence, the boundary value problem describing the

process can be stated as follows

ef
@ c*A
6 5f
@t*

¼ D*eff
1

r*
@

@r*
r*

@ c*A
6 5f
@r*

 !
@ Ki a*u c*A

6 5f R*1 , r* , R*2

ð8aÞ

B:C:1
@ c*A
6 5f
@r*

¼ 0 r* ¼ R*1 ð8bÞ

B:C:2 c*A
6 5f¼ c*A r* ¼ R*2 ð8cÞ

B:C:3 D*eff
@ c*A
6 5f
@r*

¼ @c*A
@r*

r* ¼ R*2 ð8dÞ

@c*A
@t*

¼ 1

r*
@

@r*
r*

@c*A
@r*

. -
R*2 , r* , R*3 ð8eÞ

B:C:4 c*A ¼ 1 r* ¼ R*3 ð8fÞ

I:C:1 c*A
6 5f¼ c*A ¼ 1 t* ¼ 0 ð8gÞ

where Ki is the cell kinetic number defined by the ratio

between the reaction rate and the diffusion rate at the scale of

the unit cell

Ki ¼ ‘R
‘p
Kip ¼ k0 exp

@anFðE @ E0

RT

. -
‘R=DA ð9Þ

and D=
eff the normalized effective diffusion coefficient,

D*eff ¼ efDeff=DA with Deff ¼ Deff I for isotropic structures. The

software COMSOL Multiphysics was used to solve first the

closure problem for b on a geometrical unit cell of the structure

(see Figure 1) to obtain Deff (here, D=
eff ¼ 0:376) and then to

solve the initial boundary value problem in Eqs. (8) for which

the values of the physical parameters are reported in Table 1.

The current intensity can finally be computed according to

Eq. (7), i.e.,

I ¼ @nk0F exp
@an FðE @ E0Þ

RT

. -
Sact
S

Z
S

cAh ifdS ð10Þ

Experimental results of voltammetry obtained with the five

electrodes are reported in Figure 2, together with results from

the simulation of the above problem. It should be noted that

the values of a and k0 are not known a priori as they intimately

depend on the pore coating material and surface texture as

well as on the reaction under concern. For this reason, these

two parameters were fitted, in the sense of the least square

error, on the experimental curve obtained with the 11HL

electrode, yielding k0 ¼ 1:7> 10@17 cm/s and a ¼ 0:482. These

values were further used for all the other electrode thicknesses.

Moreover, the diffusion layer thickness, LN, is also unknown. It

depends on the electrode thickness and should be considered

as time-dependent. For the sake of simplicity, a constant value

for each electrode was adopted by fitting this parameter on

each experimental curve, leading to LN=800 mm, 700 mm,

Figure 1. Configuration of the 2D-computational domain and FCC model
microstructure composing the electrode material.

Table 1. Parameters used in the simulations.

Parameter Symbol Value Unit

Ideal gas constant R 8.314 J/(molK)
Faraday’s constant F 96485 C/mol
Number of electron transferred n 2 –
Standard potential vs. E0Ag=AgCl E0 1.56 V

Temperature T 298 K
Bulk concentration c0A 10 mol/m3

Diffusion coefficient DA 10@9 m2/s

Spherical pore diameter ds ¼ ‘p 1.17 mm

Pore connection window size dc 0:15ds m

Size of the periodic unit cell ‘R 1.64 mm

Porosity ef 0.763

Specific surface area av 3.567>106 m@1

Potential scan rate rE 0.5 mV/s
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500 mm, 450 mm and 350 mm for the 5HL, 7HL, 11HL, 15HL and

19HL electrodes respectively. The relatively large values of LN
result from the low scan rate used in the experiments that are

close to steday-state. Although the overall electron transfer

involves two electrons, a pseudo elementary limiting step

occurs with a single electron transfer. As a consequence, the

exponential term in the Butler-Volmer equation is considered

with n ¼ 1.[24]

As can be observed in Figure 2, the agreement between the

experimental data and numerical predictions is excellent. The

maximum relative error between the two, over the whole range

of potential and for all the electrodes, is less than 6.5%,

confirming the validity of the macroscale model.

In order to progress towards the determination of an

optimal electrode thickness, it is important to evaluate the

regime under which it is supposed to operate, as the optimum

might differ whether the coupled transport-reaction process is

unsteady or close to steady-state. In many applications,

variations of the external parameters are slow enough for a

steady approximation to be valid. For instance, the voltammetry

experiments presented above can be accurately modelled using

a steady version of the governing equations within the

electrode and diffusion layer. This is confirmed by the current

intensity versus the scanning potential represented in Figure 3a

obtained from the unsteady model in Eqs. (8), on the one hand,

and from its steady version in which the accumulation terms

were neglected in Eqs. (8a) and (8e), on the other hand. As

shown in Figure 3b, representing the maximum relative error

on the current between the two approaches versus the

potential scan rate for 19HL and the set of parameters of

Figure 2. Intensity versus scanning potential obtained from voltammetry experiments performed with a potential scan rate rE=0.5 mV/s for the five
electrodes. The solution is a 10 mM H2O2 in a 0.5 M H2SO4 at T=298 K. Comparison with numerical simulations of the predictive macroscopic model (Eqs. (8)).

Figure 3. a) Current intensity versus scanning potential obtained from the complete unsteady model and its steady version for the 5HL and 19HL electrodes.
b) Maximum relative error on the current intensity obtained with the unsteady and steady models for 19HL with a potential scan rate ranging from 0.5 mV/s
to 5 mV/s over the potential interval [0, 0.5 V]. Parameters are those in Table 1.



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Table 1, this maximum relative error remains smaller than 10%

for rE up to about 3 mV/s.

Under these circumstances, it seems relevant to determine

the optimal thickness for operating conditions corresponding

to the steady regime.

3.2. Steady-State Solution

The objective is to derive an analytical solution to the steady

version of Eqs. (8) from which the optimal thickness of a

cylindrical electrode can be determined. The solution to the

steady version of Eqs. (8), referred to as the full model in the

remainder of the article, involves Bessel series which are not

easy to handle to carry out a complete analytical development.

To circumvent this difficulty, an approximation can be used

which consists in assuming that the ratio between the

electrode thickness and its mean radius, 2L=e= R=
1 þ R=

2

E C
, remains

small compared to unity so that the electrode can be treated as

a plane one. As a consequence, the mass conservation equation

in the electrode can be written in cartesian coordinates, r=

denoting the dimensionless coordinate in the thickness

direction, so that the two equations to be solved are

d2 c*A
6 5f
dr*2

¼ f2 c*A
6 5f R*1 , r* , R*2 ð11aÞ

d

dr*
r*

dc*A
dr

. -
¼ 0 R*2 , r* , R*3 ð11bÞ

together with the boundary conditions B.C.1 to B.C.4 in

Eqs. (8b), (8c), (8d) and (8f). In Eq. (11a), f is the cell Thiele

modulus given by

f ¼
ffiffiffiffiffiffiffiffiffi
Ki a=

v

D=
eff

s
ð12Þ

It must be noted that the radial coordinate is kept in the

diffusion layer since the ratio 2L=N= R=
1 þ R=

3

E C
(i.e., the diffusion

layer thickness to its mean radius ratio) is not small compared

to unity in the general case. This yields a model, referred to as

the hybrid model in the following, whose analytical solution is

given by

c*A
6 5f¼ a cosh f r* @ R*1

E CE C
R*1 , r* , R*2 ð13aÞ

c*A ¼ b In r* þ c R*2 , r* , R*3 ð13bÞ

with

a ¼ D*efffsinh fL*e
E C

R*2 In R*3
2
R*2

E Cþ cosh fL*e
E CE C@1 ð14aÞ

b ¼ coth fL*e
E C

D*effR*2f
þ In R*3

2
R*2

E C !@1

ð14bÞ

c ¼ 1@ b ln R=
3

E C ð14cÞ

Inserting Eq. (13a) into the expression of the current

intensity in Eq. (7) yields

I ¼ @ nFDAKi a
=
vVe

‘2RL=e Ki a=
vR

=
2lnðR=

3=R
=
2Þ þ fcothðfL=eÞ

@ > c0A ð15Þ

where Ve is the volume of the electrode immersed in the

reactive solution.

To check the validity of the approximation made with the

hybrid model, numerical simulations of the full model were

performed with the software COMSOL Multiphysics. In Figure 4,

results of the current intensity versus the scanning potential

obtained from these simulations are compared to the analytical

solution in Eq. (15) for the 5HL and 19HL electrodes, keeping

the parameters reported in Table 1 and LN=400 mm. This figure

shows that the hybrid model provides a very accurate solution,

the agreement with the full model being excellent. The largest

discrepancy between the two models occurs for the smallest

values of the potential and increases with the electrode

thickness. Nevertheless, for the 19HL electrode, the maximum

relative error is ~3.2%.

3.3. Optimal Electrode Thickness

The hybrid model is now employed to determine the optimal

thickness of a cylindrical porous electrode. It must be noted

that, at this stage, no special assumption is made on the type

of microsctructure of the electrode material.

Although the magnitude of I monotonically increases with

L=e , the electrode volume, Ve, increases much faster so that the

volume current density, defined as the ratio jI=Vej, tends to zero

in the limit of infinite electrode thickness, justifying the

determination of an optimal value of L=e , denoted L=e
op. An

example of the volume current density for a FCC structure

representative of the electrodes used in the experiments

Figure 4. Current intensity versus the scanning potential obtained from the
full and hybrid models for the 5HL and 19HL electrodes. LN=400 mm.
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reported above is represented versus L=e in Figure 5 for a kinetic

number Ki ¼ 10@3 and a diffusion layer thickness LN=400 mm,

all other parameters being those given in Table 1.

Typically, jI=Vej exhibits two asymptotic regimes, namely, a

strong quasi-linear decrease at small value of L=e and, in the limit

of very large values of L=e , a quasi-linear decrease to zero with a

much smaller slope. As a result, the optimal thickness can be

defined as the value at the crossover between these two

asymptotic regimes, as schematically represented in Figure 5.

More precisely, L=e
op may be computed as the value of L=e at the

intersecting point of the tangent to jI=VeðL=eÞj at L=e
0 with

jI=Vej ¼ 0. Here, L=e
0 should be taken as the minimum thickness

that can be reasonably achieved experimentally, corresponding,

for instance, to at least one unit cell, i.e., L=e
0 + 1.

In order to derive the analytical relationship providing L=e
op,

the expression of @jI=Ve j
@L=e

is required first. It is given by

@ I=Vej j
@L*e

¼ @ nFDAKi a*u
‘2RL*2e

>

f2L*e þ fcoth fL*e
E C@ f2L*e coth

2 fL*e
E Cþ Ki a*u R*2 In R*3

2
R*2

E C
fcoth fL*e

E Cþ Ki a*u R*2 In R*3
2
R*2

E CE C2 c0A

ð16Þ

This allows to express L=e
op as

L*ope ¼ @
I=Vej jL*0e

@ I=Vej j
@L*e L*0ej

þ L*0e

¼ L*0e
fcoth fL*0e

E C
þ Ki a*uR*2 In R*3

2
R*2

E C
f2L*0e þ fcoth fL*0e

E C
@ f2L*0e coth2 fL*0e

E C
þ Ki a*uR*2 In R*3

.
R*2

0 /þ 1

0B@
1CA
ð17Þ

where R=
2 ¼ R=

1 þ L=e
0 and R=

3 ¼ R=
2 þ L=N.

It must be noted that, for a given electrode structure (i.e.,

for fixed values of R=
1, ‘R, a

=
v and D=

eff ), L
=
e
op depends on Ki and L=N.

The optimization process may now be illustrated on the

type of electrodes employed in the experiments reported

above, i.e., assuming a FCC microstructure. In that case, a

reasonable choice for L=e
0 is L=e

0 ¼ 1, which corresponds to a

minimum electrode thickness ðNh ¼ 4Þ. Using this value, L=e
op

was computed from Eq. (17) and the resulting dependence of

L=e
op on the kinetic number for three values of the diffusion layer

thickness, LN, chosen in the range of those estimated from the

experiments presented above, is reported in Figure 6. The

optimal thickness varies significantly for very small values of the

kinetic number and is quite insensitive to this parameter for

Ki010@3. For Ki smaller than this value, L=e
op also depends on

the diffusion layer thickness characteristic of the configuration

under concern. Almost no dependence on LN is observed for

Ki010@3. For the electrodes used in the H2O2/H2O reduction

experiments reported in Figure 2, Ki is approximately

1:54> 10@7, 8:40> 10@5 and 1:54> 10@3 when the potential

takes the values 0.48 V, 0.1 V and 0 V respectively. This indicates

that, if these electrodes are supposed to operate at a potential

close to 0 V, the optimal thickness is about 12HL, whereas, for a

potential of ~0.1 V, the optimal thickness is rather ' 40HL. For a

FCC microstructure, 4HL refers to 1 unit cell of size ‘R. If the

dimensional characteristics are those given in Table 1, this

means that 12HL and 40HL correspond to 4.92 mm and 16.4 mm

respectively. Although operating conditions are quite different,

it should be noted that these values are close to those reported

in Cai et al.[25] (from 5 mm to 15 mm) for a plane solid oxide fuel

cell.

To summarize, the optimization analysis shows that, in the

general case, once the microstructural characteristics of the

electrode material are carefully identified, the operating

conditions must be cautiously specified as well in order to

properly estimate the optimal thickness of the electrode. As a

final important remark, it must be emphasized that the relation-

ship in Eq. (17) should serve as a predictive tool to estimate the

Figure 5. Variation of the volume current density, jI=Vej, versus the electro-
de’s dimensionless thickness, L=e , in the particular case of the FCC micro-
structure representing the material of the electrodes employed in the
experiments. Ki ¼ 10@3 , LN=400 mm.

Figure 6. Optimal electrode thickness versus the kinetic number, Ki, for three
values of LN . Characteristics of the FCC structure are those indicated in
Table 1. The corresponding optimal number of half layers is 4 L=e

op .
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optimal thickness of an electrode operating a single redox

reaction in the steady regime, the thickness to mean radius

ratio remaining small compared to unity. This predictive

relationship is not restricted to any particular structure like the

FCC used in Figure 6 for illustration purposes.

4. Conclusions

In this article, a multiscale model for the coupled diffusion-

reaction process in porous electrodes proposed in a previous

work[24] was validated with voltammetry experiments carried

out on a series of electrodes operating an H2O2/H2O reduction

reaction. An analytical solution of this model was developed in

the steady regime and for cylindrical electrodes featuring a

small thickness to mean radius ratio compared to unity, both

conditions being easily met in practice. This analytical model

was further used to derive an analytical expression for the

optimal electrode thickness which is general, regardless the

internal porous structure of the electrode material, and this

represents a net advantage over the analyses reported so far.

From a practical point of view, the model requires the knowl-

edge of the microsctructure in a representative elementary

volume of the porous structure. This can be extracted from an

image obtained on the real material or, as illustrated above,

from a model structure that reproduces the essential geo-

metrical features of the actual one. This optimal thickness is

defined as the crossover value of two asymptotic regimes

characterizing the volume current density dependence upon

the electrode thickness, namely in the limit of extremely small

and exceedingly large electrodes thicknesses respectively.

The analysis indicates that the optimal thickness does not

only depend on the electrode internal radius and on the

intrinsic parameters of the porous material, namely the size of

the representative elementary volume of the microstructure, its

specific area and macroscopic effective diffusion coefficient. It

may also be sensitive to the operating conditions which can be

reduced to two parameters: the kinetic number, Ki, and

diffusion layer thickness developing at the outer boundary of

the electrode. The optimal electrode thickness significantly

depends on these two parameters in the range of very small

values of Ki, but remains constant beyond a threshold value.

For the electrodes and reaction under study in this work, this

threshold corresponds to Ki~10@3, i.e., a potential of ~20 mV.
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