
HAL Id: hal-02367334
https://hal.science/hal-02367334v1

Submitted on 17 Nov 2019 (v1), last revised 8 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Thickness of a Porous Micro-Electrode
Operating a Single Redox Reaction

Tien Dung Le, Lin Zhang, Stephane Reculusa, Gérard Vignoles, Nicolas
Mano, Alexander Kuhn, Didier Lasseux

To cite this version:
Tien Dung Le, Lin Zhang, Stephane Reculusa, Gérard Vignoles, Nicolas Mano, et al.. Optimal
Thickness of a Porous Micro-Electrode Operating a Single Redox Reaction. ChemElectroChem, 2019,
6 (1), pp.173-180. �10.1002/celc.201800972�. �hal-02367334v1�

https://hal.science/hal-02367334v1
https://hal.archives-ouvertes.fr


Optimal thickness of a porous micro-electrode

operating a single redox reaction

Tien Dung Le ∗ Lin Zhang †§ Stéphane Reculusa †
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1 Abstract

This article reports on a procedure to predict the optimal thickness of cylindri-
cal porous electrodes operating a single redox reaction. This is obtained from
a macroscopic model for the coupled diffusion-reaction process that is first val-
idated with voltammetry experiments of H2O2/H2O reduction reaction carried
out with a series of porous electrodes elaborated in this work. An analytical
solution to this model is developed in the steady regime and for electrodes fea-
turing a thickness to mean radius ratio small enough compared to unity. An
analytical expression of the optimal electrode thickness is derived corresponding
to the crossover value of two asymptotic regimes characterizing the dependence
of the volume current density produced by the electrode upon its thickness. The
predictive tool of the optimal thickness is general, regardless the porous microsc-
tructure. The case of the electrodes used in the reported experiments illustrates
that the optimal thickness is not intrinsic to the microsctructure characterized
by the size of the representative volume, its specific area and effective diffusion
coefficient. It also depends on the operating conditions reflected in the kinetic
number, Ki, and the thickness of the diffusion layer surrounding the electrode.
The dependence of the optimal thickness on these two parameters is quite sig-
nificant in a range of very small values of Ki but remains quasi constant beyond
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a threshold value.

2 Introduction

In the recent past decades, porous electrodes, which are of major interest for the
design of miniaturized electro-devices such as bio-batteries or bio-sensors, have
recieved considerable attention both from modeling and experimental points of
view [? ? ? ? ? ? ? ? ]. A well-defined pore size and pore distribution of the
porous material may be achieved by using the Langmuir-Blodgett templating
technique [? ? ? ], providing a high surface-to-volume ratio (specific area) [? ?
]. Such a feature allows the electrodes to produce much higher electrical current
per unit volume than classical flat electrodes of the same macroscopic size [? ].
In addition, the overall thickness of the electrode may be well-controlled during
the elaboration process with an accuracy of about 10nm [? ]. However, predic-
tion of the optimal electrode thickness, yielding the best compromise between
an optimal electricity production and an economical manufacturing, is still an
open question. Intuitively, it can be easily understood that the process of dif-
fusion coupled to electrochemical reaction, supplied by the external fluid layer
containing the reactant and in contact with the porous electrode, is becoming
less effective in the core of the electrode, far from the interface with this fluid
layer, as a result of reactant depletion. This calls upon a specific analysis, based
on a rational physical modeling, in order to determine the optimal thickness
compatible with this cut-off mechanism.

Modeling of the macroscopic behavior of a porous electrode has received
much attention in the literature [? ? ]. In more detailes, the coupled diffusion-
reaction mechanisms within the porous medium have been addressed in different
regimes including the Direct Electron Transfer mode [? ? ] or Mediated Elec-
tron Transfer regime [? ? ]. An empirical macroscopic model was developed
for a porous electrode composed of spherical pores deposited on a disk under
the assumption that the process can be treated as if all the pores are behaving
independently from each others [? ]. During almost the same period, a pore-
scale modeling of diffusion-reaction in a porous electrode, composed of parallel
cylindrical solid protrusions deposited on an electrode surface, was presented
together with direct numerical simulations in order to analyse different electro-
chemical scenarii of reversible and irreversible electron transfer processes [? ?
]. An empirical analytical macroscale model for transport and reaction in an
infinite porous rotating disk electrode was also developed in the convection- and
diffusion-dominated regimes [? ? ]. On a more formal basis, an upscaling pro-
cedure was applied to a coupled transport-reaction problem at play in a porous
electrode containing three phases (solid, liquid and gas) yielding governing equa-
tions at the macroscale [? ]. However, the macroscale model remains unclosed
as no closure was provided to estimate the effective parameters. Recently, a
rational upscaling procedure was applied to the initial boundary value prob-
lem governing the coupled diffusion-reaction process at the pore-scale to obtain
the macroscopic model and the ancillary closure problem providing the effective
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diffusivity [? ]. Such an approach is capable of capturing the microstructure
properties of the electrode and its influences on the effective parameters at the
macroscale. The macroscopic model obtained was validated by comparison with
3D-Direct Numerical Simulations (DNS) of the pore-scale model as well as with
experimental data involving the reduction reaction of oxygen to hydrogen per-
oxide [? ].

Although considerable progress has been made for porous electrode man-
ufacturing and electrochemical characterization of the material, an empirical
approach toward a systematic prediction of an optimal design, in particular in
terms of the best effective electrode thickness, is not sufficient. Optimal elec-
trode thickness for a plane solid oxide fuel cell was discussed in a work by Cai
et al. [? ] based on 3D direct simulations at the pore-scale. Results for the
optimal thickness were obtained, indeed, on an empirical basis by performing
repeated simulations on a series of electrodes with different thicknesses, yielding
a conclusion very specific to the case under study. In fact, no general formula-
tion was proposed to predict such an optimal thickness and the relevant reduced
parameters on which it depends were not highlighted while operating conditions
(temperature, reaction rates, electron and ion transfer processes) were quite dif-
ferent from those considered in the present work. To the best of our knowledge,
no alternative approach has been followed in the literature towards this goal.
The present work aims at a progress to fill this gap by developing a thorough ap-
proach to estimate the optimal thickness of a porous electrode operating with a
single redox reaction using the macroscopic model formally derived in a previous
work [? ].

The article is organized as follows. The upscaled formal model operating at
the macroscale [? ] is first briefly recalled and its solution is compared to a
series of experimental results of hydrogen peroxide reduction to water, carried
out in this work, with the purpose of an additional further validation. Secondly,
this macroscopic model is used in the steady-state regime (a situation which is
of wide practical interest) to derive an analytical model for the concentration
profile of the dilute species allowing to express the current intensity available at
the electrode. On this basis, an optimization procedure is finally proposed to
estimate the effective electrode thickness. This yields an analytical expression of
the optimal thickness that is general for a cylindrical porous electrode, regardless
the type of microstructure of the electrode material. An illustration is provided
for the type of electrode used in the experiments reported in this work.

3 Multiscale diffusion-reaction model in a porous
electrode

In this section, the multiscale model developed in a previous work [? ] for a
diffusion and electrochemical reaction problem within a porous micro-electrode
is briefly recalled. It consists in a bottom-up approach which allows to take into
account the microstructural information together with the physics of diffusion
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and reaction within the porous medium in order to obtain a reduced model
that retains the essential features of the process at the underlying scale. In
essence, this is achieved by applying the volume averaging method [? ] to
upscale the pore-scale initial boundary value problem yielding a macroscopic
model operating at the electrode scale.

At the pore scale, a single reduction reaction at the solid-fluid interface
within the porous cathode is taken into account, namely

A+ ne−
k0−→ B r ∈ Isf (1)

where Isf is the fluid-solid interface, r the position vector at Isf , n and k0

the number of electrons tranferred and the electron transfer rate constant, re-
spectively. The redox couple A/B experiences a simple reduction reaction such
as O2/H2O2, H2O2/H2O, etc. Letting cA and DA be the concentration and
diffusion coefficient of species A in the pores within the electrode occupying
a domain Ω, the mass transfer of species A, diluted in the fluid in which the
electrode is immersed, is governed by Fick’s law [? ] and the overall process
can be described by the following initial boundary value problem

∂cA
∂t

= ∇ · (DA∇cA) in Ωf ⊂ Ω (2a)

B.C.1 − n · DA∇cA = k0 exp

(−αnF (E − E0)

RT

)
cA at Isf (2b)

B.C.2 cA = GA(r, t) r ∈ Afe, ∀ t (2c)

I.C. cA = FA (r) r ∈ Ωf , t = 0 (2d)

Here, α, E and E0 are the electron transfer coefficient, electrode potential and
standard potential respectively, n, F , R and T the normal unit vector at the
fluid solid interface pointing out of the fluid phase, Faraday constant, ideal gas
constant and temperature. It should be noted that the interfacial condition
B.C.1 is based on the Butler-Volmer equation which provides a relationship
between the current density and the concentration [? ]. In addition, in boundary
condition B.C.2, Afe = Ωf ∩ Ωe is the entrance and/or exit boundary of the
fluid domain, Ωf , from/into the diffusion layer, Ωe, at the external boundary of
the electrode in contact with the bulk fluid.

For a given microstructure, a DNS of the above problem can be performed
[? ] however to the cost of a very demanding solution in terms of computational
time and memory resources. Alternatively, an upscaling procedure, based on
the volume averaging method can be employed to derive a macroscopic model
that may lead to a 1D simulation for a plane or circular electrode and uniform
boundary conditions for instance. Let 〈cA〉f be the average concentration in the
fluid phase defined by

〈cA〉f =
1

Vf

∫
Vf

cAdV (3)

where Vf (of measure Vf ) denotes the portion of the averaging volume occupied
by the fluid phase. The upscaling procedure yields the following macroscopic
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mass conservation equation

εf
∂ 〈cA〉f
∂t

= ∇ ·
(
εfDeff ·∇ 〈cA〉f

)
− k0αAav 〈cA〉f (4)

In this equation, εf and av are the porosity and specific area respectively; Deff

is the effective diffusion tensor given by

Deff = DA

(
I +

1

Vf

∫
Asf

nbdA

)
(5)

where b is the closure variable vector field relating the local concentration to
the gradient of its average and is solution of an intrinsic closure problem on a
representative elementary volume of the porous electrode (see Eqs. (16) in Le
et al. [? ]). In Eq. (??), I and Asf are denoting the identity tensor and the
solid/fluid interface in the averaging volume.

The macroscale diffusion-reaction equation (??) is obtained under the con-
straint that the process at the pore-scale occurs in the mass-transfer limited
regime, i.e. that the pore-kinetic (or pore-Damköhler) number, Kip, which
represents the reaction rate to diffusion rate ratio (or the ratio between the
characteristic time associated to diffusion and the characteristic time associated
to reaction at the pore-scale) remains much smaller than unity [? ? ]. This is
expressed as

Kip = k0 exp(
−αnF (E − E0)

RT
)`p/DA � 1 (6)

`p being the characteristic pore size, a constraint which is easily met in practice.
The form of Eq. (??) and stationarity of the closure problem on b are also
subject to a constraint on the time scale given by DAt

`2p
� 1. This indicates that

the overall process must be observed at a time larger than the characteristic
time for difussion at the pore-scale [? ].

Subsequently, the macroscopic mass transfer equation (??) may be solved
together with Fick’s law in the external diffusion layer and appropriate macro-
scopic boundary and initial conditions, to obtain the macroscopic concentration
profile of species A inside the porous electrode at any time. This field can then
be used to compute the total current intensity delivered by the electrode that
is given by (see [? ] for the details)

I = −nk0F exp

(−αnF (E − E0)

RT

)
av

∫
Ω

〈cA〉fdV (7)

At this stage, it must be noted that the macroscopic model is very general as
it does not make any assumption neither on the internal microscopic structure
(provided a representative elementary volume can be extracted) nor on the
macroscopic shape of the entire electrode.

Concentration profiles and current intensity obtained from this macroscopic
approach were compared to results of 3D DNS of the pore scale model for a
cylindrical porous electrode, showing an excellent agreement between the two
[? ], with, however an enormous solution speed-up achieved with the 1D macro-
scopic approach.
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4 Application of the macroscopic model

Before using the macroscopic model to estimate the optimal thickness of an
annular electrode in a general case, a comparison with results of H2O2/H2O
reduction experiments performed on microporous electrodes is first carried out
for further validation purposes. It must be emphasized that the experimental
conditions are kept the same for the simulations of the macroscopic model.

4.1 Comparison with experimental data

Five porous gold-coated electrodes made of 5, 7, 11, 15 and 19 half-layers (HL)
of pores were manufactured according to a three-step procedure [? ]. An orga-
nized colloidal template of silica beads of diameter ds = `p = 1.17µm was first
deposited on a gold wire of radius R1 = 125µm, using the Langmuir-Blodgett
technique and controlling the number of bead layers [? ? ]. It should be noted
that two half-layers correspond to one silica bead layer in the electrode manufac-
turing process. In a second step, gold was electrodeposited in the space between
the beads before their dissolution in a third and final step. This yields a spher-
ical pore network close to a FCC structure with a pore connection window of
diameter dc, resulting from the limitation of gold deposition. The connection
window size was estimated to be dc = 0.15ds ∼= 0.176µm, a value that can be
considered as the minimum value for this type of manufacturing process for
these electrodes [? ]. Given these values for ds and dc and adopting a FCC
structure, all other structural parameters can be deduced, namely the porosity
εf = 0.763, the specific area av = 3.567×106m−1 and the size of the geometrical
periodic unit cell, corresponding to 4 HL, `R = 1.64µm (see Fig. ??).

From

E-mail:

 

ds 

dc 

ℓR 

0 r∗

R∗
1R

∗
2 R∗

3

Ωf

Ωe

Ω

1

Figure 1: Configuration of the 2D-computational domain and FCC model mi-
crostructure composing the electrode material

Electrodes were then immersed in a 0.5M H2SO4 solution containing dis-
solved 10mM hydrogen peroxide (species A). Voltammetry experiments were
carried out at a temperature T = 298K and a scan rate rE = 0.5mV/s, decreas-
ing the potential from 0.5V to 0V in order to observe the reduction of hydrogen
peroxide to water. The active surface area, Sact, for the 5HL, 7HL, 11HL,
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15HL and 19HL electrodes, measured during the experiments, are 1.63, 2.23,
3.5, 5 and 6.3 cm2 respectively which were used for the numerical simulations.

To avoid a simplification which would consist in considering the electrodes
used in the experiments as quasi-planar (this approximation will be considered
latter in this article), the macroscale model is solved in a 2D cross section as
represented in Fig. ??, yielding a rotationally symmetrical 1D radial problem.
By doing so, it is assumed that no significant effects are induced by the electrode
extremities in the axial direction. For convenience, the problem is expressed in a
dimensionless form in which the dimensionless concentration, radial coordinate
and time, denoted with the superscript ∗, are respectively normalized by the
initial concentration of hydrogen peroxide, c0A, the unit cell size of the FCC
structure described above, `R, and the characteristic time for diffusion, `2R/DA.
In the configuration presented in Fig. ??, r∗ = 0 locates the gold wire axis,
r∗ = R∗1 is the dimensionless gold wire radius while the electrode, of normalized
thickness L∗e, occupies the regionR∗1 ≤ r∗ ≤ R∗2 = R∗1+L∗e, of section S∗ = S/`2R,
where the macroscopic mass balance equation (??) applies. Note that if Nh is
the number of half layers composing the electrode, L∗e = Nh/4, taking into
account the FCC model structure. In the bulk fluid surrounding the electrode,
the dimensionless diffusion layer, of normalized thickness L∗N , is present at R∗2 ≤
r∗ ≤ R∗3 = R∗1 + L∗e + L∗N where mass transport is governed by Fick’s law (see
Eq. (??)). At the gold wire/electrode interface (r∗ = R∗1) a no flux condition
is applied, while at the electrode/diffusion layer interface (r∗ = R∗2), continuity
of the concentration and flux are imposed and, at the external boundary of the
diffusion layer with the rest of the bulk fluid, a Dirichlet boundary condition is
considered, i.e. the H2O2 concentration remains equal to c0A. As a consequence,
the boundary value problem describing the process can be stated as follows

εf
∂ 〈c∗A〉

f

∂t∗
= D∗eff

1

r∗
∂

∂r∗

(
r∗
∂ 〈c∗A〉

f

∂r∗

)
−Ki a∗v 〈c∗A〉f R∗1 ≤ r∗ ≤ R∗2 (8a)

B.C.1
∂ 〈c∗A〉

f

∂r∗
= 0 r∗ = R∗1 (8b)

B.C.2 〈c∗A〉
f

= c∗A r∗ = R∗2 (8c)

B.C.3 D∗eff

∂ 〈c∗A〉
f

∂r∗
=
∂c∗A
∂r∗

r∗ = R∗2 (8d)

∂c∗A
∂t∗ =

1

r∗
∂

∂r∗

(
r∗
∂c∗A
∂r∗

)
R∗2 ≤ r∗ ≤ R∗3 (8e)

B.C.4 c∗A = 1 r∗ = R∗3 (8f)

I.C.1 〈c∗A〉
f

= c∗A = 1 t∗ = 0 (8g)

where Ki is the cell kinetic number defined by the ratio between the reaction
rate and the diffusion rate at the scale of the unit cell

Ki =
`R
`p

Kip = k0 exp(
−αnF (E − E0)

RT
)`R/DA (9)
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Table 1: Parameters used in the simulations

Parameter Symbol Value Unit

Ideal gas constant R 8.314 J/(molK)
Faraday’s constant F 96485 C/mol
Number of electron transferred n 2 −
Standard potential vs. E0

Ag/AgCl E0 1.56 V

Temperature T 298 K
Bulk concentration c0A 10 mol/m3

Diffusion coefficient DA 10−9 m2/s
Spherical pore diameter ds = `p 1.17 µm
Pore connection window size dc 0.15ds m
Size of the periodic unit cell `R 1.64 µm
Porosity εf 0.763
Specific surface area av 3.567 ×106 m−1

Potential scan rate rE 0.5 mV/s

and D∗eff the normalized effective diffusion coefficient, D∗eff = εfDeff/DA with
Deff = DeffI for isotropic structures. The software COMSOL Multiphysics was
used to solve first the closure problem for b on a geometrical unit cell of the
structure (see Fig. ??) to obtain Deff (here, D∗eff = 0.376) and then to solve
the initial boundary value problem in Eqs. (??) for which the values of the
physical parameters are reported in Table ??. The current intensity can finally
be computed according to Eq. (??), i.e.

I = −nk0F exp

(−αnF (E − E0)

RT

)
Sact

S

∫
S

〈cA〉fdS (10)

Experimental results of voltammetry obtained with the five electrodes are
reported in Fig. ??, together with results from the simulation of the above
problem. It should be noted that the values of α and k0 are not known a priori
as they intimately depend on the pore coating material and surface texture as
well as on the reaction under concern. For this reason, these two parameters
were fitted, in the sense of the least square error, on the experimental curve
obtained with the 11HL electrode, yielding k0 = 1.7×10−17cm/s and α = 0.482.
These values were further used for all the other electrode thicknesses. Moreover,
the diffusion layer thickness, LN , is also unknown. It depends on the electrode
thickness and should be considered as time-dependent. For the sake of simplicity,
a constant value for each electrode was adopted by fitting this parameter on
each experimental curve, leading to LN = 800µm, 700µm, 500µm, 450µm and
350µm for the 5HL, 7HL, 11HL, 15HL and 19HL electrodes respectively.
The relatively large values of LN result from the low scan rate used in the
experiments that are close to steday-state. Although the overall electron transfer
involves two electrons, a pseudo elementary limiting step occurs with a single
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electron transfer. As a consequence, the exponential term in the Butler-Volmer
equation is considered with n = 1 [? ].

0 0.1 0.2 0.3 0.4 0.5
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−1.5
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0
·10−4
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19HL-experiment
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19HL-model

1

Figure 2: Intensity versus scanning potential obtained from voltammetry experi-
ments performed with a potential scan rate rE = 0.5mV/s for the five electrodes.
The solution is a 10mM H2O2 in a 0.5M H2SO4 at T = 298K. Comparison
with numerical simulations of the predictive macroscopic model (Eqs. (??))

As can be observed in Fig. ??, the agreement between the experimental data
and numerical predictions is excellent. The maximum relative error between the
two, over the whole range of potential and for all the electrodes, is less than
6.5%, confirming the validity of the macroscale model.

In order to progress towards the determination of an optimal electrode thick-
ness, it is important to evaluate the regime under which it is supposed to operate,
as the optimum might differ whether the coupled transport-reaction process is
unsteady or close to steady-state. In many applications, variations of the ex-
ternal parameters are slow enough for a steady approximation to be valid. For
instance, the voltammetry experiments presented above can be accurately mod-
elled using a steady version of the governing equations within the electrode and
diffusion layer. This is confirmed by the current intensity versus the scanning
potential represented in Fig. ??a obtained from the unsteady model in Eqs.
(??), on the one hand, and from its steady version in which the accumulation
terms were neglected in Eqs. (??) and (??), on the other hand. As shown in Fig.
??b, representing the maximum relative error on the current between the two
approaches versus the potential scan rate for 19HL and the set of parameters
of Table ??, this maximum relative error remains smaller than 10% for rE up
to about 3mV/s.

Under these circumstances, it seems relevant to determine the optimal thick-
ness for operating conditions corresponding to the steady regime.
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Figure 3: a) Current intensity versus scanning potential obtained from the com-
plete unsteady model and its steady version for the 5HL and 19HL electrodes.
b) Maximum relative error on the current intensity obtained with the unsteady
and steady models for 19HL with a potential scan rate ranging from 0.5mV/s
to 5mV/s over the potential interval [0, 0.5V]. Parameters are those in Table
??.

4.2 Steady-state solution

The objective is to derive an analytical solution to the steady version of Eqs.
(??) from which the optimal thickness of a cylindrical electrode can be deter-
mined. The solution to the steady version of Eqs. (??), referred to as the full
model in the remainder of the article, involves Bessel series which are not easy
to handle to carry out a complete analytical development. To circumvent this
difficulty, an approximation can be used which consists in assuming that the
ratio between the electrode thickness and its mean radius, 2L∗e/(R

∗
1 + R∗2), re-

mains small compared to unity so that the electrode can be treated as a plane
one. As a consequence, the mass conservation equation in the electrode can be
written in cartesian coordinates, r∗ denoting the dimensionless coordinate in
the thickness direction, so that the two equations to be solved are

d2 〈c∗A〉
f

dr∗2
= ϕ2 〈c∗A〉f R∗1 ≤ r∗ ≤ R∗2 (11a)

d

dr∗

(
r∗

dc∗A
dr∗

)
= 0 R∗2 ≤ r∗ ≤ R∗3 (11b)

together with the boundary conditions B.C.1 to B.C.4 in Eqs. (??), (??), (??)
and (??). In Eq. (??), ϕ is the cell Thiele modulus given by

ϕ =

√
Ki a∗v
D∗eff

(12)
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It must be noted that the radial coordinate is kept in the diffusion layer since
the ratio 2L∗N/(R

∗
1 + R∗3) (i.e. the diffusion layer thickness to its mean radius

ratio) is not small compared to unity in the general case. This yields a model,
referred to as the hybrid model in the following, whose analytical solution is
given by

〈c∗A〉f = a cosh(ϕr∗) R∗1 ≤ r∗ ≤ R∗2 (13a)

c∗A = b ln r∗ + c R∗2 ≤ r∗ ≤ R∗3 (13b)

with

a =
(
D∗effϕ sinh(ϕL∗e)R∗2 ln (R∗3/R

∗
2) + cosh(ϕL∗e)

)−1
(14a)

b =

(
coth(ϕL∗e)

D∗effR
∗
2ϕ

+ ln(R∗3/R
∗
2)

)−1

(14b)

c = 1− b ln(R∗3) (14c)

Inserting Eq. (??) into the expression of the current intensity in Eq. (??) yields

I = − nFDAKi a∗vVe
`2RL

∗
e [Ki a∗vR

∗
2 ln(R∗3/R

∗
2) + ϕ coth(ϕL∗e)]

c0A (15)

where Ve is the volume of the electrode immersed in the reactive solution.
To check the validity of the approximation made with the hybrid model,

numerical simulations of the full model were performed with the software COM-
SOL Multiphysics. In Fig. ??, results of the current intensity versus the scan-
ning potential obtained from these simulations are compared to the analytical
solution in Eq. (??) for the 5HL and 19HL electrodes, keeping the parameters
reported in Table ?? and LN = 400µm. This figure shows that the hybrid model
provides a very accurate solution, the agreement with the full model being ex-
cellent. The largest discrepancy between the two models occurs for the smallest
values of the potential and increases with the electrode thickness. Nevertheless,
for the 19HL electrode, the maximum relative error is ∼ 3.2%.

4.3 Optimal electrode thickness

The hybrid model is now employed to determine the optimal thickness of an
annular porous electrode. It must be noted that, at this stage, no special as-
sumption is made on the type of microsctructure of the electrode material.

Although the magnitude of I monotonically increases with L∗e, the electrode
volume, Ve, increases much faster so that the volume current density, defined as
the ratio | I/Ve |, tends to zero in the limit of infinite electrode thickness, justi-
fying the determination of an optimal value of L∗e, denoted L∗e

op. An example of
the volume current density for a FCC structure representative of the electrodes
used in the experiments reported above is represented versus L∗e in Fig. ?? for
a kinetic number Ki = 10−3 and a diffusion layer thickness LN = 400µm, all
other parameters being those given in Table ??. Typically, | I/Ve | exhibits two
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Figure 4: Current intensity versus the scanning potential obtained from the full
and hybrid models for the 5HL and 19HL electrodes. LN = 400µm

asymptotic regimes, namely, a strong quasi-linear decrease at small value of L∗e
and, in the limit of very large values of L∗e, a quasi-linear decrease to zero with
a much smaller slope. As a result, the optimal thickness can be defined as the
value at the crossover between these two asymptotic regimes, as schematically
represented in Fig. ??. More precisely, L∗e

op may be computed as the value of L∗e
at the intersecting point of the tangent to | I/Ve(L∗e) | at L∗e

0 with | I/Ve |= 0.
Here, L∗e

0 should be taken as the minimum thickness that can be reasonably
achieved experimentally, corresponding, for instance, to at least one unit cell,
i.e. L∗e

0 ≥ 1.
In order to derive the analytical relationship providing L∗e

op, the expression

of
∂ | I/Ve |
∂L∗e

is required first. It is given by

∂ | I/Ve |
∂L∗e

= −nFDAKi a∗v
`2RL

∗2
e

×

ϕ2L∗e + ϕ coth(ϕL∗e)− ϕ2L∗e coth2(ϕL∗e) + Ki a∗vR
∗
2 ln(R∗3/R

∗
2)

(ϕ coth(ϕL∗e) + Ki a∗vR
∗
2 ln(R∗3/R

∗
2))

2 c0A

(16)

This allows to express L∗e
op as

L∗e
op = −

| I/Ve |L∗
e
0

∂ | I/Ve |
∂L∗e

|L∗
e
0

+ L∗e
0

=L∗e
0

(
ϕ coth(ϕL∗e

0) + Ki a∗vR
∗
2 ln(R∗3/R

∗
2)

ϕ2L∗e
0 + ϕ coth(ϕL∗e

0)− ϕ2L∗e
0 coth2(ϕL∗e

0) + Ki a∗vR
∗
2 ln(R∗3/R

∗
2)

+ 1

)
(17)
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Figure 5: Variation of the volume current density, | I/Ve |, versus the electrode’s
dimensionless thickness, L∗e, in the particular case of the FCC microstructure
representing the material of the electrodes employed in the experiments. Ki =
10−3, LN = 400µm

where R∗2 = R∗1 + L∗e
0 and R∗3 = R∗2 + L∗N .

It must be noted that, for a given electrode structure (i.e. for fixed values
of R∗1, `R, a∗v and D∗eff), L∗e

op depends on Ki and L∗N .
The optimization process may now be illustrated on the type of electrodes

employed in the experiments reported above, i.e. assuming a FCC microstruc-
ture. In that case, a reasonable choice for L∗e

0 is L∗e
0 = 1, which corresponds to

a minimum electrode thickness (Nh = 4). Using this value, L∗e
op was computed

from Eq. (??) and the resulting dependence of L∗e
op on the kinetic number for

three values of the diffusion layer thickness, LN , chosen in the range of those
estimated from the experiments presented above, is reported in Fig. ??. The
optimal thickness varies significantly for very small values of the kinetic number
and is quite insensitive to this parameter for Ki & 10−3. For Ki smaller than
this value, L∗e

op also depends on the diffusion layer thickness characteristic of
the configuration under concern. Almost no dependence on LN is observed for
Ki & 10−3. For the electrodes used in the H2O2/H2O reduction experiments
reported in Fig. ??, Ki is approximately 1.54×10−7, 8.40×10−5 and 1.54×10−3

when the potential takes the values 0.48V , 0.1V and 0V respectively. This in-
dicates that, if these electrodes are supposed to operate at a potential close to
0V , the optimal thickness is about 12HL, whereas, for a potential of ∼ 0.1V ,
the optimal thickness is rather ∼ 40HL. For a FCC microstructure, 4HL refers
to 1 unit cell of size `R. If the dimensional characteristics are those given in
Table ??, this means that 12HL and 40HL correspond to 4.92µm and 16.4µm
respectively. Although operating conditions are quite different, it should be
noted that these values are close to those reported in [? ] (from 5µm to 15µm)
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for a plane solid oxide fuel cell.
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Figure 6: Optimal electrode thickness versus the kinetic number, Ki, for three
values of LN . Characteristics of the FCC structure are those indicated in Table
??. The corresponding optimal number of half layers is 4L∗e

op

To summarize, the optimization analysis shows that, in the general case,
once the microstructural characteristics of the electrode material are carefully
identified, the operating conditions must be cautiously specified as well in order
to properly estimate the optimal thickness of the electrode. As a final important
remark, it must be emphasized that the relationship in Eq. (??) should serve
as a predictive tool to estimate the optimal thickness of an electrode operating
a single redox reaction in the steady regime, the thickness to mean radius ratio
remaining small compared to unity. This predictive relationship is not restricted
to any particular structure like the FCC used in Fig. ?? for illustration purposes.

5 Conclusion

In this article, a multiscale model for the coupled diffusion-reaction process in
porous electrodes proposed in a previous work [? ] was validated with voltam-
metry experiments carried out on a series of electrodes operating an H2O2/H2O
reduction reaction. An analytical solution of this model was developed in the
steady regime and for cylindrical electrodes featuring a small thickness to mean
radius ratio compared to unity, both conditions being easily met in practice.
This analytical model was further used to derive an analytical expression for
the optimal electrode thickness which is general, regardless the internal porous
structure of the electrode material, and this represents a net advantage over the
analyses reported so far. From a practical point of view, the model requires the
knowledge of the microsctructure in a representative elementary volume of the
porous structure. This can be extracted from an image obtained on the real
material or, as illustrated above, from a model structure that reproduces the
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essential geometrical features of the actual one. This optimal thickness is de-
fined as the crossover value of two asymptotic regimes characterizing the volume
current density dependence upon the electrode thickness, namely in the limit of
extremely small and exceedingly large electrodes thicknesses respectively.

The analysis indicates that the optimal thickness does not only depend on the
electrode internal radius and on the intrinsic parameters of the porous material,
namely the size of the representative elementary volume of the microstructure,
its specific area and macroscopic effective diffusion coefficient. It may also be
sensitive to the operating conditions which can be reduced to two parameters:
the kinetic number, Ki, and diffusion layer thickness developing at the outer
boundary of the electrode. The optimal electrode thickness significantly depends
on these two parameters in the range of very small values of Ki, but remains
constant beyond a threshold value. For the electrodes and reaction under study
in this work, this threshold corresponds to Ki ∼ 10−3, i.e. a potential of ∼
20mV .
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Normalized optimal thickness, L∗e
op, of a cylindrical electrode as a

function of the kinetic number, Ki, depending on the diffusion layer
thickness LN .

A macroscale model for diffusion and single redox reaction in a porous elec-
trode is recalled and validated with experiments, the analytical solution of which
is obtained at steady-state for a cylindrical electrode featuring a thickness to
mean radius ratio small compared to unity. Given the microstructure of the
electrode material, the optimal thickness, L∗e

op, of the cylindrical electrode is
obtained from an analytical formula showing the dependence of L∗e

op on the
Kinetic number and diffusion layer thickness.
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