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Let Ω ⊂ R N , N ≥ 2, be a smooth bounded domain. We consider a boundary value problem of the form

where c λ depends on a parameter λ ∈ R, the coefficients c λ and h belong to L q (Ω) with q > N/2 and µ ∈ L ∞ (Ω). Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the general framework of the p-Laplacian. With this a priori bound at hand, we show the existence and multiplicity of solutions.

Résumé. Soit Ω ⊂ R N , N ≥ 2, un domaine borné régulier. Nous considérons un problème aux limites de la forme

. Sous certaines hypothèses, mais sans imposer une condition de signe sur aucun des coefficients, nous obtenons une borne à priori supérieure sur les solutions. Notre preuve repose sur une nouvelle inégalité de Harnack au bord. Cette inégalité, qui est d'intérêt propre, est établie dans le cadre plus général du p-Laplacien. L'obtention d'une borne à priori nous permet de démontrer l'existence et la multiplicité de solutions.

Introduction and main results

The paper deals with the existence and multiplicity of solutions for boundary value problems of the form

(Q λ ) -∆u = c λ (x)u + µ(x)|∇u| 2 + h(x) , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) ,
with c λ depending on a real parameter λ.

Here Ω ⊂ R N , N ≥ 2, is a bounded domain with boundary ∂Ω of class C 1,1 , c λ and h belong to L q (Ω) for some q > N/2 and µ belongs to L ∞ (Ω).

This type of problem, which started to be studied by L. Boccardo, F. Murat and J.P. Puel in the 80's, has attracted a new attention these last years. Under the condition c λ ≤ -α 0 < 0 a.e. in Ω for some α 0 > 0, the existence of a solution of (Q λ ) is a particular case of the results of [START_REF] Boccardo | Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique[END_REF][START_REF] Boccardo | L ∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result[END_REF] and its uniqueness follows from [START_REF] Barles | Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions[END_REF][START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF]. The case c λ ≡ 0 was studied in [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF][START_REF] Ferone | Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small[END_REF] and the existence requires some smallness condition on µh N/2 . The situation where one only requires c λ ≤ 0 a.e. in Ω (i.e. allowing parts of the domain where c λ ≡ 0 and parts of it where c λ < 0 ) proved to be more complex to treat. In the recent papers [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Coster | Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient[END_REF], the authors explicit sufficient conditions for the existence of solutions of (Q λ ). Moreover, in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], the uniqueness of solution is established (see also [START_REF] Arcoya | Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions[END_REF] in that direction). All these results were obtained without requiring any sign conditions on µ and h.

In case c λ = λc 0, as we shall discuss later, problem (Q λ ) behaves very differently and becomes much richer. Following [START_REF] Sirakov | Solvability of uniformly elliptic fully nonlinear PDE[END_REF], which considers a particular case, [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF] studied (Q λ ) with µ(x) ≡ µ > 0 and λc 0 but without a sign condition on h. The authors proved the existence of at least two solutions when λ > 0 and

(µh) + N/2 are small enough. The restriction µ constant was removed in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF] and extended to µ(x) ≥ µ 1 > 0 a.e. in Ω, at the expense of adding the hypothesis h 0. Next, in [START_REF] Coster | Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient[END_REF], assuming stronger regularity on c and h, the authors removed the condition h 0. In this paper, it is also lightened that the structure of the set of solutions when λ > 0, crucially depends on the sign of the (unique) solution of (Q 0 ). Note that, in [START_REF] Coster | Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient[END_REF], the above results are extended to the p-Laplacian case. Also, in the frame of viscosity solutions and fully nonlinear equations, under corresponding assumptions, similar conclusions have been obtained very recently in [START_REF] Nornberg | A priori bounds and multiplicity for fully nonlinear equations with quadratic growth in the gradient[END_REF]. We refer to [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF] for an heuristic explanation on how the behavior of (Q λ ) is affected by the change of sign in front of the linear term. Actually, in the case where µ(x) ≡ µ is a constant, it is possible to transform problem (Q λ ) into a new one which admits a variational formulation. When c λ ≤ -α 0 < 0, the associated functional, defined on H 1 0 (Ω), is coercive. If c λ 0, the coerciveness may be lost and when c λ 0, in fact as soon as c + λ 0, the functional is unbounded from below. In [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF] this variational formulation was directly used to obtain the solutions. In [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Coster | Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient[END_REF] where µ is non constant, topological arguments, relying on the derivation of a priori bounds for certain classes of solutions, were used.

The only known results where c λ may change sign are [START_REF] Coster | Two solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF][START_REF] Jeanjean | Multiple solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF] (see also [START_REF] García-Melián | A priori bounds and existence of solutions for slightly superlinear elliptic problems[END_REF] for related problems). They both concern the case where µ is a positive constant. In [START_REF] Jeanjean | Multiple solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF], assuming h 0, µh and c + λ small in an appropriate sense, the existence of at least two non-negative solutions was proved. In [START_REF] Coster | Two solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF], the authors show that the loss of positivity of the coefficient of u does not affect the structure of the set of solutions of (Q λ ) observed in [START_REF] Coster | Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient[END_REF] when c λ = λc 0. Since µ is constant in [START_REF] Coster | Two solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF][START_REF] Jeanjean | Multiple solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF], it is possible to treat the problem variationally. The main issue, to derive the existence of solutions, is then to show the boundedness of the Palais-Smale sequences.

When c λ 0, all the above mentioned results require either µ to be constant or to be uniformly bounded from below by a positive constant (or similarly bounded from above by a negative constant). In [START_REF] Souplet | A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient[END_REF], assuming that the three coefficients functions are non-negative, a first attempt to remove these restrictions on µ is presented. Following the approach of [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], the proofs of the existence results reduce to obtaining a priori bounds on the non negative solutions of (Q λ ). First it is observed in [START_REF] Souplet | A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient[END_REF] that a necessary condition is the existence of a ball B(x 0 , ρ) ⊂ Ω and ν > 0 such that µ ≥ ν and c ≥ ν on B(x 0 , ρ). When N = 2 this condition also proves to be sufficient. If N = 3 or 4 the condition µ ≥ µ 0 > 0 on a set ω ⊂ Ω such that supp(c) ⊂ ω permits to obtain the a priori bounds. Other sets of conditions are presented when N = 3 and N = 5. However, if the approach developed in [START_REF] Souplet | A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient[END_REF], which relies on interpolation and elliptic estimates in weighted Lebesgue spaces, works well in low dimension, the possibility to extend it to dimension N ≥ 6 is not apparent.

In this paper we pursue the study of (Q λ ) and consider situations where the three coefficients functions c λ , µ and h may change sign. We define for v ∈ L 1 (Ω), v + = max(v, 0) and v -= max(-v, 0). As observed already in [START_REF] Coster | Two solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF], the structure of the solution set depends on the size of the positive hump (i.e. c + λ ) but it is not affect by the size of the negative hump (i.e. c - λ ). Hoping to clarify this, we now write c λ under the form c λ = λc + -c -and consider the problem

(P λ ) -∆u = (λc + (x) -c -(x))u + µ(x)|∇u| 2 + h(x) , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) , under the assumption (A 1 )                Ω ⊂ R N , N ≥ 2, is a bounded domain with boundary ∂Ω of class C 1,1 , c + , c -, h + ∈ L q (Ω) for some q > N/2 , µ, h -∈ L ∞ (Ω) , c + (x) ≥ 0, c -(x) ≥ 0 and c -(x)c + (x) = 0 a.e. in Ω, |Ω + | > 0, where Ω + := Supp(c + ) there exists a ε > 0 such that µ(x) ≥ µ 1 > 0 and c -= 0 in {x ∈ Ω : d(x, Ω + ) < ε}.
For a definition of Supp(f ) with f ∈ L p (Ω), for some p ≥ 1, we refer to [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Proposition 4.17]. Note also that the condition that c -= 0 on {x ∈ Ω : d(x, Ω + ) < ε} for some ε > 0, is reminiscent of the so-called "thick zero set" condition first introduced in [START_REF] Alama | On semilinear elliptic equations with indefinite nonlinearities[END_REF].

We also observe that, under the regularity assumptions of condition (A 1 ), any solution of (P λ ) belongs to C 0,τ (Ω) for some τ > 0. This can be deduce from [22, Theorem IX-2.2], see also [START_REF] Arcoya | Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions[END_REF]Proposition 2.1].

As in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Coster | Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Souplet | A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient[END_REF] we obtain our results using a topological approach, relying thus on the derivation of a priori bounds. In that direction our main result is the following.

Theorem 1.1. Assume (A 1 ). Then, for any

Λ 2 > Λ 1 > 0, there exists a constant M > 0 such that, for each λ ∈ [Λ 1 , Λ 2 ], any solution of (P λ ) satisfies sup Ω u ≤ M .
Having at hand this a priori bound, following the strategy of [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], we show the existence of a continuum of solutions of (P λ ). More precisely, defining

(1.1) Σ := {(λ, u) ∈ R × C(Ω) : u solves (P λ )},
we prove the following theorem.

Theorem 1.2. Assume (A 1 ) and suppose that (P 0 ) has a solution u 0 with c + u 0 0. Then, there exists a continuum C ⊂ Σ such that the projection of C on the λ-axis is an unbounded interval (-∞, λ] for some λ ∈ (0, +∞) and C bifurcates from infinity to the right of the axis λ = 0. Moreover: 1) for all λ ≤ 0, the problem (P λ ) has an unique solution u λ and this solution satisfies u 0 -u 0 ∞ ≤ u λ ≤ u 0 . 2) there exists λ 0 ∈ (0, λ] such that, for all λ ∈ (0, λ 0 ), the problem (P λ ) has at least two solutions with u i ≥ u 0 for i = 1, 2. (b) Note that problem (P 0 ) is given by

-∆u = -c -(x)u + µ(x)|∇u| 2 + h(x) , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
. In [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Coster | Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient[END_REF] the authors give sufficient conditions to ensure the existence of a solution of (P 0 ). Moreover, if h ≥ 0 in Ω, [START_REF] Arcoya | Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions[END_REF]Lemma 2.2] implies that the solution of (P 0 ) is non-negative.

Let us give some ideas of the proofs. As we do not have global sign conditions, the approaches used in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Coster | Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Souplet | A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient[END_REF] to obtain the a priori bounds do not apply anymore and another strategy is required. To this aim, we further develop some techniques first sketched in the unpublished work [START_REF] Sirakov | Uniform bounds via regularity estimates for elliptic PDE with critical growth in the gradient[END_REF]. These techniques, in the framework of viscosity solutions of fully nonlinear equations, now lies at the heart of the paper [START_REF] Nornberg | A priori bounds and multiplicity for fully nonlinear equations with quadratic growth in the gradient[END_REF]. We also make use of some ideas from [START_REF] García-Melián | A priori bounds and existence of solutions for slightly superlinear elliptic problems[END_REF]. First we show, in Lemma 4.1, that it is sufficient to control the behavior of the solutions on Ω + . By compactness, we are then reduced to study what happens around an (unknown) point x ∈ Ω + . We shall consider separately the alternative cases x ∈ Ω + ∩ Ω and x ∈ Ω + ∩ ∂Ω. A local analysis is made respectively in a ball or a semiball centered at x. If similar analysis, based on the use of Harnack type inequalities, had previously been performed in other contexts when x ∈ Ω, we believe it is not the case when x ∈ ∂Ω. For x ∈ ∂Ω, the key to our approach is the use of boundary weak Harnack inequality. Actually a major part of the paper is devoted to establishing this inequality. This is done in a more general context than needed for (P λ ). In particular it also cover the case of the p-Laplacian with a zero order term. We believe that this "boundary weak Harnack inequality", see Theorem 3.1, is of independent interest and will proved to be useful in other settings. Its proof uses ideas introduced by B. Sirakov [START_REF] Sirakov | Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE[END_REF]. In [START_REF] Sirakov | Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE[END_REF] such type of inequalities is established for an uniformly elliptic operator and viscosity solutions. However, since our context is quite different, the result of [START_REF] Sirakov | Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE[END_REF] does not apply to our situation and we need to work out an adapted proof.

We now describe the organization of the paper. In Section 2, we present some preliminary results which are needed in the development of our proofs. In Section 3, we prove the boundary weak Harnack inequality for the p-Laplacian. The a priori bound, namely Theorem 1.1, is proved in Section 4. Finally Section 5 is devoted to the proof of Theorem 1.2.

Notation.

1) In R N , we use the notations |x| = x 2 1 + . . . + x 2 N and BR(y) = {x ∈ R N : |x -y| < R}. 2) We denote R + = (0, +∞), R -= (-∞, 0) and N = {1, 2, 3, . . .}. 3) For h1, h2 ∈ L 1 (Ω) we write • h1 ≤ h2 if h1(x) ≤ h2(x) for a.e. x ∈ Ω,
• h1 h2 if h1 ≤ h2 and meas({x ∈ Ω : h1(x) < h2(x)}) > 0.

Preliminary results

In this section, we collect some results which will play an important role throughout the work. First of all, let us consider the boundary value problem

(2.1) -∆u + H(x, u, ∇u) = f, u ∈ H 1 0 (ω) ∩ L ∞ (ω). Here ω ⊂ R N is a bounded domain, f ∈ L 1 (ω) and H : ω × R × R N → R is a Carathéodory function. Definition 2.1. We say that α ∈ H 1 (ω) ∩ L ∞ (ω) is a lower solution of (2.1) if α + ∈ H 1 0 (ω)
and, for all ϕ ∈ H 1 0 (ω) ∩ L ∞ (ω) with ϕ ≥ 0, we have

ω ∇α∇ϕ dx + ω H(x, α, ∇α)ϕ dx ≤ ω f (x)ϕ dx .
Similarly, β ∈ H 1 (ω) ∩ L ∞ (ω) is an upper solution of (2.1) if β -∈ H 1 0 (ω) and, for all ϕ ∈ H 1 0 (ω) ∩ L ∞ (ω) with ϕ ≥ 0, we have

ω ∇β∇ϕ dx + ω H(x, β, ∇β)ϕ dx ≥ ω f (x)ϕ dx .
Next, we consider the boundary value problem 

(2.2) -∆u + a(x)u = b(x) , u ∈ H 1 0 (ω) , under the assumption (2.3) ω ⊂ R N , N ≥ 2 , is a bounded domain, a, b ∈ L r (ω)
= C(s, r, a L r (B2R(x0)∩ω) , R) > 0 such that sup BR(x0)∩ω u + ≤ C B2R(x0)∩ω (u + ) s dx 1/s + b + L r (B2R(x0)∩ω) .
Proof. See for instance [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.25] and [START_REF] Malý | Fine regularity of solutions of elliptic partial differential equations[END_REF]Corollary 3.10 and Theorem 3.11].

Remark 2.2. Lemmas 2.1 and 2.2 proof's are done in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] for a ∈ L ∞ (ω) and s > 1. Nevertheless, as it is remarked on page 193 of that book, the proof is valid for a ∈ L r (ω) with r > N/2 and, following closely the proof of [START_REF] Malý | Fine regularity of solutions of elliptic partial differential equations[END_REF]Corollary 3.10], the proofs can be extended for any s > 0.

Lemma 2.3. (Weak Harnack Inequality) Under the assumption (2.3), assume that u ∈ H 1 (ω) is a non-negative upper solution of (2.2). Then, for any ball B 4R (y) ⊂ ω and any

1 ≤ s < N N -2 there exists C = C(s, r, a L r (B4R(y)) , R) > 0 such that inf BR(y) u ≥ C B2R(y) u s dx 1/s -b - L r (B4R(y)) .
Proof. See for instance [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.18] and [START_REF] Malý | Fine regularity of solutions of elliptic partial differential equations[END_REF]Theorem 3.13].

Now, inspired by [10, Lemma 3.2] (see also [15, Appendix A] ), we establish the following version of the Brezis-Cabré Lemma.

Lemma 2.4. Let ω ⊂ R N , N ≥ 2, be a bounded domain with boundary ∂ω of class C 1,1 and let a ∈ L ∞ (ω) and f ∈ L 1 (ω) be non-negative functions. Assume that u ∈ H 1 (ω) is an upper solution of -∆u + a(x)u = f (x) , u ∈ H 1 0 (ω) . Then, for every B 2R (y) ⊂ ω, there exists C = C(R, y, ω, a ∞ ) > 0 such that inf ω u(x) d(x, ∂ω) ≥ C BR(y) f (x) dx .
Proof. First of all, as a and f are non-negative, by the weak maximum principle, it follows that

inf ω u(x) d(x, ∂ω) ≥ 0 . Now let B 2R (y) ⊂ ω .
By the above inequality, we can assume without loss of generality that

BR(y) f (x) dx > 0 .
We split the proof into three steps.

Step 1: There exists

c 1 = c 1 (R, y, ω, a ∞ ) > 0 such that (2.4) u(x) d(x, ∂ω) ≥ c 1 BR(y) f (x) dx , ∀ x ∈ B R/2 (y) .
Since f is non-negative, observe that u is a non-negative upper solution of

-∆u + a(x)u = 0 , u ∈ H 1 0 (ω) . Hence, by Lemma 2.3, there exists a constant c 2 = c 2 (R, a ∞ ) > 0 such that (2.5) u(x) ≥ c 2 BR(y) u dx , ∀ x ∈ B R/2 (y) .
Now, let us denote by ξ the solution of

(2.6) -∆ξ + a ∞ ξ = χ BR(y) , in ω , ξ = 0 , on ∂ω .
By [START_REF] Brezis | H 1 versus C 1 local minimizers[END_REF]Theorem 3], there exists a constant

c 3 = c 3 (R, y, ω, a ∞ ) > 0 such that, for all x ∈ ω, ξ(x) ≥ c 3 d(x, ∂ω). Thus, since B 2R (y) ⊂ ω , f is non-negative and d(x, ∂ω) ≥ R for x ∈ B R (y), it follows that BR(y) u dx = ω u -∆ξ + a ∞ ξ dx ≥ ω f (x) ξ dx ≥ c 3 ω f (x) d(x, ∂ω) dx ≥ c 3 R BR(y) f (x) dx .
Hence, substituting the above information in (2.5) we obtain for

c 4 = c 2 c 3 R (2.7) u(x) ≥ c 4 BR(y) f (x) dx , ∀ x ∈ B R/2 (y) ,
from which, since ω ⊂ R N is bounded, (2.4) follows.

Step 2: There exists

c 5 = c 5 (R, y, ω, a ∞ ) > 0 such that (2.8) u(x) d(x, ∂ω) ≥ c 5 BR(y) f (x) dx , ∀ x ∈ ω \ B R/2 (y).
Let w be the unique solution of (2.9)

     -∆w + a ∞ w = 0 , in ω \ B R/2 (y) , w = 0 , on ∂ω , w = 1 , on ∂B R/2 (y) .
Still by [START_REF] Brezis | H 1 versus C 1 local minimizers[END_REF]Theorem 3], there exists

c 6 = c 6 (R, y, ω, a ∞ ) > 0 such that w(x) ≥ c 6 d(x, ∂ω) for all x ∈ ω \ B R/2 (y). On the other hand, let us introduce v(x) = u(x) c 4 BR(y) f (x) dx ,
with c 4 given in (2.7). Observe that v is an upper solution of (2.9). Hence, by the standard comparison principle, it follows that v(x) ≥ w(x) for all x ∈ ω \ B R/2 (y) and (2.8) follows.

Step 3: Conclusion.

The result follows from (2.4) and (2.8).

Boundary weak Harnack inequality

In this section we present a boundary weak Harnack inequality that will be central in the proof of Theorem 1.1. As we believe this type of inequality has its own interest, we establish it in the more general framework of the p-Laplacian. Recalling that ∆ p u = div(|∇u| p-2 ∇u) for 1 < p < ∞, we introduce the boundary value problem

(3.1) -∆ p u + a(x)|u| p-2 u = 0 , u ∈ W 1,p 0 (ω) . Let us also recall that u ∈ W 1,p (ω) is an upper solution of (3.1) if u -∈ W 1,p 0 (ω) and, for all ϕ ∈ W 1,p 0 (ω) with ϕ ≥ 0, it follows that ω |∇u| p-2 ∇u ∇ϕ dx + ω a(x)|u| p-2 u ϕ dx ≥ 0 .
We then prove the following result. Theorem 3.1. (Boundary Weak Harnack Inequality) Let ω ⊂ R N , N ≥ 2, be a bounded domain with boundary ∂ω of class C 1,1 and let a ∈ L ∞ (ω) be a non-negative function. Assume that u is a nonnegative upper solution of (3.1) and let x 0 ∈ ∂ω. Then, there exist

R > 0, ε = ε(p, R, a ∞ , ω) > 0 and C = C(p, R, ε, a ∞ , ω) > 0 such that, for all R ∈ (0, R] , inf BR(x0)∩ω u(x) d(x, ∂ω) ≥ C BR(x0)∩ω u(x) d(x, ∂ω) ε dx 1/ε .
As already indicated, in the proof of Theorem 3.1 we shall make use of some ideas from [START_REF] Sirakov | Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE[END_REF].

Before going further, let us introduce some notation that we will be used throughout the section. We define

r := r(N, p) =    N (p -1) N -p if p < N, + ∞ if p ≥ N,
and denote by Q ρ (y) the cube of center y and side of length ρ, i.e.

Q ρ (y) = {x ∈ R N : |x i -y i | < ρ/2 for i = 1, . . . , N }.
In case the center of the cube is ρe with e = (0, 0, . . . , 1/2), we use the notation

Q ρ = Q ρ (ρe).
Let us now introduce several auxiliary results that we shall need to prove Theorem 3.1. We begin recalling the following comparison principle for the p-Laplacian.

Lemma 3.2. [30, Lemma 3.1] Let ω ⊂ R N , N ≥ 2, be a bounded domain and let a ∈ L ∞ (ω) be a non-negative function. Assume that u , v ∈ W 1,p (ω) satisfy (in a weak sense) -∆ p u + a(x)|u| p-2 u ≤ -∆ p v + a(x)|v| p-2 v , in ω , u ≤ v , on ∂ω .
Then, it follows that u ≤ v.

As a second ingredient, we need the weak Harnack inequality.

Theorem 3.3. [23, Theorem 3.13] Let ω ⊂ R N , N ≥ 2, be a bounded domain and let a ∈ L ∞ (ω) be a non-negative function. Assume that u ∈ W 1,p (ω) is a non-negative upper solution of -∆ p u + a(x)|u| p-2 u = 0 , u ∈ W 1,p 0 (ω) , and let Q ρ (x 0 ) ⊂ ω.
Then, for any σ, τ ∈ (0, 1) and γ ∈ (0, r), there exists

C = C(p, γ, σ, τ, ρ, a ∞ ) > 0 such that inf Qτρ(x0) u ≥ C Qσρ(x0) u γ dx 1/γ .
In the next result, we deduce a more precise information on the dependence of C with respect to ρ. This is closely related to [START_REF] Trudinger | On Harnack type inequalities and their application to quasilinear elliptic equations[END_REF]Theorem 1.2] where however the constant still depends on ρ.

Corollary 3.4. Let a be a non-negative constant and γ ∈ (0, r). There exists C = C(p, γ, a) > 0 such that, for all 0 < ρ ≤ 1, any u ∈ W 1,p (Q 3 ρ 2 (e)) non-negative upper solution of

(3.2) -∆ p u + a|u| p-2 u = 0 , u ∈ W 1,p 0 (Q 3 ρ 2 (e)), satisfies inf Qρ(e) u ≥ C ρ -N/γ
Qρ(e)

u γ dx 1/γ . Proof. Let C = C(p, a, γ) > 0 be the constant given by Theorem 3.3 applied with ρ = 3 2 and σ = τ = 2 3 . This means that if v ∈ W 1,p (Q 3 2 (e)) is a non-negative upper solution of (3.3) -∆ p v + a|v| p-2 v = 0 , v ∈ W 1,p 0 (Q 3 2 (e)), then inf Q1(e) v(y) ≥ C Q1(e) v γ dy 1/γ . As 0 < ρ ≤ 1, observe that if u is a non-negative upper solution of (3.2), then v defined by v(y) = u(ρy ′ , ρ(y N -1 2 ) + 1 2 )
, where y = (y ′ , y N ) with y ′ ∈ R N -1 , is a non-negative upper solution of (3.3). Thus, we can conclude that inf

Qρ(e) u(x) = inf Q1(e) v(y) ≥ C Q1(e) v γ dy 1/γ = C ρ -N/γ Qρ(e) u γ dx 1/γ .
Finally, we introduce a technical result of measure theory.

Lemma 3.5. [19, Lemma 2.1] Let E ⊂ F ⊂ Q 1 be
two open sets. Assume there exists α ∈ (0, 1) such that:

• |E| ≤ (1 -α)|Q 1 |. • For any cube Q ⊂ Q 1 , |Q ∩ E| ≥ (1 -α)|Q| implies Q ⊂ F . Then, it follows that |E| ≤ (1 -cα)|F | for some constant c = c(N ) ∈ (0, 1).
Now, we can perform the proof of the main result. We prove the boundary weak Harnack inequality for cubes and as consequence we obtain the desired result. Lemma 3.6 (Growth lemma). Let a be a non-negative constant. Given ν > 0, there exists

k = k(p, ν, a) > 0 such that, if u ∈ W 1,p (Q 3 2 ) is a non-negative upper solution of -∆ p u + a |u| p-2 u = 0 , u ∈ W 1,p 0 (Q 3 
2 ) , and the following inequality holds

(3.4) |{x ∈ Q 1 : u(x) > x N }| ≥ ν. Then u(x) > kx N in Q 1 .
Remark 3.1. Before we prove the Lemma, observe that there is no loss of generality in considering a a non-negative constant instead of a

∈ L ∞ (Q 3 2 ) non-negative. If u ≥ 0 satisfies -∆ p u + a(x)|u| p-2 u ≥ 0 , in Q 3 2 , then u satisfies also -∆ p u + a ∞ |u| p-2 u ≥ 0 , in Q 3 2 . Proof. Let us define S δ = Q 3 2 \ Q 3 2 -δ 3 2 e and fix c 1 = c 1 (ν) ∈ (0, 1 
2 ) small enough in order to ensure that

|S δ | ≤ ν 2 for any 0 < δ ≤ c 1 . Step 1: For all δ ∈ (0, c 1 ], it follows that |{x ∈ Q 3 2 -δ 3 2 e : u(x) > x N }| ≥ ν 2 . Directly observe that {x ∈ Q 1 : u(x) > x N } ⊂ {x ∈ Q 3 2 : u(x) > x N } ⊂ {x ∈ Q 3 2 -δ 3 2 e : u(x) > x N } ∪ S δ .
Hence, Step 1 follows from (3.4) and the choice of c 1 .

Step 2: For any ε > 0 and all δ ∈ (0, c 1 ], the following inequality holds

(3.5) Q 3 2 -δ 3 2 e u ε dx 1/ε ≥ δ 2 ν 2 1/ε .
Since u ≥ 0 and, for any

x ∈ Q 3 2 -δ 3 2 e we have x N ≥ δ 2 , it follows that Q 3 2 -δ ( 3 2 e) u ε dx ≥ {x∈Q 3 2 -δ ( 3 2 e): u(x)≥xN } u ε dx ≥ {x∈Q 3 2 -δ ( 3 2 e):u(x)≥xN } δ 2 ε dx = δ 2 ε x ∈ Q 3 2 -δ 3 2 e : u(x) ≥ x N .
Step 2 follows then from Step 1.

Step 3: For any ε ∈ (0, r) and all δ ∈ (0, c 1 ], there exists

C δ = C δ (p, ε, δ, a) > 0 such that inf Q 3 2 -δ 3 2 e u(x) x N ≥ δ C δ 3 ν 2 1/ε
. By Theorem 3.3 applied with ρ = 3 2 , x 0 = 3 2 e and τ = σ = 1 -2 3 δ, there exists a constant We fix ε ∈ (0, r), define

C δ = C δ (p, ε, δ, a) > 0 such that inf Q 3 2 -δ 3 2 e u(x) ≥ C δ Q 3 2 -δ 3 
k δ = δ C δ 3 ν 2 1/ε and introduce η : [-3-2c1 4 , 3-2c1 4 ] N -1 → R a C ∞ function satisfying η(x 1 , . . . , x N -1 ) =    0, if (x 1 , . . . , x N -1 ) ∈ -1 2 , 1 2 
N -1 , c1 2 , if (x 1 , . . . , x N -1 ) ∈ ∂ R N -1 -3-2c1 4 , 3-2c1 4 N -1 , and 0 ≤ η(x 1 , . . . , x N -1 ) ≤ c 1 2 for (x 1 , . . . , x N -1 ) ∈ -3-2c1 4 , 3-2c1 4 N -1 .
Moreover, we consider the auxiliary function

v δ (x 1 , . . . , x N ) = 1 δ x N -η(x 1 , . . . , x N -1 ) 2 + x N -η(x 1 , . . . , x N -1 )
defined in

ω δ = (x 1 , . . . , x N ) ∈ -3-2c1 4 , 3-2c1 4 N -1 × 0, c1 2 : η(x 1 , . . . , x N -1 ) ≤ x N ≤ δ 2 .
Observe that, in ω δ , we have 0

≤ x N -η(x 1 , . . . , x N -1 ) ≤ δ 2 .
Hence, there exists

c 2 = c 2 (p, ν, a) ∈ (0, c 1 ] such that, for all 0 < δ ≤ c 2 , -∆ p v δ + a|v δ | p-2 v δ ≤ - 2 δ (p -1) + 2 p-1 N -1 i=1 ∂ ∂x i N -1 i=1 ( ∂η ∂x i ) 2 + 1 p-2 2 ∂η ∂x i + 3a 4 δ ≤ 0 , in ω δ .
On the other hand, we define u δ = 2u k δ and immediately observe that

-∆ p u δ + a|u δ | p-2 u δ ≥ 0 , in ω δ .

Now, since by

Step 3, we have

u δ ≥ 2k δ k δ δ 2 = δ ≥ v δ , for x N = δ 2 ,
it follows that u δ ≥ v δ on ∂ω δ .

Then, applying Lemma 3.2, it follows that, for any δ ∈ (0, c 2 ], v δ ≤ u δ in ω δ . For δ = c 2 /2, we obtain in particular

u(x) ≥ 1 2 k c 2 2 v c 2 2 (x) = 1 2 k c 2 2 2 c 2 x 2 N + x N ≥ 1 2 k c 2 2 x N , in ω c 2 2 ∩ Q 1 .
The result then follows from the above inequality and Step 3.

Lemma 3.7. Let a ∈ L ∞ (Q 4 ) be a non-negative function. Assume that u ∈ W 1,p (Q 4 ) is a non-negative upper solution of (3.6) -∆ p u + a(x)|u| p-2 u = 0 , u ∈ W 1,p 0 (Q 4 ) , satisfying inf Q1 u(x) x N ≤ 1 .
Then, there exist M = M (p, a ∞ ) > 1 and µ ∈ (0, 1) such that

(3.7) {x ∈ Q 1 : u(x)/x N > M j } < (1 -µ) j , ∀ j ∈ N .
Proof. Let us fix some notation that we use throughout the proof. We fix γ ∈ (0, r) and consider C 1 = C 1 (p, a ∞ ) > 0 the constant given by Corollary 3.4. We introduce α ∈ (0, 1) and fix C 2 ∈ (0, 1) the constant given by Lemma 3.5. Moreover, we choose ν = (1 -α) 1
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N and denote by k = k(ν, p, a ∞ ) ∈ (0, 1) the constant given by Lemma 3.6 applied to an upper solution of

(3.8) -∆ p u + 2 p a ∞ |u| p-2 u = 0 , u ∈ W 1,p 0 (Q 3 2 ) ,
with the chosen ν. Let us point out that, if u is a non-negative upper solution of (3.6), then u is a non-negative upper solution of (3.8). Finally, we consider

M ≥ max 1 k , 4 C 1 (1 -α) -1/γ ,
and we are going to show that (3.7) holds with µ = αC 2 .

First of all, observe that {x ∈ Q

1 : u(x)/x N > M } ⊂ {x ∈ Q 1 : ku(x) > x N }. Hence, since inf Q1 ku(x)/x N ≤ k, Lemma 3.6 implies that (3.9) |{x ∈ Q 1 : u(x)/x N > M }| ≤ |{x ∈ Q 1 : ku(x) > x N }| < ν < 1 -α < 1 -C 2 α
and, in particular, (3.7) holds for j = 1. Now, let us introduce, for j ∈ N \ {1},

E = {x ∈ Q 1 : u(x)/x N > M j } and F = {x ∈ Q 1 : u(x)/x N > M j-1 } .
Since M > 1 and j ∈ N \ {1}, observe that (3.9) implies that

(3.10) |E| = |{x ∈ Q 1 : u(x)/x N > M j }| ≤ |{x ∈ Q 1 : u(x)/x N > M }| ≤ 1 -α ,
and the first assumption of Lemma 3.5 is satisfied.

Claim: For every cube Q ρ (x 0 ) ⊂ Q 1 such that (3.11) |E ∩ Q ρ (x 0 )| ≥ (1 -α)|Q ρ (x 0 )| = (1 -α)ρ N .
we have

Q ρ (x 0 ) ⊂ F . Let us denote x 0 = (x ′ 0 , x 0N ) with x ′ 0 ∈ R N -1 . We define the new variable y = x ′ -x ′ 0 ρ ′ , xN ρ ′ , where ρ ′ = 2x 0N , and the rescaled function v(y) = 1 ρ ′ u(ρ ′ y ′ + x ′ 0 , ρ ′ y N ).
Then v is a non-negative upper solution of (3.12)

-∆ p v + 2 p a ∞ |v| p-2 v = 0 , in Q 4/ρ ′ -x ′ 0 /ρ ′ , 2/ρ ′ . Moreover, observe that x ∈ E ∩ Q ρ (x 0 ) if and only if y ∈ {y ∈ Q ρ/ρ ′ (e) : v(y)/M j > y N } ,
and so, that (3.11) is equivalent to

(3.13) |{y ∈ Q ρ/ρ ′ (e) : v(y)/M j > y N }| ≥ (1 -α)|Q ρ/ρ ′ (e)| = (1 -α) ρ ρ ′ N .
Observe also that the embedding

Q ρ (x 0 ) ⊂ Q 1 implies that ρ ≤ ρ ′ ≤ 2 -ρ and |x 0,i | ≤ 1-ρ 2 for i ∈ {1, . . . , N -1}. In particular, we have Q 3 2 ⊂ Q 4/ρ ′ -x ′ 0 /ρ ′ , 2/ρ ′ .
Hence v is an upper solution of (3.8). Now, we distinguish two cases: Case 1: ρ ≥ ρ ′ /4. Observe that v/M j is a non-negative upper solution of (3.8). Moreover, as ρ ≤ ρ ′ , (3.13) implies that

|{y ∈ Q 1 : v(y)/M j > y N }| ≥ |{y ∈ Q ρ/ρ ′ (e) : v(y)/M j > y N }| ≥ ν .
Hence, by Lemma 3.6, v(y)/M j > ky N in Q 1 and so, by the definition of k, v(y

)/y N > M j-1 in Q ρ/ρ ′ (e). This implies that u(x)/x N > M j-1 in Q ρ (x 0 ).
Case 2: ρ < ρ ′ /4. Recall that v/M j is a non-negative upper solution of (3.8). Hence, v/M j is also a non-negative upper solution of

-∆ p u + 2 p a ∞ |u| p-2 u = 0 , in Q 3ρ 2ρ ′ (e) ⊂ Q 3 2
, Thus, by Corollary 3.4, we deduce that (3.14) inf

Q ρ/ρ ′ (e) v(y) M j ≥ C 1 ρ ρ ′ -N Q ρ/ρ ′ (e) v M j γ dy 1/γ . Now, let us introduce G = {y ∈ Q ρ/ρ ′ (e) : v(y)/M j > 1/4} ,
and, as y N > 1/4 for all y ∈ Q ρ/ρ ′ (e), observe that (3.13) implies the following inequality

|G| ≥ |{y ∈ Q ρ/ρ ′ (e) : v(y)/M j > y N }| ≥ (1 -α) ρ ρ ′ N .
Hence, we deduce that

Q ρ/ρ ′ (e) v M j γ dy ≥ G v M j γ dy > 1 4 γ |G| ≥ 1 4 γ (1 -α) ρ ρ ′ N ,
and so, by (3.14), that inf

Q ρ/ρ ′ (e) v M j > C 1 4 (1 -α) 1/γ .
Finally, using that M ≥ 4 C1 (1 -α) -1/γ and that y N ≤ 1 in Q ρ/ρ ′ (e), we deduce that v(y) > M j-1 y N in Q ρ/ρ ′ (e). Thus, we can conclude that u(x)/x N > M j-1 in Q ρ (x 0 ).

In both cases we prove that u(x)/x N > M j-1 in Q ρ (x 0 ). This means that Q ρ (x 0 ) ⊂ F and so, the Claim is proved. Since (3.10) and the Claim hold, we can apply Lemma 3.5 and we obtain that

|E| ≤ (1 -C 2 α)|F | , i.e. |{x ∈ Q 1 : u(x)/x N > M j }| ≤ (1 -C 2 α) |{x ∈ Q 1 : u(x)/x N > M j-1 }| , ∀ j ∈ N \ {1} .
Iterating in j and using (3.9), the result follows with µ = C 2 α ∈ (0, 1) depending only on N .

Theorem 3.8 (Boundary weak Harnack inequality for cubes

). Let a ∈ L ∞ (Q 4 ) be a non-negative function. Assume that u ∈ W 1,p (Q 4 ) is a non-negative upper solution of -∆ p u + a(x)|u| p-2 u = 0 , u ∈ W 1,p 0 (Q 4 ), Then, there exist ε = ε(p, a ∞ ) > 0 and C = C(p, ε, a ∞ ) > 0 such that inf Q1 u(x) x N ≥ C Q1 u(x) x N ε dx 1/ε .
Proof. Let us split the proof into three steps.

Step 1:

Assume that inf Q1 u(x) xN ≤ 1. Then, there exist ε = ε(p, a ∞ ) > 0 and C = C(p, ε, a ∞ ) > 0 such that, for all t ≥ 0, |{x ∈ Q 1 : u(x)/x N > t}| ≤ C min{1, t -2ε } .

Let us define the real valued function

f (t) = |{x ∈ Q 1 : u(x)/x N > t}| ,
and let M and µ be the constants obtained in Lemma 3.7. We define

C = max{(1 -µ) -1 , M 2ε } > 1 and ε = - 1 2 ln(1 -µ) ln M > 0 . If t ∈ [0, M ], we easily get |{x ∈ Q 1 : u(x)/x N > t}| ≤ 1 ≤ CM -2ε ≤ C min{1, t -2ε }.
Hence, let us assume t > M > 1. Without loss of generality, we assume t ∈ [M j , M j+1 ] for some j ∈ N, and it follows that ln t ln M -1 ≤ j ≤ ln t ln M .

Since f is non-increasing and 1 -µ ∈ (0, 1), the above inequality and Lemma 3.7 imply

(3.15) f (t) ≤ f (M j ) ≤ (1 -µ) j ≤ (1 -µ) ln t ln M -1 . Finally, observe that (3.16) ln (1 -µ) ln t ln M -1 = ln t ln M -1 ln(1 -µ) = ln t ln(1 -µ) ln M -ln(1 -µ) ≤ -2ε ln t + ln C = ln(Ct -2ε ) .
The Step 1 then follows from (3.15), (3.16) and the fact that min{1, t -2ε } = t -2ε for t ≥ 1.

Step 2: Assume that inf Q1 u(x)

xN ≤ 1. Then, there exists C = C(p, ε, a ∞ ) > 0 such that (3.17)

Q1 u(x) x N ε dx ≤ C < +∞ .
Directly, applying [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Lemma 9.7], we obtain that

Q1 u(x) x N ε dx = ε ∞ 0 t ε-1 |{x ∈ Q 1 : u(x)/x N > t}| dt .
Hence, (3.17) follows from Step 1.

Step 3: Conclusion.

Let us introduce the function

v = u inf y∈Q1 u(y) yN + β ,
where β > 0 is an arbitrary positive constant. Obviously, v satisfies the hypothesis of Step 2. Hence, applying

Step 2, we obtain that

Q1 u(x) x N ε 1 inf y∈Q1 u(y) yN + β ε dx ≤ C , or equivalently that 1 C 1/ε Q1 u(x) x N ε dx 1/ε ≤ inf Q1 u(x) x N + β .
Letting β → 0 we obtain the desired result.

Proof of Theorem 3.1. Thanks to the regularity of the boundary, there exists R > 0 and a diffeomorphism

ϕ such that ϕ(B R (x 0 ) ∩ ω) ⊂ Q 1 and ϕ(B R (x 0 ) ∩ ∂ω) ⊂ {x ∈ ∂Q 1 : x N = 0}.
The result then follows from Theorem 3.8.

We end this section by presenting a corollary of Theorem 3.1. Consider the equation

(3.18) -∆u + a(x)u = b(x) , u ∈ H 1 0 (ω) , under the assumption (3.19)      ω ⊂ R N , N ≥ 2, is a bounded domain with boundary ∂ω of class C 1,1 , a ∈ L ∞ (ω) , b -∈ L p (ω) for some p > N and b + ∈ L 1 (ω) , a ≥ 0 a.e. in ω .
Corollary 3.9. Under the assumption (3.19), assume that u ∈ H 1 (ω) is a non-negative upper solution of (3.18) and let x 0 ∈ ∂ω. Then, there exist

R > 0, ε = ε(R, a ∞ , ω) > 0, C 1 = C 1 (R, ε, a ∞ , ω) > 0 and C 2 = C 2 (ω, a ∞ ) > 0 such that, for all R ∈ (0, R], inf BR(x0)∩ω u(x) d(x, ∂ω) ≥ C 1 BR(x0)∩ω u(x) d(x, ∂ω) ε dx 1/ε -C 2 b - L p (ω) .
In order to prove Corollary 3.9 we need the following lemma Lemma 3.10. Let ω ⊂ R N , N ≥ 2, be a bounded domain with boundary ∂ω of class C 1,1 and let a ∈ L ∞ (ω) and g ∈ L p (ω), p > N , be non-negative functions. Assume that u ∈ H 1 (ω) is a lower solution of

-∆u + a(x)u = g(x) , u ∈ H 1 0 (ω) . Then there exists C = C(ω, a ∞ ) > 0 such that sup ω u(x) d(x, ∂ω) ≤ C g L p (ω) .
Proof. First of all, observe that it is enough to prove the result for v solution of

-∆v + a(x)v = g(x) , in ω , v = 0 , on ∂ω .
as, by the standard comparison principle it follows that u ≤ v. Applying [18, Theorem 9.15 and Lemma 9.17] we deduce that v ∈ W 2,p 0 (ω) and there exists

C 1 = C 1 (ω, a ∞ ) > 0 such that v W 2,p (ω) ≤ C 1 g L p (ω) .
Moreover, as p > N , by Sobolev's inequality, we have

C 2 = C 2 (ω, a ∞ ) with v C 1 (ω) ≤ C 2 g L p (ω) ,
and so, we easily deduce that v(x) ≤ C 3 g L p (ω) d(x, ∂ω) , ∀ x ∈ ω . Hence, since u ≤ v, the result follows from the above inequality.

Proof of Corollary 3.9. Let w ≥ 0 be the solution of

(3.20) -∆w + a(x)w = b -(x) , in ω , w = 0 , on ∂ω . Observe that v = u + w satisfies (3.21) -∆v + a(x)v ≥ 0, in ω , v ≥ 0 , on ∂ω .
Hence, by Theorem 3.1, there exist

R > 0, ε = ε(p, R, a ∞ , ω) > 0 and C = C(p, R, ε, a ∞ , ω) > 0 such that, for all R ∈ (0, R] , (3.22) inf BR 
(x0)∩ω v(x) d(x, ∂ω) ≥ C BR(x0)∩ω v(x) d(x, ∂ω) ε dx 1/ε .
On the other hand, by Lemma 3.10, there exists

C 2 = C 2 (ω, a ∞ ) > 0 such that (3.23) sup ω w(x) d(x, ∂ω) ≤ C 2 b - L p (ω) .
From (3.22), (3.23) and using that u = v -w, the corollary follows observing that w ≥ 0 and hence v ≥ u.

A priori bound

This section is devoted to the proof of Theorem 1.1. As a first step we observe that, to obtain our a priori upper bound on the solutions of (P λ ), we only need to control the solutions on Ω + . This can be proved under a weaker assumption than (A 1 ). More precisely, we assume (B)

           Ω ⊂ R N , N ≥ 2, is a bounded domain with boundary ∂Ω of class C 0,1 , c + , c -and h belong to L q (Ω) for some q > N/2 , µ belong to L ∞ (Ω) , c + (x) ≥ 0, c -(x) ≥ 0 and c -(x)c + (x) = 0 a.e. in Ω, |Ω + | > 0,
where Ω + := Supp(c + ), and we prove the next result. 

-∆u = -c -(x)u + µ(x)|∇u| 2 + h(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
, which is independent of λ. If (4.1) has a solution, by [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Proposition 4.1] it is unique and so, we have an a priori bound.

Proof. In case problem (P λ ) has no solution for any λ ∈ R, there is nothing to prove. Hence, we assume the existence of λ ∈ R such that (P λ) has a solution ũ. We shall prove the result with M := 2 ũ ∞ . Let u be an arbitrary solution of (P λ ).

Step 1: u ≤ sup Ω+ u + + M .

Setting D := Ω\Ω + we define v = u -sup ∂D u + . We then obtain -∆v = -c -(x)v + µ(x)|∇v| 2 + h(x) -c -(x) sup ∂D u + ≤ -c -(x)v + µ(x)|∇v| 2 + h(x) , in D .
As v ≤ 0 on ∂D, the function v is a lower solution of (4.2)

-∆z = -c -(x)z + µ(x)|∇z| 2 + h(x) , u ∈ H 1 0 (D) ∩ L ∞ (D). Setting ṽ = ũ + ũ ∞ we observe that -∆ṽ = -c -(x)ṽ + µ(x)|∇ṽ| 2 + h(x) + c -(x) ũ ∞ ≥ -c -(x)ṽ + µ(x)|∇ṽ| 2 + h(x) , in D ,
and thus, as ṽ ≥ 0 on ∂D, the function ṽ is an upper solution of (4.2). By [3, Lemma 2.1], we know that

u, ũ ∈ H 1 (Ω) ∩ W 1,N loc (Ω) ∩ C(Ω) and hence, v, ṽ ∈ H 1 (D) ∩ W 1,N loc (D) ∩ C(D). Applying [3, Lemma 2.2] we conclude that v ≤ ṽ in D namely, that u -sup ∂D u + ≤ ũ + ũ ∞ , in D.

This gives that

u ≤ ũ + ũ ∞ + sup ∂D u + , in D,
and hence u ≤ M + sup Ω+ u + , in Ω.
Step 2: u ≥ -sup Ω+ u --M .

We now define v = u + sup ∂D u -and obtain v ≥ 0 on ∂D as well as

-∆v = -c -(x)v + µ(x)|∇v| 2 + h(x) + c -(x) sup ∂D u -≥ -c -(x)v + µ(x)|∇v| 2 + h(x) , in D .
Thus v is an upper solution of (4.2). Now defining ṽ = ũ -ũ ∞ , again, we have ṽ ≤ 0 on ∂D as well as

-∆ṽ = -c -(x)ṽ + µ(x)|∇ṽ| 2 + h(x) -c -(x) ũ ∞ ≤ -c -(x)ṽ + µ(x)|∇ṽ| 2 + h(x) , in D .
Thus ṽ is a lower solution of (4.2). As previously we have that v, ṽ ∈ H

1 (D) ∩ W 1,N loc (D) ∩ C(D) and applying [3, Lemma 2.2] we obtain that ṽ ≤ v in D. Namely ũ -ũ ∞ ≤ u + sup ∂D u -, in D. Thus u ≥ ũ -ũ ∞ -sup ∂D u -, in D,
and without restriction we get that u ≥ -sup

Ω+ u --M , in Ω, ending the proof. Now, let u ∈ H 1 0 (Ω) ∩ L ∞ ( 
Ω) be a solution of (P λ ). Following [4, Proposition 6.1], we introduce

(4.3) w i (x) = 1 µ i e µiu(x) -1 and g i (s) = 1 µ i ln(1 + µ i s), i = 1, 2 ,
where µ 1 is given in (A 1 ) and µ 2 = esssup µ(x). Observe that u = g i (w i ) and 1 + µ i w i = e µiu , i = 1, 2 , and that, by standard computations, (4.4)

-∆w i = (1 + µ i w i ) (λc + (x) -c -(x))g i (w i ) + h(x) + e µiu |∇u| 2 (µ(x) -µ i ).
Using (4.4) we shall obtain a uniform a priori upper bound on u in a neighborhood of any fixed point x ∈ Ω + . We consider the two cases x ∈ Ω + ∩ Ω and x ∈ Ω + ∩ ∂Ω separately. Lemma 4.2. Assume that (A 1 ) holds and that x ∈ Ω + ∩ Ω. For each Λ 2 > Λ 1 > 0, there exist M I > 0 and R > 0 such that, for any λ ∈ [Λ 1 , Λ 2 ], any solution u of (P λ ) satisfies sup BR(x) u ≤ M I .

Proof. Under the assumption (A 1 ) we can find a R > 0 such that µ(x) ≥ µ 1 > 0, c -≡ 0 in B 4R (x) ⊂ Ω and c + 0 in B R (x). For simplicity, in this proof, we denote B mR = B mR (x), for m ∈ N.

Since c -≡ 0 and µ(x) ≥ µ 1 in B 4R , observe that (4.4) reduces to (4.5)

-

∆w 1 + µ 1 h -(x)w 1 ≥ λ(1 + µ 1 w 1 )c + (x)g 1 (w 1 ) + h + (x)(1 + µ 1 w 1 ) -h -(x) , in B 4R .
Let z 2 be the solution of (4.6)

-∆z 2 + µ 1 h -(x)z 2 = -Λ 2 c + (x) e -1 µ 1 , z 2 ∈ H 1 0 (B 4R ).
By classical regularity arguments (see for instance [22, Theorem III-14.1]), z 2 ∈ C(B 4R ). Hence, there exists

D = D(x, µ 1 , Λ 2 , h - L q (B4R) , c + L q (B4R) , q, R) > 0 such that (4.7) z 2 ≥ -D in B 4R .
Moreover, by the weak maximum principle [18, Theorem 8.1], we have that z 2 ≤ 0. Now defining v 1 = w 1 -z 2 + 1 µ1 , and since min [-1/µi,+∞[ (1 + µ i s)g i (s) = -e -1 µi , we observe that v 1 satisfies (4.8)

-

∆v 1 + µ 1 h -(x)v 1 ≥ Λ 1 c + (x)(1 + µ 1 w 1 )g 1 (w 1 ) + , in B 4R . Also, since w 1 > -1/µ 1 , we have v 1 > 0 in B 4R . Note also that 0 < 1 + µ 1 w 1 = µ 1 v 1 + µ 1 z 2 in B 4R
. Now, we split the rest of the proof into four steps.

Step 1: There exist

C 1 = C 1 (x, Λ 1 , Λ 2 , R, µ 1 , q, h - L ∞ (B4R) , c + L q (B4R) ) > 0 such that (4.9) k := inf BR v 1 (x) ≤ C 1 .
In case µ 1 inf BR v 1 (x) ≤ 1 + µ 1 D, where D is given by (4.7), the Step 1 is proved. Hence, we assume that (4.10)

µ 1 v 1 (x) ≥ 1 + µ 1 D, ∀ x ∈ B R .
In particular, µ 1 v 1 + µ 1 z 2 ≥ 1 on B R . Now, by Lemma 2.4 applied on (4.8) with ω = B 4R , there exists

C = C(R, h - L ∞ (B4R) , µ 1 , Λ 1 , x) > 0 such that, k ≥ C BR c + (y) µ 1 v 1 (y) + µ 1 z 2 (y) ln µ 1 v 1 (y) + µ 1 z 2 (y) dy ≥ C BR c + (y) (µ 1 k -µ 1 D) ln µ 1 k -µ 1 D dy = C(µ 1 k -µ 1 D) ln µ 1 k -µ 1 D c + L 1 (BR) .
As c + 0 in B R , comparing the growth in k of the various terms, we deduce that k remain bounded and thus the existence of

C 1 = (x, Λ 1 , Λ 2 , R, µ 1 , q, h - L ∞ (B4R) , c + L q (B4R)
) > 0 such that (4.9) holds.

Step 2: For any 1 ≤ s < N N -2 , there exists

C 2 = C 2 (x, µ 1 , R, s, Λ 1 , Λ 2 , q, h - L ∞ (B4R) , c + L q (B4R) ) > 0 such that B2R (1 + µ 1 w 1 ) s dx ≤ C 2 .
Applying Lemma 2.3 to (4.8), we deduce the existence of

C = C(s, µ 1 , R, h - L q (B4R) ) > 0 such that B2R v s 1 dx 1/s ≤ C inf BR v 1 .
The Step 2 follows from Step 1 observing that 0

≤ 1 + µ 1 w 1 = µ 1 v 1 + µ 1 z 2 ≤ µ 1 v 1 .
Since c -≡ 0 and µ(x) ≥ µ 1 in Ω 1 , observe that (4.4) reduces to (4.12)

-∆w 1 + µ 1 h -(x)w 1 ≥ λ(1 + µ 1 w 1 )c + (x)g 1 (w 1 ) + h + (x)(1 + µ 1 w 1 ) -h -(x) , in Ω 1
Let z 2 be the solution of (4.13)

-∆z 2 + µ 1 h -(x)z 2 = -Λ 2 c + (x) e -1 µ 1 , z 2 ∈ H 1 0 (Ω 1 ).
As in Lemma 4.2, z 2 ∈ C(Ω 1 ) and there exists a D = D(µ 1 , Λ 2 , h - L q (B4R) , c + L q (B4R) , q, Ω 1 ) > 0 such that -D ≤ z 2 ≤ 0 on Ω 1 . Now defining v 1 = w 1 -z 2 + 1 µ1 we observe that v 1 satisfies (4.14)

-∆v 1 + µ 1 h -(x)v 1 ≥ Λ 1 c + (x)(1 + µ 1 w 1 )g 1 (w 1 ) + , in Ω 1 .
and v 1 > 0 on Ω 1 . Note also that 0

< 1 + µ 1 w 1 = µ 1 v 1 + µ 1 z 2 on Ω 1 .
Next, we split the rest of the proof into three steps.

Step 1: There exists

C 1 = C 1 (Ω 1 , x, Λ 1 , Λ 2 , R, µ 1 , q, h - L ∞ (Ω1) , c + L q (Ω1) ) > 0 such that inf B2R(x)∩Ω1 v 1 (x) d(x, ∂Ω 1 ) ≤ C 1 .
Choose R 2 > 0 and y ∈ Ω such that B 4R2 (y) ⊂ B 2R (x) ∩ Ω and c + 0 in B R2 (y). As in Step 1 of Lemma 4.2, there exists

C = C(Ω 1 , y, Λ 1 , Λ 2 , R 2 , µ 1 , q, h - L ∞ (Ω1) , c + L q (Ω1) ) > 0 such that inf BR 2 (y) v 1 (x) ≤ C . We conclude by observing, since B 4R2 (y) ⊂ B 2R (x) ∩ Ω 1 , that inf B2R(x)∩Ω1 v 1 (x) d(x, ∂Ω 1 ) ≤ inf BR 2 (y) v 1 (x) d(x, ∂Ω 1 ) ≤ 1 3R 2 inf BR 2 (y) v 1 (

x).

Step 2:

There exist ε = ε(R, µ 1 , h - L ∞ (Ω1) , Ω 1 ) > 0 and C 2 = C 2 (x, µ 1 , R, R, s, Λ 1 , Λ 2 , q, h - L ∞ (Ω1) , c + L q (Ω1) ) > 0 such that B2R(x)∩Ω (1 + µ 1 w 1 ) ε dx 1/ε ≤ C 2 .
By Theorem 3.1 applied on (4.14) and Step 1, we obtain constants ε

= ε(R, µ 1 , h - L ∞ (Ω1) , Ω 1 ) > 0 and C = C(Ω 1 , x, µ 1 , ε, R, Λ 1 , Λ 2 , q, h - L ∞ (Ω1) , c + L q (Ω1) ) > 0 such that B2R(x)∩Ω1 v 1 (x) d(x, ∂Ω 1 ) ε dx 1/ε ≤ C . This clearly implies, since Ω 1 ⊂ Ω, that B2R(x)∩Ω1 v 1 (x) ε dx 1/ε ≤ C diam(Ω) . The Step 2 then follows observing that 0 ≤ 1 + µ 1 w 1 = µ 1 v 1 + µ 1 z 2 ≤ µ 1 v 1 and taking into account that B 2R (x) ∩ Ω = B 2R (x) ∩ Ω 1 .
Step 3: Conclusion.

Arguing exactly as in Step 3 and 4 of Lemma 4.2, using Lemma 2.2 and Step 2, we show the existence of

C 3 = C 3 (x, µ 1 , µ 2 , R, Λ 1 , Λ 2 , h - L ∞ (Ω1) , c + L q (B2R(Ω1) ) > 0 such that sup BR(x)∩Ω w 2 ≤ C 3 .
Hence, the proof of the lemma follows by the definition of w 2 .

Proof of Theorem 1.1. Arguing by contradiction we assume the existence of sequences

{λ n } ⊂ [Λ 1 , Λ 2 ],
{u n } solutions of (P λ ) for λ = λ n and of points {x n } ⊂ Ω such that (4.15)

u n (x n ) = max{u n (x) : x ∈ Ω} → ∞ , as n → ∞ .
Observe that Lemma 4.1 and (4.15) together imply the existence of a sequence of points y n ∈ Ω + such that (4.16)

u n (y n ) = max{u n (y) : y ∈ Ω + } → ∞ , as n → ∞ .
Passing to a subsequence if necessary, we may assume that λ n → λ ∈ [Λ 1 , Λ 2 ] and y n → y ∈ Ω + . Now, let us distinguish two cases:

• If y ∈ Ω + ∩Ω, Lemma 4.2 shows that we can find R I > 0 and M I > 0 such that, if u ∈ H 1 0 (Ω)∩L ∞ (Ω) is a solution of (P λ ), then sup BR I (y) u ≤ M I . This contradicts (4.16).

• If y ∈ Ω + ∩ ∂Ω, Lemma 4.3 shows that we can find R B > 0 and M B > 0 such that, if u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) is a solution of (P λ ), then sup BR B (y)∩Ω u ≤ M B .
Again, this contradicts (4.16). As (4.16) cannot happen, the result follows.

Proof of Theorem 1.2

Let us begin with a preliminary result. Lemma 5.1. Under the assumption (A 1 ), assume that (P 0 ) has a solution u 0 for which there exist x ∈ Ω and R > 0 such that c + u 0 0, c -≡ 0 and µ ≥ 0 in B R (x). Then there exists Λ ∈ (0, ∞) such that, for λ ≥ Λ, the problem (P λ ) has no solution u with u ≥ u 0 in B R (x).

Proof. Let us introduce c(x) := min{c + (x), 1}. Observe that 0 c ≤ c + and define γ 1 1 > 0 as the first eigenvalue of the problem (5.1)

-∆ϕ = γc(x)ϕ in B R (x), ϕ = 0 on ∂B R (x).
By standard arguments, there exists ϕ 1 1 ∈ C 1 0 (B R (x)) an associated first eigenfunction such that ϕ 1 1 (x) > 0 for all x ∈ B R (x) and, denoting by n the outward normal to ∂B R (x), we also have

(5.2) ∂ϕ 1 1 (x) ∂n < 0 , on ∂B R (x). Now, let us introduce the function φ ∈ H 1 0 (Ω) ∩ L ∞ (Ω), defined as φ(x) = ϕ 1 1 (x) , x ∈ B R (x), 0 x ∈ Ω \ B R (x),
and suppose that u is a solution of (P λ ) such that u ≥ u 0 in B R (x). First observe that, in view of (5.2) and as u ≥ u 0 on B R (x), there exists a constant C > 0 independent of u such that (5.3)

∂BR(x) u ∂ϕ 1 1 ∂n dS ≤ C.
Thus on one hand, using (5.1) and (5.3), we obtain (5.4) From (5.4) and (5.5), we then deduce that, for a D > 0 independent of u. Hence, for λ > γ 1 1 large enough, we obtain a contradiction with (5.6).

Ω ∇φ∇u + c -(x) φ u dx = BR(x) ∇ϕ 1 1 ∇u dx = - BR(x) u∆ϕ 1 1 dx + ∂BR(x) u ∂ϕ 1 1 ∂n dS ≤ - BR(x) u∆ϕ 1 1 dx + C = γ 1 1 BR(x)
Proof of Theorem 1.2. We treat separately the cases λ ≤ 0 and λ > 0.

Part 1: λ ≤ 0.

Observe that for λ ≤ 0 we have λc + -c -≤ -c -and hence the result follows from [4, Lemma 5.1, Proposition 4.1, Proposition 5.1, Theorem 2.2] as in the proof of [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Theorem 1.2]. Moreover, observe that u 0 is an upper solution of (P λ ). Hence we conclude that u λ ≤ u 0 by [3, Lemmas 2.1 and 2.2].

Part 2: λ > 0.

Consider, for λ ≥ 0 the modified problem (P λ )

-∆u + u = (λc + (x) -c -(x) + 1) ((u -u 0 ) + + u 0 ) + µ(x)|∇u| 2 + h(x) , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω). As in the case of (P λ ), any solution of (P λ ) belongs to C 0,τ (Ω) for some τ > 0. Moreover, observe that u is a solution of (P λ ) if and only if it is a fixed point of the operator T λ defined by T λ : C(Ω) → C(Ω) : v → u with u the solution of -∆u + u -µ(x)|∇u| 2 = (λc + (x) -c -(x) + 1) ((v -u 0 ) + + u 0 ) + h(x) , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Applying [4, Lemma 5.2], we see that T λ is completely continuous. Now, we denote Σ := {(λ, u) ∈ R × C(Ω) : u solves (P λ )} and we split the rest of the proof into three steps.

Step 1: If u is a solution of (P λ ) then u ≥ u 0 and hence it is a solution of (P λ ).

Observe that (u -u 0 ) + + u 0 -u ≥ 0. Also we have that λc + (x)((u -u 0 ) + + u 0 ) ≥ λc + (x)u 0 ≥ 0. Hence, we deduce that a solution u of (P λ ) is an upper solution of (5.7)

-∆u = -c -(x) ((u -u 0 ) + + u 0 ) + µ(x)|∇u| 2 + h(x) , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Then the result follows from [3, Lemmas 2.1 and 2.2] noting that u 0 is a solution of (5.7).

Step 2: u 0 is the unique solution of (P 0 ) and i(I -T 0 , u 0 ) = 1.

Again the uniqueness of the solution of (P 0 ) can be deduced from [3, Lemmas 2.1 and 2.2]. Now, in order to prove that i(I -T 0 , u 0 ) = 1, we consider the operator S t defined by S t : C(Ω) → C(Ω) : v → u with u the solution of -∆u + u -µ(x)|∇u| 2 = t[(-c -(x) + 1) (u 0 + (v -u 0 ) + -(v -u 0 -1) + ) + h(x)] , u ∈ H 1 0 (Ω) ∩ L ∞ (Ω). First, observe that there exists R > 0 such that, for all t ∈ [0, 1] and all v ∈ C(Ω), Step 3: Existence and behavior of the continuum.

S t v ∞ < R.
By [START_REF] Rabinowitz | A global theorem for nonlinear eigenvalue problems and applications[END_REF]Theorem 3.2] (see also [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Theorem 2.2]), there exists a continuum C ⊂ Σ such that C ∩ ([0, ∞) × C(Ω)) is unbounded. By Step 1, we know that if u ∈ C then u ≥ u 0 and is a solution of (P λ ). Thus applying Lemma 5.1, we deduce that Proj R C ∩ [0, ∞) ⊂ [0, Λ]. By Theorem 1.1 and Step 1, we deduce that for every Λ 1 ∈ (0, Λ), there is an a priori bound on the solutions of (P λ ) for λ ∈ [Λ 1 , Λ]. Hence, the projection of C ∩ ([Λ 1 , Λ) × C(Ω)) on C(Ω) is bounded, and so, we deduce that C emanates from infinity to the right of λ = 0. Finally, since C contains (0, u 0 ) with u 0 the unique solution of (P 0 ), we conclude that there exists λ 0 ∈ (0, Λ) such that problem (P λ ), and thus problem (P λ ), has at least two solutions satisfying u ≥ u 0 for λ ∈ (0, λ 0 ).

Remark 1. 1 .

 1 (a) Theorem 1.2, 1) generalizes [4, Theorem 1.2].

.Since for all x ∈ Q 3 2 -δ 3 2 e we have x N ≤ 3 2 ,

 332 Step 3 follows from the above inequality and Step 2.Step 4: Conclusion.

Lemma 4 . 1 .

 41 Assume that (B) holds. Then, there exists M > 0 such that, for any λ ∈ R, any solution u of(P λ ) satisfies -sup Ω+ u --M ≤ u ≤ sup Ω+ u + + M.Remark 4.1. Let us point out that if c + ≡ 0, i.e. |Ω + | = 0, the problem (P λ ) reduces to (4.1)

c(x) ϕ 1 1 u dx + C ≤ γ 1 1 Ω

 1 c + (x) φ u dx + C.On the other hand, considering φ as test function in (P λ ) we observe that (5.5)Ω ∇φ∇u + c -(x) φ u dx = λ Ω c + (x) u φ dx + Ω µ(x)|∇u| 2 + h(x) φ dx .

  x) φ u dx ≥ Ω µ(x)|∇u| 2 + h(x) φ dx -C = BR(x) µ(x)|∇u| 2 + h(x) ϕ 1 1 dx -C ≥ -D.As c + u 0 0 in B R (x), we have thatΩ c + (x) φ u dx ≥ Ω c + (x) φ u 0 dx > 0.

  This implies that deg(I-S 1 , B(0, R)) = deg(I, B(0, R)) = 1.By [3, Lemmas 2.1 and 2.2], we see that u 0 is the only fixed point of S 1 . Hence, by the excision property of the degree, for all ε > 0 small enough, it follows thatdeg(I -S 1 , B(u 0 , ε)) = deg(I -S 1 , B(0, R)) = 1.Thus, as for ε < 1, S 1 = T 0 , we conclude that i(I -T 0 , u 0 ) = lim ε→0 deg(I -T 0 , B(u 0 , ε)) = lim ε→0 deg(I -S 1 , B(u 0 , ε)) = 1.

  for some r > N/2.

	Lemma 2.2. (Boundary Local Maximum Principle) Under the assumption (2.3), assume that u ∈
	H					
	Remark 2.1. With the regularity imposed in the following lemmas and in the absence of a gradient term
	in the equation, we do not need the lower and upper solutions to be bounded. The full Definition 2.1 will
	however be needed in other parts of the paper.				
	Lemma 2.1. (Local Maximum Principle) Under the assumption (2.3), assume that u ∈ H 1 (ω) is a lower
	solution of (2.2). For any ball B 2R (y) ⊂ ω and any s > 0, there exists C = C(s, r, a L r (B2R(y)) , R) > 0 such
	that					
	sup	u + ≤ C	(u + ) s dx	1/s	+ b +	L r (B2R(y)) .
	BR(y)	B2R(y)				
	Proof. See for instance [18, Theorem 8.17] and [23, Corollary 3.10].	

1 

(ω) is a lower solution of (2.2) and let x 0 ∈ ∂ω. For any R > 0 and any s > 0, there exists C
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Step 3: For any 1 ≤ s < N N -2 , we have, for the constant C 2 > 0 introduced in Step 2, that

This directly follows from Step 2 since, by the definition of w i , we have

Step 4: Conclusion.

We will show the existence of

Thus, thanks to the definition of w 2 , we can conclude the proof. Let us fix s ∈ [1, N N -2 ), r ∈ ( N 2 , q) and α = (q-r)µ1s µ2qr and let c α > 0 such that

We introduce the auxiliary functions

and, as µ(x) ≤ µ 2 , we deduce from (4.4) that w 2 satisfies

Now, as q/r > 1, by Step 3 and Hölder inequality, it follows that

Hence, there exists

Applying then Lemma 2.1, there exists

On the other hand, by Step 3, we get

and the result follows.

Lemma 4.3. Assume that (A 1 ) holds and that x ∈ Ω + ∩ ∂Ω. For each Λ 2 > Λ 1 > 0, there exist R > 0 and M B > 0 such that, for any λ ∈ [Λ 1 , Λ 2 ], any solution of (P λ ) satisfies sup BR(x)∩Ω u ≤ M B .

Proof. Let R > 0 given by Theorem 3.1. Under the assumption (A 1 ), we can find R ∈ (0, R/2] and Ω 1 ⊂ Ω with ∂Ω 1 of class C 1,1 such that B 2R (x) ∩ Ω ⊂ Ω 1 and µ(x) ≥ µ 1 > 0, c -≡ 0 and c + 0 in Ω 1 .