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Introduction

This paper deals with the asymptotic behavior of the so-called u-capacities of small sets and its application to the analysis of the eigenvalues of the Dirichlet-Laplacian on a bounded domain with a small hole.

The dependence of the spectrum of the Laplace operator upon regular and singular domain perturbations has been long investigated by several authors with many different techniques. A fundamental tool in the analysis of the eigenvalues of the Dirichlet-Laplacian upon domain perturbation has revealed to be the so-called (condenser) capacity.

So, if we consider a bounded, connected open set Ω of R 2 , then for every compact subset K of 1 Ω, the (condenser) capacity of K in Ω is defined as

Cap Ω (K) ≡ inf Ω |∇f | 2 dx : f ∈ H 1 0 (Ω) and f -η K ∈ H 1 0 (Ω \ K) , (1) 
where η K is a fixed smooth function such that supp η K ⊆ Ω and η K ≡ 1 in a neighborhood of K.

The infimum in [START_REF] Abatangelo | Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators[END_REF] is achieved by a function

V K ∈ H 1 0 (Ω) such that V K -η K ∈ H 1 0 (Ω \ K) so that Cap Ω (K) = Ω |∇V K | 2 dx ,
where V K (capacitary potential) is the unique solution of the Dirichlet problem  



∆V K = 0 in Ω \ K , V K = 0 on ∂Ω , V K = 1 on K . (2) 
By saying that V K solves (2) we mean that V K ∈ H 1 0 (Ω), V Kη K ∈ H 1 0 (Ω \ K), and

Ω\K ∇V K • ∇φ dx = 0 ∀φ ∈ H 1 0 (Ω \ K).
Moreover, if Ω and K are sufficiently regular (for example Lipschitz), one can interpret the boundary conditions of problem [START_REF] Abatangelo | Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications[END_REF] in the trace sense (cf., e.g., Costabel [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF]).

It is well-known that the spectrum of the Dirichlet-Laplacian on the bounded domain Ω does not change if we remove a compact subset K of zero capacity (cf., e.g., Rauch and Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF]). If we denote by 0 < λ 1 (Ω) < λ 2 (Ω) ≤ • • • ≤ λ N (Ω) ≤ . . .

and 0 < λ 1 (Ω \ K) < λ 2 (Ω \ K) ≤ • • • ≤ λ N (Ω \ K) ≤ . . .
the sequences of the eigenvalues of the Dirichlet-Laplacian in Ω and in Ω \ K, respectively, then Rauch and Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] also proved that the N -th eigenvalue λ N (Ω \ K) of the Dirichlet-Laplacian in Ω \ K is close to λ N (Ω) if and only if the capacity Cap Ω (K) of K in Ω is small. The result by Rauch and Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] can be seen as a continuity result for the eigenvalues with respect to the capacity. On the other hand, a higher regularity result holds. Indeed, Courtois [START_REF] Courtois | Spectrum of manifolds with holes[END_REF] has investigated the behavior of the spectrum of the Dirichlet-Laplacian in X \ A, where X is a closed Riemannian manifold and A a "small" compact subset. In particular, he has shown that if K ⊆ Ω is compact and Cap Ω (K) is small then the function

λ N (Ω \ K) -λ N (Ω) (3) 
is differentiable with respect to Cap Ω (K). Therefore, one can obtain asymptotic expansions for the difference in [START_REF] Ammari | Polarization and moment tensors[END_REF] in terms of the capacity Cap Ω (K). If, for example, λ N (Ω) is simple, then in order to obtain more refined asymptotic expansions of the difference λ N (Ω \ K)λ N (Ω), one can take into account also the behavior of the corresponding eigenfunction u N . More precisely, one can replace the capacity Cap Ω (K) by the so-called u Ncapacity Cap Ω (K, u N ).

Theorem 1.1. Let λ N (Ω) be a simple eigenvalue of the Dirichlet-Laplacian in a bounded, connected, and open set Ω. Let u N be a L 2 (Ω)-normalized eigenfunction associated to λ N (Ω) and let (K ε ) ε>0 be a family of compact sets contained in Ω concentrating to a compact set K with Cap Ω (K) = 0. Then

λ N (Ω \ K ε ) = λ N (Ω) + Cap Ω (K ε , u N ) + o(Cap Ω (K ε , u N )) , as ε → 0 . ( 6 
)
The aim of this paper is twofold. On one hand, we wish to investigate the asymptotic behavior of Cap Ω (K ε , u) as ε → 0, when K ε = εω (with ω a sufficiently regular open set) and u a generic function. On the other hand, we want to combine such asymptotic analysis with the formula (6) of Theorem 1.1 and obtain asymptotic expansions of λ N (Ω \ (εω)) where the dependence both on the structure of the normalized eigenfunction u N around 0 and on the geometry of ω is explicit. We emphasize that in our case, the limit compact K of Theorem 1.1 consists of just one point, namely {0}, and therefore the corresponding capacity is equal to zero.

Asymptotic behavior of u-capacities

We will be working in the frame of Schauder classes and thus, in order to introduce the geometric setting of the paper, we now fix α ∈]0, 1[ , and we assume that Ω and ω are open bounded connected subsets of R 2 of class C 1,α such that R 2 \ Ω and R 2 \ ω are connected, and such that the origin 0 of R 2 belongs both to Ω and ω.

For the definition of functions and sets of the Schauder classes C 0,α and C 1,α we refer for example to Gilbarg and Trudinger [23,§6.2]. Condition [START_REF] Böhme | Zur Struktur der Lösungsmenge des Plateauproblems[END_REF] implies that there exists a real number ε 0 such that ε 0 > 0 and εω ⊆ Ω for all ε ∈]ε 0 , ε 0 [ .

Then we denote by Ω ε the perforated domain defined by

Ω ε ≡ Ω \ (εω) ∀ε ∈] -ε 0 , ε 0 [ .

Clearly, Ω

ε is an open bounded connected subset of R 2 of class C 1,α for all ε ∈]ε 0 , ε 0 [\{0}. Moreover, the boundary ∂Ω ε of Ω ε is the union of the two connected components ∂Ω and ∂(εω) = ε∂ω, for all ε ∈]ε 0 , ε 0 [. We also note that Ω 0 = Ω \ {0}.

Then we assume that u ∈ H 1 (Ω) is analytic in a neighborhood of 0.

We are interested in studying the behavior of Cap Ω (εω, u) as ε tends to 0. More precisely, our aim is to obtain as much accurate and constructive as possible expansions for Cap Ω (εω, u) in terms of the parameter ε. Moreover, besides the dependence on ε, we want to highlight the effect of the geometry of the problem (i.e., Ω and ω) and of the function u on Cap Ω (εω, u).

As we shall see, to reach this goal, one can try to follow different strategies.

Asymptotic behavior of the capacity and conformal mappings

A standard method to convert a boundary value problem for the Laplace equation defined in a generic Jordan domain with one hole into a (possibly) easier one is to exploit conformal mapping theory. In this way, one can transform the original problem into a boundary value problem defined in an annular domain of the type A(r, 1) ≡ {z ∈ C : r < |z| < 1} for some r > 0. Then one can try to find explicit formulas for the solution of the transformed problem in A(r, 1) and finally to exploit those formulas for the representation of the solution of the original problem. Clearly, an approach of this type can be applied also to the computation of the capacity Cap Ω (εω), since it is defined by means of the solution of a Dirichlet problem for the Laplacian with locally constant boundary data. So we identify R 2 with the complex plane C and we assume that ∂Ω and ∂ω are the image of two simple closed curves ζ o and ζ i of class C 1,α from the boundary ∂D of the unit disk D to C. By the Riemann Mapping Theorem, one deduces that for each ε ∈]ε 0 , ε 0 [\{0} there exist a unique r[ε] ∈]0, 1[ and a unique holomorphic homeomorphism g[ε] from the set A(r[ε], 1) onto Ω ε such that the map g[ε] can be extended to an element of class C 1,α (A(r[ε], 1), C) (which we still denote by g [ε]) and such that g [ε](1) = ζ o (1) (cf. Lanza de Cristoforis and Rogosin [START_REF] Lanza De Cristoforis | Analyticity of a nonlinear operator associated to the conformal representation of a doubly connected domain in Schauder spaces[END_REF]Thm. 3.1]). Moreover, g[ε] is a homeomorphism of A(r[ε], 1) onto Ω ε . Now we observe that if we compose the solution of

   ∆V r[ε] = 0 in A(r[ε], 1) , V r[ε] = 0 on ∂D , V r[ε] = 1 on r[ε]∂D . (9) 
with the map g (-1) [ε] we obtain an harmonic function in Ω ε , vanishing on ζ o (∂D) = ∂Ω and equal to 1 on εζ i (∂D) = ε∂ω. On the other hand, by a direct computation one verifies that the solution of problem ( 9) is delivered by

V r[ε] (z) ≡ log |z| log r[ε] ∀z ∈ A(r[ε], 1) .
As a consequence, the capacitary potential V εω can be represented as

V εω (z) ≡ log |g (-1) [ε](z)| log r[ε] ∀z ∈ Ω ε .
Then one obtains the following formula for the capacity Cap Ω (εω)

Cap

Ω (εω) = - 2π log r[ε] ∀ε ∈] -ε 0 , ε 0 [\{0} .
Therefore, if we want to understand the behavior of Cap Ω (εω) as ε → 0 we need to investigate r[ε] for ε close to 0. On the other hand, by Lanza de Cristoforis [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces[END_REF][START_REF] Lanza De Cristoforis | Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole, and relative capacity[END_REF], we know that there exist Accordingly, we deduce the formula

ε 1 ∈]0, ε 0 [ and a real analytic function R from ] -ε 1 , ε 1 [ to ]0, +∞[ such that r[ε] = εR[ε] ∀ε ∈]0, ε 1 [ . Moreover,
Cap Ω (εω) = - 2π log ε + log R[ε] ∀ε ∈]0, ε 1 [ . ( 10 
)
Then by [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF] we have that

Cap Ω (εω) = - 1 log ε 2π 1 + 1 log ε log R[ε] ∀ε ∈]0, ε 1 [ .
Hence, there exists a real analytic map R from a neighborhood of (0, 0) in

R 2 with values in R such that Cap Ω (εω) = R ε, 1 log ε ,
for ε positive and close to 0. By the analyticity of R, one immediately deduces that

Cap Ω (εω) = (k,l)∈N 2 γ (k,l) ε k 1 log ε l , (11) 
for ε positive and small enough, and where the double power series (k,l)∈N 2 γ (k,l) x k 1 x l 2 converges absolutely for (x 1 , x 2 ) in a neighborhood of (0, 0).

Even if one could explicitly deduce from Lanza de Cristoforis [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces[END_REF][START_REF] Lanza De Cristoforis | Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole, and relative capacity[END_REF] the limiting value R[0], we emphasize that no attempt has been done so far in order to derive from the real analyticity of R the exact value of all the coefficients γ (k,l) appearing in [START_REF] Chavel | Spectra of manifolds less a small domain[END_REF]. Moreover, if one tries to apply this method for the computation of the u-capacity Cap Ω (εω, u), one faces the problem to find an explicit solution of problem [START_REF] Bonnaillie-Noël | Interactions between moderately close inclusions for the two-dimensional Dirichlet-Laplacian[END_REF] with the third condition replaced by

V r[ε] (z) = u(g[ε]z) ∀z ∈ r[ε]∂D .
Then clearly such a dependence on g[ε] and on u of the Dirichlet datum on the hole makes even more involved the computation of the coefficients of the corresponding expansion of the capacity. Therefore, in order to provide an explicit and constructive expansion for Cap Ω (εω, u) we prefer to follow a different strategy, which does not relies on conformal mappings.

Asymptotic expansion for the capacity

Boundary value problems in domains with small holes have been largely investigated in the frame of asymptotic analysis. In order to study these problems several asymptotic expansion techniques have been developed: for example, the method of matching outer and inner asymptotic expansions proposed by Il'in (cf., e.g., [START_REF] Il | Matching of asymptotic expansions of solutions of boundary value problems[END_REF]), the compound asymptotic expansion method of Maz'ya, Nazarov, and Plamenevskij [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF][START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF], and the asymptotic analysis of Green's kernels in domains with small cavities by mesoscale asymptotic approximations of Maz'ya, Movchan, and Nieves [START_REF] Maz'ya | Green's kernels and meso-scale approximations in perforated domains[END_REF].

In Bonnaillie-Noël and Dambrine [START_REF] Bonnaillie-Noël | Interactions between moderately close circular inclusions: the Dirichlet-Laplace equation in the plane[END_REF] and in Bonnaillie-Noël, Dambrine, and Lacave [START_REF] Bonnaillie-Noël | Interactions between moderately close inclusions for the two-dimensional Dirichlet-Laplacian[END_REF], the authors have exploited the method of multiscale asymptotic expansions to analyze the two-dimensional Dirichlet-Laplacian in a domain with moderately close small perforations. The Dirichlet problem in a planar domain with a small hole has received attention also from the numerical point of view. A numerical approach is proposed, e.g., in Babuška, Soane, and Suri [START_REF] Babuška | The computational modeling of problems on domains with small holes[END_REF] and Chesnel and Claeys [START_REF] Chesnel | A numerical approach for the Poisson equation in a planar domain with a small inclusion[END_REF]. Problems in perforated domains find several applications, as an example, in the frame of shape and topological optimization (cf. Novotny and Soko lowsky [START_REF] Novotny | Topological derivatives in shape optimization[END_REF]) and in inverse problems (cf. Ammari and Kang [START_REF] Ammari | Polarization and moment tensors[END_REF] and Ammari, Kang, and Lee [START_REF] Ammari | Layer potential techniques in spectral analysis[END_REF]).

An asymptotic expansion of the capacity as the hole collapses to a point can be deduced by the analysis of energy integrals in perforated domains that can be found in Maz'ya, Nazarov, and Plamenevskij [37, §8.1]. In particular, they prove that

Cap Ω (εω) = - 2π log ε + 2π H (0,0) + N + o(ε δ ) , ∀δ > 0 , (12) 
for ε small and positive, where e 2πN is the logarithmic capacity (or outer conformal radius) of ω and H (0,0) is the value at x = 0 of the unique harmonic function h in Ω such that h(x) =log |x|/(2π) for all x ∈ ∂Ω. In particular, by combining [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF] and [START_REF] Chesnel | A numerical approach for the Poisson equation in a planar domain with a small inclusion[END_REF], we deduce that log R[0] = 2π H (0,0) + N .

We also note that expansions for the capacity for the case of several small inclusions can be deduced from the corresponding expansion of the capacitary potential obtained in Maz'ya, Movchan, and Nieves [34, §3.2.2]. Moreover, one could produce an asymptotic expansion of Cap Ω (εω) in the higher-dimensional case. However, in such a case, the asymptotic behavior would differ from that of [START_REF] Chesnel | A numerical approach for the Poisson equation in a planar domain with a small inclusion[END_REF] since the logarithmic term would not be present in the asymptotic expansion in dimension greater than or equal to three. Our aim is now two-fold. On the one hand we want to extend the study of the asymptotic behavior of Cap Ω (εω) to the u-capacity Cap Ω (εω, u). On the other hand, we want to represent Cap Ω (εω, u) in terms of convergent power series whose coefficients can be explicitly constructed by solving given systems of integral equations on fixed domains (not depending on ε). As we shall see, the computation of higher order terms in the expansion of Cap Ω (εω, u) is necessary if for example u and its derivatives up to a certain order vanish at the origin of R 2 .

The functional analytic approach

To reach our goal, we adopt the Functional Analytic Approach proposed by Lanza de Cristoforis [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces[END_REF][START_REF] Lanza De Cristoforis | Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole, and relative capacity[END_REF] for the analysis of singular perturbation problems in perforated domains. This method indeed allows to prove real analyticity properties for the solution of boundary value problems in perforated domains for elliptic equations (see Lanza de Cristoforis [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF] for the Laplace equation) and systems (as the Lamé equations in Dalla Riva and Lanza de Cristoforis [START_REF] Riva | Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach[END_REF] and the Stokes system in Dalla Riva [START_REF] Riva | Stokes flow in a singularly perturbed exterior domain[END_REF]). Therefore, by this method, one can deduce the possibility to expand the solution or related quantities in convergent power series. Then, to construct these power series, we follow the strategy of [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF] and we compute the coefficients in terms of the solutions of recursive systems of integral equations and of quantities related to the data of the problem (such as the unperturbed domain Ω, the inclusion ω, and the function u).

We now observe that by assumption (8) on the analyticity of u and by analyticity results for the composition operator (cf. Böhme and Tomi [7, p. 10], Henry [24, p. 29], Valent [51,Thm. 5.2,p. 44]), possibly shrinking ε 0 , there exists a real analytic map

U # from ] -ε 0 , ε 0 [ to C 1,α (∂ω) such that u(εt) = U # [ε](t) ∀t ∈ ∂ω , ∀ε ∈] -ε 0 , ε 0 [ . (13) 
(for the definition and properties of analytic maps, we refer to Deimling [20, §15]). Then for all ε ∈]ε 0 , ε 0 [\{0}, we denote by u ε the unique solution in

C 1,α (Ω ε ) of the problem    ∆u ε = 0 in Ω ε , u ε (x) = 0 for all x ∈ ∂Ω , u ε (x) = U # [ε](x/ε) for all x ∈ ε∂ω . (14) Clearly, V εω,u (x) = u ε (x) , ∀x ∈ Ω ε , ∀ε ∈] -ε 0 , ε 0 [\{0} , V εω,u (x) = u(x) , ∀x ∈ εω , ∀ε ∈] -ε 0 , ε 0 [\{0} .
Accordingly, by the Divergence Theorem, we have

Cap Ω (εω, u) = Ωε |∇u ε | 2 dx + εω |∇u| 2 dx = - ∂(εω) ∂u ε ∂ν εω u ε dσ + ε 2 ω (∇u)(εt) • (∇u)(εt) dt = - ∂ω ν ω (t) • ∇ u ε (εt) u(εt) dσ t + ε 2 ω (∇u)(εt) • (∇u)(εt) dt , (15) 
for all ε ∈]ε 0 , ε 0 [\{0}. Here above the symbols ν ω and ν εω denote the outward unit normal to ∂ω and to ∂(εω), respectively. As we have mentioned, our goal is to provide a fully constructive and complete asymptotic expansion for Cap Ω (εω, u) as ε → 0. In order to do so, we follow the methods developed in [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF] for the solution of the Dirichlet problem in a planar perforated domain. However, in [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF] the Dirichlet datum on the boundary of the hole ∂(εω) is given by rescaling a fixed function g defined on ∂ω, i.e., by considering the function g(•/ε). Here, instead, the boundary condition on ∂(εω) is given by the trace of u on ∂(εω). Such a trace can be expressed as u(ε(x/ε)), that is the rescaling of the ε-dependent function U # [ε](•) = u(ε•). Thus we will need to take into account also such a dependence. By [START_REF] Courtois | Spectrum of manifolds with holes[END_REF], the quantity Cap Ω (εω, u) can be expressed as the sum of

ε 2 ω (∇u)(εt) • (∇u)(εt) dt (16) 
and of (the opposite of) the integral on ∂ω of the function

t → ν ω (t) • ∇ u ε (εt) u(εt) . (17) 
By the analyticity of u in a neighborhood of 0, one can easily show that the term in ( 16) is a real analytic function of ε around 0 and accordingly it can be expanded in power series of ε. On the other hand, the integral on ∂ω of the function in [START_REF] Riva | Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach[END_REF] needs a more careful analysis. Thus, as a preliminary step, we will need to provide an expansion for the function in [START_REF] Riva | Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach[END_REF]. Then, by integrating such an expansion, we will be able to obtain the corresponding result for Cap Ω (εω, u).

In particular, under vanishing assumption for u, we are able to prove the validity of the following result (cf. Theorem 5.4 and Remark 5.5 below).

Theorem 1.2. Let assumption (8) hold. Assume that there exists k ∈ N \ {0} such that

D γ u(0) = 0 ∀|γ| < k ,
and that there exists β ∈ N 2 such that |β| = k and

D β u(0) = 0 . Then Cap Ω (εω, u) = ε 2k R 2 \ω |∇u k | 2 dt + ω |∇u #,k | 2 dt + o(ε 2k ) as ε → 0 ,
where u #,k is defined as in Proposition 4.2 and u k is the unique solution of problem [START_REF] Schauder | Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)[END_REF].

As we shall see, the terms R 2 \ω |∇u k | 2 dt and ω |∇u #,k | 2 dt depend both on the geometric properties of the set ω and on the behavior at 0 of the function u (but not on Ω). Here we note that in the case of dimension higher than 3 one could expand Cap Ω (εω, u) as a power series in ε. Indeed, one may show that Cap Ω (εω, u) depends real analytically on ε (cf. [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF]Thm. 6.2]) in a neighborhood of 0. The results of the present paper rely on the asymptotic expansions of [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF] for the solution of the Dirichlet problem for the Laplacian in a perforated planar domain. In such a case, one cannot hope to expand Cap Ω (εω, u) as a power series in ε since, as is well known, a logarithmic term appears.

Asymptotic expansions of the eigenvalues

The asymptotic behavior of the eigenvalues of the Laplacian in domains with small holes has been long investigated by several authors.

One of the first contributions is probably due to Samarskiȋ [START_REF] Samarskiȋ | On the influence of constraints on the characteristic frequencies of closed volumes[END_REF] that showed that the perturbation of an eigenvalue λ N for the Dirichlet-Laplacian when a small set ω ε is removed from a subset Ω of R 3 admits the following estimate

∆λ N ≤ 4πκ 2 N Cap Ω (ω ε ) + O(Cap Ω (ω ε ) 2 ) , (18) 
where κ N is the maximum value of the N -th normalized eigenfunction on ω ε (cf. Maz'ya, Nazarov, and Plamenevskiȋ [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF]). Later on, in the paper [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF], Rauch and Taylor studied the behavior of the eigenvalues and eigenfunctions of the Laplacian in a domain Ω where a "thin" set is removed. A consequence of their (more general) results is that if Ω and ω are sufficiently regular bounded open subsets of R n containing the origin, and λ N (•) is the N -th eigenvalue of Dirichlet-Laplacian then

λ N (Ω \ (εω)) → λ N (Ω) as ε → 0 + . ( 19 
)
In view of the estimate (18) of Samarskiȋ [START_REF] Samarskiȋ | On the influence of constraints on the characteristic frequencies of closed volumes[END_REF] and the convergence result [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF] of Rauch and Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF], many authors have then started to compute asymptotic expansions for the eigenvalues of the Laplacian (under various boundary conditions) in domains with small holes. For example, Ozawa has devoted a series of papers (cf., e.g., [START_REF] Ozawa | Singular Hadamard's variation of domains and eigenvalues of the Laplacian[END_REF][START_REF] Ozawa | Singular Hadamard's variation of domains and eigenvalues of the Laplacian[END_REF][START_REF] Ozawa | Singular variation of domains and eigenvalues of the Laplacian[END_REF][START_REF] Ozawa | An asymptotic formula for the eigenvalues of the Laplacian in a domain with a small hole[END_REF][START_REF] Ozawa | Potential theory and eigenvalues of the Laplacian[END_REF]) to the computation of asymptotic expansions for the eigenvalues of the Laplacian, under many different boundary conditions, when we make a small perforation. In particular, Ozawa has shown in [START_REF] Ozawa | Singular variation of domains and eigenvalues of the Laplacian[END_REF] that if n = 2 and ω is the unit ball B 2 (0, 1) then

λ N (Ω \ (εB 2 (0, 1))) = λ N (Ω) -2π(log ε) -1 (u N (0)) 2 + O((log ε) -2 ) as ε → 0 + , (20) 
where λ N (Ω) is a simple eigenvalue for the Dirichlet-Laplacian in Ω and u N a corresponding L 2 (Ω)normalized eigenfunction. Moreover, Maz'ya, Nazarov, and Plamenevskiȋ (see, for example, [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF] and [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF]Chapter 9]) have produced asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. For example, in the three dimensional case, they have shown in [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF] that for the first eigenvalue of the Laplacian with Dirichlet condition we have

λ 1 (Ω \ (εω)) =λ 1 (Ω) + 4πCap(ω)(u 1 (0)) 2 ε + [4πu 1 (0)Cap(ω)] 2 × Γ(0) + u 1 (0) 4π Ω u 1 (x)|x| -1 dx ε 2 + O(ε 3 ) as ε → 0 + , (21) 
where u 1 is a corresponding L 2 (Ω)-normalized eigenfunction in Ω, Cap(ω) the harmonic capacity of ω and Γ is a function defined through an auxiliary boundary value problem. We note that since the first eigenfunction u 1 does not vanish inside Ω, u 1 (0) = 0 and thus the asymptotic expansion in ( 21) is sharp. However, this in general is not the case if we consider different eigenvalues λ N . In particular, we note that if we consider the asymptotic expansion of [START_REF] Deimling | Nonlinear functional analysis[END_REF], then if the origin belongs to a nodal line of the eigenfunction u N , we have u N (0) = 0. Therefore (20) reduces to

λ N (Ω \ (εB 2 (0, 1))) = λ N (Ω) + O((log ε) -2 ) as ε → 0 + . ( 22 
)
As a consequence, in view of [START_REF] Friedman | Partial differential equations[END_REF], in case u N (0) = 0 one may need to compute further terms in the asymptotic expansion. Subsequently, many authors have started to study the behavior of the spectrum of the Laplacian under removal of "small" sets in the Riemannian setting. As an example, we mention the works by Besson [6], Chavel [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], Chavel and Feldman [START_REF] Chavel | Spectra of manifolds less a small domain[END_REF], Colbois and Courtois [START_REF] Colbois | Convergence de variétés and convergence du spectre du Laplacien. (French) [Convergence of manifolds and convergence of the spectrum of the Laplacian[END_REF], Courtois [START_REF] Courtois | Spectrum of manifolds with holes[END_REF].

As we have already mentioned, one can find in Courtois [15, Proof of Theorem 1.2] and in Abatangelo, Felli, Hillairet, and Lena [START_REF] Abatangelo | Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators[END_REF]Theorem 1.4] an asymptotic formula for the eigenvalues involving the notion of u-capacity (see equation [START_REF] Besson | Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. (French) [Asymptotic behavior of the eigenvalues of the Laplacian in a domain with a hole[END_REF] of Theorem 1.1). In particular, if Ω and ω are as in [START_REF] Böhme | Zur Struktur der Lösungsmenge des Plateauproblems[END_REF] and λ N (Ω) is simple, this reads as

λ N (Ω \ (εω)) = λ N (Ω) + Cap Ω (εω, u N ) + o(Cap Ω (εω, u N )) as ε → 0 + . ( 23 
)
As a consequence of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], in order to find an asymptotic expansion in the parameter ε we need to compute Cap Ω (εω, u N ). Abatangelo, Felli, Hillairet, and Lena [START_REF] Abatangelo | Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators[END_REF] have computed such quantity for specific sets as ball and segment and they have shown explicitly the dependence of Cap Ω (εω, u N ) on the behavior of the eigenfunction u N around the origin. In particular if n = 2 and ω = B 2 (0, 1), they have proved that

Cap Ω (εB 2 (0, 1), u N ) = 2π | log ε| (u N (0)) 2 (1 + o(1)) , if k = 0 , 2kπε 2k b 2 (1 + o(1)) , if k ≥ 1 ,
where k ∈ N and b ∈ R \ {0} are such that

r -k u(r(cos t, sin t)) → b sin(a -kt) in C 1 ([0, 2π]) , as r → 0 + for some a ∈ [0, π[ .
Here, instead, we wish to emphasize the interaction with the geometry of the hole and the structure of the eigenfunction near 0. In order to do so, we confine to the two-dimensional case and we exploit the power series expansion for Cap Ω (εω, u) of Section 5, with u = u N and where ω is a quite general regular open set as in [START_REF] Böhme | Zur Struktur der Lösungsmenge des Plateauproblems[END_REF].

Under the assumption that the N -th eigenvalue λ N (Ω) for the Dirichlet-Laplacian is simple, if u N is a L 2 (Ω)-normalized eigenfunction related to λ N (Ω) satisfying some vanishing assumption, we are able to prove the following (cf. Theorem 6.2 below).

Theorem 1.3. Let the N-th eigenvalue λ N (Ω) for the Dirichlet-Laplacian be simple and let u N be a L 2 (Ω)-normalized eigenfunction related to λ N (Ω). Assume that there exists k ∈ N \ {0} such that D γ u N (0) = 0 for all |γ| < k and that there exists

β ∈ N 2 such that |β| = k and D β u(0) = 0. Then λ N (Ω \ (εω)) = λ N (Ω) + ε 2k C(u N , ω) + o(ε 2k ) as ε → 0 + , (24) 
where C(u N , ω) an explicitly defined positive constant depending on u N and on ω (cf. Section 6).

One of the consequences of our asymptotic expansion (24) of Theorem 1.3 is that it gives the order of the difference

λ N (Ω \ (εω)) -λ N (Ω)
for a wide family of holes ω. A second important consequence is that the constant C(u N , ω) in ( 24) is explicitly defined in terms of solutions to Dirichlet problems in ω and R 2 \ ω for the Laplace equation. The Dirichlet data depend on the Taylor expansion of the normalized eigenfunction at 0. In particular, it shows the dependence of C(u N , ω) both on u N and ω and thus provides a starting point on the investigation of 'optimal' inclusions ω for such constant (under different constraints). We note that in the last years the investigation of this type of problems has been carried out in many different directions. Maz'ya, Movchan, and Nieves have [START_REF] Maz'ya | Eigenvalue problem in a solid with many inclusions: asymptotic analysis[END_REF] have constructed the asymptotic approximation to the first eigenvalue and corresponding eigenfunctions of Laplace operator inside a domain containing a cloud of small rigid inclusions. Lanza de Cristoforis [START_REF] Lanza De Cristoforis | Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF] has considered a Neumann eigenvalue problem and shown representation formulas in terms of analytic maps and log ε (depending on the dimension n). Sharp estimates when a ball is removed at the vertex of a sector are contained in Lamberti and Perin [START_REF] Lamberti | On the sharpness of a certain spectral stability estimate for the Dirichlet Laplacian[END_REF]. Henrot [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] has considered perforated domains in the frame of extremum problems for eigenvalues of elliptic operators. Finally, Ammari, Kang, and Lee [START_REF] Ammari | Layer potential techniques in spectral analysis[END_REF] have developed an asymptotic theory for eigenvalue problems under domain perturbations by a method based on potential theory and on the Gohberg-Sigal theory of meromorphic operatorvalued functions.

Organization of the paper

The paper is organized as follows. Section 2 is a section of preliminaries where we provide an integral equation formulation for the boundary value problem defining the u-capacity. In Sections 3 and 4 we compute power series expansions for some auxiliary functions. Section 5 contain our main result on the power series expansion of the u-capacity of a small set. In Section 6, we compute the asymptotic expansion of an eigenvalue of the Dirichlet-Laplacian in the perforated domain Ω \ (εω) as the size ε of the hole εω tends to 0 and in Section 7 we discuss optimal locations of small holes. Section 8 is devoted to some numerical computations on the behavior of the eigenvalues of an ellipse with a small hole and Section 9 to their analytical justification.

Preliminaries

Classical notions of potential theory

In order to analyze the behavior of the solution to problem [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF] as ε → 0 we shall exploit an approach based on potential theory, which allows to convert a boundary value problem into a set of integral equations defined on the boundary of the domain. The method relies on the representation of the solution in terms of some specific integral operators, namely the single and the double layer potentials.

In order to define these operators, we denote by S the fundamental solution of ∆

≡ 2 j=1 ∂ 2 j in R 2 , that is the function from R 2 \ {0} to R defined by S(x) ≡ 1 2π log |x| ∀x ∈ R 2 \ {0} . Now let O be an open bounded subset of R 2 of class C 1,α . Let φ ∈ C 0,α (∂O). Then v[∂O, φ
] denotes the single layer potential with density φ, i.e.,

v[∂O, φ](x) ≡ ∂O φ(y)S(x -y) dσ y ∀x ∈ R 2 ,
where dσ denotes the arc length element on ∂O.

As is well known, v[∂O, φ] is a continuous function from R 2 to R. The restriction v + [∂O, φ] ≡ v[∂O, φ] |O belongs to C 1,α (O). Moreover, if we denote by C 1,α loc (R 2 \ O) the space of functions on R 2 \ O whose restrictions to U belong to C 1,α (U) for all open bounded subsets U of R 2 \ U, then v -[∂O, φ] ≡ v[∂O, φ] |R 2 \O belongs to C 1,α loc (R 2 \ O). If ψ ∈ C 1,α (∂O), then the double layer potential is denoted by w[∂O, ψ]: w[∂O, ψ](x) ≡ - ∂O ψ(y) ν O (y) • ∇S(x -y) dσ y ∀x ∈ R 2 ,
where ν O denotes the outer unit normal to ∂O and the symbol • denotes the scalar product in R 2 .

Then the restriction w[∂O, ψ] |O extends to a function w

+ [∂O, ψ] of C 1,α (O) and the restriction w[∂O, ψ] |R 2 \O extends to a function w -[∂O, ψ] of C 1,α loc (R 2 \ O).
The single and the double layer potentials will be used to construct solutions to boundary value problems for the Laplace equation. To do so, we need to understand their boundary behavior. Accordingly, to describe the properties of the trace of the double layer potential on ∂O and of the normal derivative of the single layer potential, we introduce the boundary integral operators

W O and W * O : W O [ψ](x) ≡ - ∂O ψ(y) ν O (y) • ∇S(x -y) dσ y ∀x ∈ ∂O ,
for all ψ ∈ C 1,α (∂O), and

W * O [φ](x) ≡ ∂O φ(y) ν O (x) • ∇S(x -y) dσ y ∀x ∈ ∂O ,
for all φ ∈ C 0,α (∂O). Then W O is a compact operator from C 1,α (∂O) to itself and W * O is a compact operator from C 0,α (∂O) to itself (see Schauder [48] and [START_REF] Schauder | Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)[END_REF]). The operators W O and W * O are adjoint one to the other with respect to the duality on C 1,α (∂O) × C 0,α (∂O) induced by the inner product of the Lebesgue space L 2 (∂O) (cf., e.g., Kress [27,Chap. 4]). For the theory of dual systems and the corresponding Fredholm Alternative Principle, we refer the reader to Kress [START_REF] Kress | Linear integral equations[END_REF] and Wendland [START_REF] Wendland | Die Fredholmsche Alternative für Operatoren, die bezüglich eines bilinearen Funktionals adjungiert sind[END_REF][START_REF] Wendland | Bemerkungen über die Fredholmschen Sätze[END_REF]. Moreover,

w ± [∂O, ψ] |∂O = ± 1 2 ψ + W O [ψ] ∀ψ ∈ C 1,α (∂O) , ν O • ∇v ± [∂O, φ] |∂O = ∓ 1 2 φ + W * O [φ] ∀φ ∈ C 0,α (∂O) (see, e.g., Folland [21, Chap. 3]).
Finally, we shall need to consider subspaces of C 0,α (∂O) and of C 1,α (∂O), consisting of functions with zero integral on ∂O. Accordingly, we set

C k,α (∂O) 0 ≡ f ∈ C k,α (∂O) : ∂O f dσ = 0 for k = 0, 1 .

An integral formulation of the boundary value problem

Our aim is now to convert problem (14) into a system of integral equations and we do so by following the strategy of Lanza de Cristoforis [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF] and of [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]. The first attempt to solve ( 14) would be to represent the solution in terms of a double layer potential. However, due to the presence of a hole in the domain, this in general is not possible for all boundary data and we may need to use, for example, also single layer potentials (cf. e.g., Folland [START_REF] Folland | Introduction to partial differential equations[END_REF]Ch. 3]). Thus we need to split the problem in a part which can be solved in terms of the double layer potential and a part which will be represented by a single layer potential. This will be done via Fredholm Theory by characterizing the image of the trace of the double layer potential as the orthogonal to the kernel of the adjoint operator. The dimension of the kernel equals the number of holes in Ω ε , and therefore, in this specific case, is equal to one. A real analyticity result upon ε for the generator of the kernel is provided by Proposition 2.1 (see also Remark 2.2). Now we proceed as in [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF] and we introduce the map

M ≡ (M o , M i , M c ) from ] -ε 0 , ε 0 [×C 0,α (∂Ω) × C 0,α (∂ω) to C 0,α (∂Ω) × C 0,α (∂ω) 0 × R by setting M o [ε, ρ o , ρ i ](x) ≡ 1 2 ρ o (x) + W * Ω [ρ o ](x) + ∂ω ρ i (s) ν Ω (x) • ∇S(x -εs) dσ s ∀x ∈ ∂Ω , M i [ε, ρ o , ρ i ](t) ≡ 1 2 ρ i (t) -W * ω [ρ i ](t) -ε ∂Ω ρ o (y) ν ω (t) • ∇S(εt -y) dσ y ∀t ∈ ∂ω , M c [ε, ρ o , ρ i ] ≡ ∂ω ρ i dσ -1 , for all (ε, ρ o , ρ i ) ∈] -ε 0 , ε 0 [×C 0,α (∂Ω) × C 0,α (∂ω).
Then we can prove the following result of Lanza de Cristoforis [31, §3] (see also [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]Prop. 4.1]).

Proposition 2.1. The following statements hold.

(i) The map M is real analytic.

(ii) If ε ∈]ε 0 , ε 0 [, then there exists a unique pair

(ρ o [ε], ρ i [ε]) ∈ C 0,α (∂Ω) × C 0,α (∂ω) such that M [ε, ρ o [ε], ρ i [ε]] = 0. (iii) The map from ] -ε 0 , ε 0 [ to C 0,α (∂Ω) × C 0,α (∂ω) which takes ε to (ρ o [ε], ρ i [ε]) is real analytic. Remark 2.2. For each ε ∈] -ε 0 , ε 0 [\{0}, let τ ε be defined by τ ε (x) ≡ ρ o [ε](x) for all x ∈ ∂Ω and τ ε (x) ≡ |ε| -1 ρ i [ε](x/ε) for all x ∈ ∂(εω).
Then

1 2 τ ε + W * Ωε [τ ε ] = 0 , ∂(εω) τ ε dσ = 1 , for all ε ∈] -ε 0 , ε 0 [\{0}.
We now turn to consider the part which can be actually solved by the double layer potential. Indeed, by standard Fredholm theory and classical potential theory, one sees that for ε ∈]ε 0 , ε 0 [\{0} the boundary datum g ε defined by

g ε (x) ≡ 0 ∀x ∈ ∂Ω , g ε (x) = U # [ε](x/ε) - ∂(εω) U # [ε](x/ε)τ ε (x) dσ x ∀x ∈ ∂(εω) ,
belongs to the image of the trace of the double layer potential (for the definition of U # see ( 13)). Then, as in [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF], we define the map Λ

≡ (Λ o , Λ i ) from ]-ε 0 , ε 0 [×C 1,α (∂Ω)×C 1,α (∂ω) 0 to C 1,α (∂Ω)× C 1,α (∂ω) by Λ o [ε, θ o , θ i ](x) ≡ 1 2 θ o (x) + W Ω [θ o ](x) + ε ∂ω θ i (s) ν ω (y) • ∇S(x -εs) dσ s ∀x ∈ ∂Ω , Λ i [ε, θ o , θ i ](t) ≡ 1 2 θ i (t) -W ω [θ i ](t) + w[∂Ω, θ o ](εt) -U # [ε](t) + ∂ω U # [ε]ρ i [ε] dσ ∀t ∈ ∂ω , for all (ε, θ o , θ i ) ∈] -ε 0 , ε 0 [×C 1,α (∂Ω) × C 1,α (∂ω) 0 .
Then we have the following result of Lanza de Cristoforis [31, §4] on the regularity of Λ (cf. [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]Prop. 4.3]).

Proposition 2.3. The following statements hold.

(i) The map Λ is real analytic.

(ii) If ε ∈]ε 0 , ε 0 [, then there exists a unique pair

(θ o [ε], θ i [ε]) ∈ C 1,α (∂Ω) × C 1,α (∂ω) 0 such that Λ[ε, θ o [ε], θ i [ε]] = 0. (iii) The map from ] -ε 0 , ε 0 [ to C 1,α (∂Ω) × C 1,α (∂ω) 0 which takes ε to (θ o [ε], θ i [ε]) is real analytic. Remark 2.4. For each ε ∈] -ε 0 , ε 0 [\{0}, let µ ε be defined by µ ε (x) ≡ θ o [ε](x) for all x ∈ ∂Ω and µ ε (x) ≡ θ i [ε](x/ε) for all x ∈ ∂(εω). Then 1 2 µ ε + W Ωε [µ ε ] = g ε , for all ε ∈] -ε 0 , ε 0 [\{0}.
By summing the double layer potential with density µ ε (cf. Remark 2.4) and a convenient multiple of the single layer potential with density τ ε (cf. Remark 2.2), we can recover the solution u ε . In particular, by arguing as in [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]Prop. 4.5], the following Proposition 2.5 shows how to represent the rescaled function u ε (εt) by means of the functions 

ρ o [ε], ρ i [ε], θ o [ε],
Proposition 2.5. Let ε ∈] -ε 0 , ε 0 [\{0}. Then u ε (εt) ≡ w + [∂Ω, θ o [ε]](εt) -w -[∂ω, θ i [ε]](t) + ∂ω U # [ε]ρ i [ε] dσ v + [∂Ω, ρ o [ε]](εt) + v -[∂ω, ρ i [ε]](t) + log |ε| 2π × 1 ∂ω dσ ∂ω v[∂Ω, ρ o [ε]](εs) + v[∂ω, ρ i [ε]](s) dσ s + log |ε| 2π -1 for all t ∈ (ε -1 Ω) \ ω.
3 Power series expansions of the auxiliary functions

(ρ o [ε], ρ i [ε]) and (θ o [ε], θ i [ε]) around ε = 0
As described in the Introduction, an intermediate goal is to provide a series expansion in ε for the integral over ∂ω of the function

t → ν ω (t) • ∇ u ε (εt) u(εt) .
Thus, the idea is first to construct an expansion for ν ω (t) • ∇ u ε (εt) u(εt) and then to integrate such an expansion on ∂ω. Since u ε (εt) is represented by means of the auxiliary density functions

(ρ o [ε], ρ i [ε]) and (θ o [ε], θ i [ε]
), the plan is to obtain an expansion for those densities and then to get the one for u ε (εt) by exploiting the representation formula of Proposition 2.5.

In the following Proposition 3.1 of [19, Prop. 5.1], we present a power series expansion around 0 of (ρ o [ε], ρ i [ε]). Throughout the paper, if j ∈ {1, 2}, then (∂ j F )(y) denotes the partial derivative with respect to x j of the function

F (x) ≡ F (x 1 , x 2 ) evaluated at y ≡ (y 1 , y 2 ) ∈ R 2 . Proposition 3.1. Let (ρ o [ε], ρ i [ε]) be as in Proposition 2.1 for all ε ∈] -ε 0 , ε 0 [. Then there exist ε ρ ∈]0, ε 0 [ and a sequence {(ρ o k , ρ i k )} k∈N in C 0,α (∂Ω) × C 0,α (∂ω) such that ρ o [ε] = +∞ k=0 ρ o k k! ε k and ρ i [ε] = +∞ k=0 ρ i k k! ε k ∀ε ∈] -ε ρ , ε ρ [ ,
where the two series converge uniformly for ε ∈]ε ρ , ε ρ [ in C 0,α (∂Ω) and in C 0,α (∂ω), respectively. Moreover, the pair of functions (ρ o 0 , ρ i 0 ) is the unique solution in C 0,α (∂Ω)×C 0,α (∂ω) of the following system of integral equations

1 2 ρ o 0 (x) + W * Ω [ρ o 0 ](x) = -ν Ω (x) • ∇S(x) ∀x ∈ ∂Ω , 1 2 ρ i 0 (t) -W * ω [ρ i 0 ](t) = 0 ∀t ∈ ∂ω , ∂ω ρ i 0 dσ = 1 ,
and for each k ∈ N \ {0} the pair (ρ o k , ρ i k ) is the unique solution in C 0,α (∂Ω) × C 0,α (∂ω) of the following system of integral equations which involves {(ρ o j , ρ i j )} k-1 j=0 , 1 2 ρ o k (x) + W * Ω [ρ o k ](x) = k j=0 k j (-1) j+1 j h=0 j h ν Ω (x) • (∇∂ h 1 ∂ j-h 2 S)(x) ∂ω ρ i k-j (s)s h 1 s j-h 2 dσ s ∀x ∈ ∂Ω , 1 2 ρ i k (t) -W * ω [ρ i k ](t) = k k-1 j=0 k -1 j (-1) j+1 j h=0 j h t h 1 t j-h 2 ν ω (t) • ∂Ω ρ o k-1-j (∇∂ h 1 ∂ j-h 2 S) dσ ∀t ∈ ∂ω , ∂ω ρ i k dσ = 0 .
In Proposition 3.2, instead we determine the coefficients in the power series expansion of (

θ o [ε], θ i [ε]). Proposition 3.2. Let (θ o [ε], θ i [ε]) be as in Proposition 2.3 for all ε ∈] -ε 0 , ε 0 [. Then there exist ε θ ∈]0, ε 0 [ and a sequence {(θ o k , θ i k )} k∈N in C 1,α (∂Ω) × C 1,α (∂ω) 0 such that θ o [ε] = ∞ k=0 θ o k k! ε k and θ i [ε] = ∞ k=0 θ i k k! ε k ∀ε ∈] -ε θ , ε θ [ , (25) 
where the two series converge uniformly for

ε ∈]-ε θ , ε θ [ in C 1,α (∂Ω) and in C 1,α (∂ω) 0 , respectively. Moreover, (θ o 0 , θ i 0 ) = (0, 0) , θ o 1 = 0 , and θ i 1 is the unique solution in C 1,α (∂ω) 0 of 1 2 θ i 1 (t) -W ω [θ i 1 ](t) = 1 h=0 t h 1 t 1-h 2 (∂ h 1 ∂ 1-h 2 u)(0) - 1 l=0 l h=0 ∂ω s h 1 s l-h 2 (∂ h 1 ∂ l-h 2 u)(0)ρ i 1-l (s) dσ s ∀t ∈ ∂ω , (26) 
and for each k ∈ N \ {0, 1} the pair

(θ o k , θ i k ) is the unique solution in C 1,α (∂Ω) × C 1,α (∂ω) 0 of the following system of integral equations which involves {(θ o j , θ i j )} k-1 j=0 , 1 2 θ o k (x) + W Ω [θ o k ](x) (27) = k k-2 j=0 k -1 j (-1) j+1 j h=0 j h (∇∂ h 1 ∂ j-h 2 S)(x) • ∂ω θ i k-1-j (s) ν ω (s)s h 1 s j-h 2 dσ s ∀x ∈ ∂Ω , 1 2 θ i k (t) -W ω [θ i k ](t) = k-1 j=0 k j (-1) j+1 j h=0 j h t h 1 t j-h 2 ∂Ω θ o k-j ν Ω • ∇∂ h 1 ∂ j-h 2 S dσ (28) 
+ k h=0 k h t h 1 t k-h 2 (∂ h 1 ∂ k-h 2 u)(0) - k l=0 l h=0 k l l h ∂ω s h 1 s l-h 2 (∂ h 1 ∂ l-h 2 u)(0)ρ i k-l (s) dσ s ∀t ∈ ∂ω .
Proof. We follow the strategy of [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]Prop. 5.2]. We first note that the real analyticity of the map which takes ε to (

θ o [ε], θ i [ε]) (cf. Proposition 2.3 (iii)) imply the existence of ε θ and {(θ o k , θ i k )} k∈N such that (25) holds. Clearly, by Proposition 2.3 (ii) we have Λ[ε, θ o [ε], θ i [ε]] = 0 ∀ε ∈] -ε 0 , ε 0 [ .
By computing the derivative with respect to ε in the equality above, we deduce that

∂ k ε (Λ[ε, θ o [ε], θ i [ε]]) = 0 ∀ε ∈] -ε 0 , ε 0 [ , ∀k ∈ N .
Therefore,

∂ k ε (Λ o [ε, θ o [ε], θ i [ε]])(x) = 1 2 ∂ k ε θ o [ε](x) + W Ω [∂ k ε θ o [ε]](x) (29) 
+ ε k j=0 k j (-1) j j h=0 j h ∂ω ∂ k-j ε θ i [ε](s) s h 1 s j-h 2 ν ω (s) • (∇∂ h 1 ∂ j-h 2 S)(x -εs) dσ s + k k-1 j=0 k -1 j (-1) j j h=0 j h ∂ω ∂ k-1-j ε θ i [ε](s) s h 1 s j-h 2 ν ω (s) • (∇∂ h 1 ∂ j-h 2 S)(x -εs) dσ s = 0 ∀x ∈ ∂Ω , ∂ k ε (Λ i [ε, θ o [ε], θ i [ε]])(t) = 1 2 ∂ k ε θ i [ε](t) -W ω [∂ k ε θ i [ε]](t) (30) 
-

k j=0 k j j h=0 j h t h 1 t j-h 2 ∂Ω ∂ k-j ε θ o [ε](y) ν Ω (y) • (∇∂ h 1 ∂ j-h 2 S)(εt -y) dσ y - k h=0 k h t h 1 t k-h 2 (∂ h 1 ∂ k-h 2 u)(εt) + k l=0 l h=0 k l l h ∂ω t h 1 t l-h 2 (∂ h 1 ∂ l-h 2 u)(εt)∂ k-l ε ρ i [ε](t) dσ t = 0 ∀x ∈ ∂ω ,
for all ε ∈]-ε 0 , ε 0 [ and all k ∈ N, where we understand that k-1 j=0 is omitted for k = 0. By classical properties of real analytic maps, we have (

θ o k , θ i k ) = (∂ k ε θ o [0], ∂ k ε θ i [0]
) for all k ∈ N. Therefore, by taking ε = 0 in ( 29) and ( 30), we deduce that (θ o 0 , θ i 0 ) = (0, 0), that θ o 1 = 0, that θ i 1 solves equation [START_REF] Il | Matching of asymptotic expansions of solutions of boundary value problems[END_REF], and that (θ o k , θ i k ) is a solution of ( 27) and ( 28) for all k ∈ N \ {0, 1}. Then, to conclude, it suffices to note that the uniqueness in C 1,α (∂Ω) × C 1,α (∂ω) 0 of the solutions of (26) and of ( 27), [START_REF] Lamberti | On the sharpness of a certain spectral stability estimate for the Dirichlet Laplacian[END_REF] follows by classical potential theory (cf., e.g., Folland [START_REF] Folland | Introduction to partial differential equations[END_REF]Chap. 3]).

Series expansion of ν

ω (•) • ∇ u ε (ε•) u(ε•) around ε = 0
We now turn to construct a series expansion for ν ω (•) • ∇ u ε (ε•) u(ε•) for ε in a neighborhood of 0, whose coefficients will be defined by means of the sequences {(ρ o k , ρ i k )} k∈N and {(θ o k , θ i k )} k∈N introduced in Section 3. The strategy is to compute the derivatives with respect to ε in the representation formula of Proposition 2.5 and to exploit the power series expansions for the densities. As a consequence, as in [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]Prop. 6.1], the first step is the following Proposition 4.1, where we prove a representation formula which can be easily obtained by Proposition 2.5, Propositions 3.1 and 3.2, and by standard properties of real analytic maps (see also Lanza de Cristoforis [ 

u m,0 (t) ≡ 0 ∀t ∈ R 2 \ ω , u m,1 (t) ≡ -w -[∂ω, θ i 1 ](t) ∀t ∈ R 2 \ ω , u m,k (t) ≡ 1 k! k-1 j=0 k j (-1) j j h=0 j h t h 1 t j-h 2 ∂Ω θ o k-j ν Ω • (∇∂ h 1 ∂ j-h 2 S) dσ - 1 k! w -[∂ω, θ i k ](t) ∀t ∈ R 2 \ ω , ∀k ≥ 2 and v m,k (t) ≡ 1 k! k j=0 k j (-1) j j h=0 j h t h 1 t j-h 2 ∂Ω ρ o k-j ∂ h 1 ∂ j-h 2 S dσ + 1 k! v -[∂ω, ρ i k ](t) ∀t ∈ R 2 \ ω , g k ≡ 1 k! k l=0 l h=0 k l l h ∂ω s h 1 s l-h 2 (∂ h 1 ∂ l-h 2 u)(0)ρ i k-l (s) dσ s , r k ≡ 1 k! ∂ω dσ k j=0 k j (-1) j j h=0 j h ∂ω s h 1 s j-h 2 dσ s ∂Ω ρ o k-j ∂ h 1 ∂ j-h 2 S dσ + 1 k! ∂ω dσ ∂ω v[∂ω, ρ i k ] dσ ,
for all k ∈ N. Then the following statements hold.

(i) There exists

ε * ∈]0, ε 0 ] such that the series ∞ k=0 g k ε k and ∞ k=0 r k ε k converge absolutely in ] -ε * , ε * [. Moreover, g 0 = u(0) . (ii) If Ω m ⊆ R 2
\ ω is open and bounded, then there exists

ε m ∈]0, ε * ]∩]0, 1[ such that εΩ m ⊆ Ω for all ε ∈] -ε m , ε m [ and such that u ε (ε•) |Ωm = ∞ k=1 u m,k|Ωm ε k + ( ∞ k=0 g k ε k ) ∞ k=0 v m,k|Ωm ε k + (2π) -1 log |ε| ∞ k=0 r k ε k + (2π) -1 log |ε| (31) for all ε ∈] -ε m , ε m [\{0}. Moreover, the series ∞ k=1 u m,k|Ωm ε k and ∞ k=0 v m,k|Ωm ε k converge in C 1,α (Ω m ) uniformly for ε ∈] -ε m , ε m [.
By Proposition 4.1, we can then prove an expansion for the map in [START_REF] Riva | Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach[END_REF]. 

u #,k (t) ≡ (h,j)∈N 2 h+j=k ∂ h 1 ∂ j 2 u(0) h!j! t h 1 t j 2 ∀t ∈ R 2 , ũk (t) ≡ k l=0 ν ω (t) • ∇u m,l|∂ω (t)u #,k-l (t) ∀t ∈ ∂ω , ṽk (t) ≡ ν ω (t) • ∇v m,k|∂ω (t) ∀t ∈ ∂ω , gk (t) ≡ k l=0 g l u #,k-l (t) ∀t ∈ ∂ω , for all k ∈ N. Then there exists ε ∈]0, ε * ]∩]0, 1[ such that ν ω (•) • ∇ u ε (ε•) |∂ω u(ε•) |∂ω = ∞ k=1 ũk (•)ε k + ∞ k=0 gk (•)ε k ∞ k=0 ṽk (•)ε k ∞ k=0 r k ε k + (2π) -1 log |ε| ( 32 
)
for all ε ∈] -ε, ε[\{0}. Moreover, the series ∞ k=0 gk ε k , ∞ k=0 ũk ε k , and ∞ k=0 ṽk ε k converge in C 0,α (∂ω) uniformly for ε ∈] -ε, ε[.
Proof. We first note that if we take ε ∈]0, ε * [ small enough, then for ε ∈]ε, ε[ we have that

u(εt) = (i,j)∈N 2 ε i+j ∂ i 1 ∂ j 2 u(0) i!j! t i 1 t j 2 = ∞ h=0 (i,j)∈N 2 i+j=h ∂ i 1 ∂ j 2 u(0) i!j! t i 1 t j 2 ε h = ∞ h=0 u #,h (t)ε h ∀t ∈ ∂ω ,
and that the power series ∞ h=0 u #,h|∂ω ε h converges in C 0,α (∂ω) uniformly for ε ∈]ε, ε[. Possibly taking a smaller ε, we observe that for ε ∈]ε, ε[ we have

∞ k=1 ν ω • ∇u m,k|∂ω ε k ∞ h=0 u #,h|∂ω ε h = ∞ k=0 ũk ε k , ∞ k=0 g k ε k ∞ h=0 u #,h|∂ω ε h = ∞ k=0 gk ε k
where the series converge in C 0,α (∂ω) uniformly for ε ∈]ε, ε[ and we have set

ũk ≡ k l=0 ν ω • ∇u m,l|∂ω u #,k-l|∂ω , gk ≡ k l=0 g l u #,k-l|∂ω .
Then the validity of (32) follows by Proposition 4.1 (see formula [START_REF] Lanza De Cristoforis | Asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF]). Now we would like to obtain an expression for ν ω (•)

• ∇ u ε (ε•) |∂ω u(ε•) |∂ω in the form of a convergent series of the type ∞ n=0 ϕ ε (•)ε n .
On the other hand, because of the quotient in [START_REF] Lanza De Cristoforis | Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF], we don't have yet an expression as above. However, by exploiting exactly the same argument of [START_REF] Riva | Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole[END_REF]Thm. 6.3], we can prove Theorem 4.3 below where we exhibit a series expansion for the map which takes 

ε to ν ω (•) • ∇ u ε (ε•) |∂ω u(ε•) |∂ω .
ν ω (•) • ∇ u ε (ε•) |∂ω u(ε•) |∂ω = ∞ n=0 ε n n+1 l=0 λ(n,l) (•) (r 0 + (2π) -1 log |ε|) l (33) 
for all ε ∈]ε , ε [\{0}. Moreover, the series 

∞ n=0 ε n n+1 l=0 λ(n,l) η l (r 0 η + (2π) -1 ) l converges in C 1,α (∂ω) uniformly for (ε, η) ∈] -ε , ε [×]1/ log ε , -1/ log ε [.
λ(0,0) =ũ 0 = 0 , λ(0,1) =ã 0 = u(0) 2 ∂ ∂ν ω v -[∂ω, ρ i 0 ] .
5 Series expansion of Cap Ω (εω, u)

Our aim is now to deduce a full expansion for the u-capacity Cap Ω (εω, u), which is given as the sum of Ωε |∇u ε | 2 dx and of εω |∇u| 2 dx. As a first step, we provide an expansion for εω |∇u| 2 dx around ε = 0. As we shall see, the term εω |∇u| 2 dx depends analytically on ε and thus can be expanded in a power series. Therefore, we compute such a power series in the following lemma.

Lemma 5.1. Let {ξ n } n∈N be the sequence of real numbers defined by

ξ 0 ≡ 0 , ξ 1 ≡ 0 , ξ n ≡ 2 j=1 n-2 l=0 ω ∂ j u #,l+1 (t)∂ j u #,n-l-1 (t) dt ∀n ≥ 2 .
Then there exists Then we note that by assumption (8) on the analyticity of u, by analyticity results for the composition operator (cf. 

ε ξ ∈]0, ε 0 ] such that εω |∇u| 2 dx = ∞ n=2 ξ n ε n for all ε ∈] -ε ξ , ε ξ [\{0}. Moreover, ξ 2 = |∇u(0)| 2 m 2 (ω) ,
∈]0, ε 0 ] such that the map from ] -ε ξ , ε ξ [ to C 0,α (ω) which takes ε to (∂ j u)(ε•) |ω is real analytic. Possibly shrinking ε ξ , one verifies that for ε ∈] -ε ξ , ε ξ [\{0}, (∂ j u)(εt) = 1 ε ∂ j (u(εt)) = 1 ε ∞ h=0 ∂ j u #,h (t)ε h = 1 ε ∞ h=1 ∂ j u #,h (t)ε h-1 ε = ∞ h=0 ∂ j u #,h+1 (t)ε h ∀t ∈ ω ,
where the series

∞ h=0 ∂ j u #,h+1|ω ε h converges in C 0,α (ω) uniformly for ε ∈] -ε ξ , ε ξ [. As a conse- quence, (∂ j u) 2 (εt) = ∞ n=0 n l=0 ∂ j u #,l+1 (t)∂ j u #,n-l+1 (t) ε n ∀t ∈ ω , ∀ε ∈] -ε ξ , ε ξ [\{0} .
By the continuity of the linear operator from C 0,α (ω) to R which takes a function h to its integral ω h dt, by summing on j ∈ {1, 2}, one deduces that possibly taking a smaller ε ξ ω

|(∇u)(εt)| 2 dt = ∞ n=0 2 j=1 n l=0 ω ∂ j u #,l+1 (t)∂ j u #,n-l+1 (t) dt ε n , (34) 
for all ε ∈]ε ξ , ε ξ [\{0}. In particular,

2 j=1 ω ∂ j u #,1 (t)∂ j u #,1 (t) dt = ω (∂ 1 u(0)) 2 + (∂ 2 u(0)) 2 dt = |∇u(0)| 2 ω dt = |∇u(0)| 2 m 2 (ω) .
Then, by multiplying equation ( 34) by ε 2 , we deduce the validity of the lemma.

By integrating over ∂ω formula [START_REF] Lanza De Cristoforis | Analyticity of a nonlinear operator associated to the conformal representation of a doubly connected domain in Schauder spaces[END_REF] and adding the coefficients of Lemma 5.1, by Theorem 4.3 we can immediately deduce the validity of our main result on the asymptotic behavior of Cap Ω (εω, u). 

c (n,l) ≡ - ∂ω λ(n,l) dσ + δ 0,l ξ n ,
for all n, l ∈ N with l ≤ n + 1 (where δ 0,l = 1 if l = 0 and δ 0,l = 0 if l = 0). Then there exists 

ε c ∈]0, ε 0 ]∩]0, 1[ such that Cap Ω (εω, u) = ∞ n=0 ε n n+1 l=0 c (n,l) (r 0 + (2π) -1 log |ε|) l for all ε ∈] -ε c , ε c [\{0}. Moreover, the series ∞ n=0 ε n n+1 l=0 c (n,l) η l (r 0 η + (2π) -1 ) l converges uniformly for (ε, η) ∈] -ε c , ε c [×]1/ log ε c , -1/ log ε c [.
c (0,0) =0 , c (0,1) = - ∂ω u(0) 2 ∂ ∂ν ω v -[∂ω, ρ i 0 ] dσ = -u(0) 2 ∂ω ρ i 0 dσ = -u(0) 2 .
Moreover, if we denote by H o 0 the unique solution in C 1,α (Ω) of

∆H o 0 = 0 in Ω , H o 0 (x) = S(x) for all x ∈ ∂Ω ,
and by 

H i 0 the unique solution in C 1,α loc (R 2 \ ω) of    ∆H i 0 = 0 in R 2 \ ω , H i 0 (t) = S(
H i 0 (t) -H o 0 (0) .
Accordingly,

Cap Ω (εω, u) = - u(0) 2 lim t→∞ H i 0 (t) -H o 0 (0) + (2π) -1 log |ε| + ε ∞ n=1 ε n-1 n+1 l=0 c (n,l) (lim t→∞ H i 0 (t) -H o 0 (0) + (2π) -1 log |ε|) l (35) 
for all ε ∈]ε c , ε c [\{0}. Moreover, in case ω is a Jordan domain, we deduce by [39, §4] that e 2π limt→∞ H i 0 (t) is the logarithmic capacity (or outer conformal radius) of ω. H o 0 (0) is the value at 0 of the unique harmonic function in Ω which agrees with S on ∂Ω. In other words,

H (0,0) = -H o 0 (0) , N = lim t→∞ H i 0 (t) ,
where H (0,0) and N are as in formula [START_REF] Chesnel | A numerical approach for the Poisson equation in a planar domain with a small inclusion[END_REF]. Finally, we note that the if we look at the first summand in the right hand side of equality [START_REF] Maz'ya | Eigenvalue problem in a solid with many inclusions: asymptotic analysis[END_REF], then the information on the function u is in the numerator, whereas the geometry of Ω and ω is taken into account in the denominator.

Asymptotic behavior of

Cap Ω (εω, u) under vanishing assumption for u

We now assume that there exists k ∈ N \ {0} such that

D γ u(0) = 0 ∀|γ| < k , D β u(0) = 0 for some β ∈ N 2 with |β| = k . (36) 
Then condition [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF] and Proposition 3.2 imply that

(θ o k , θ i k ) = (0, 0) ∀k < k , θ o k = 0 , (37) 
and that θ i k is the unique solution in C 1,α (∂ω) 0 of

1 2 θ i k (t) -W ω [θ i k ](t) = k h=0 k h t h 1 t k-h 2 (∂ h 1 ∂ k-h 2 u)(0) - k h=0 k h ∂ω s h 1 s k-h 2 (∂ h 1 ∂ k-h 2 u)(0)ρ i 0 (s) dσ s ∀t ∈ ∂ω , i.e., 1 2 θ i k (t) -W ω [θ i k ](t) = k! u #,k (t) - ∂ω u #,k ρ i 0 dσ ∀t ∈ ∂ω . (38) 
Then equations ( 37), [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF], and Proposition 4.1 imply that

u m,k = 0 ∀k < k , u m,k = - 1 k! w -[∂ω, θ i k ] . (39) 
As a consequence, by classical potential theory, u m,k is the unique solution in

C 1,α loc (R 2 \ ω) of the following problem      ∆u m,k = 0 in R 2 \ ω , u m,k (t) = u #,k (t) -∂ω u #,k ρ i 0 dσ for all t ∈ ∂ω , sup t∈R 2 \ω |u m,k (t)| < +∞ . (40) 
Moreover, by assumption [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF] and Proposition 4.1 we have

g k = 0 ∀k < k , g k = 1 k! k h=0 k h ∂ω s h 1 s k-h 2 (∂ h 1 ∂ k-h 2 u)(0)ρ i 0 (s) dσ s = ∂ω u #,k ρ i 0 dσ . ( 41 
)
Then by [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF] and by Propostion 4.2 we verify that

u #,k = 0 ∀k < k , (42) 
and accordingly Proposition 4.2 and equations ( 39), [START_REF] Ozawa | Singular Hadamard's variation of domains and eigenvalues of the Laplacian[END_REF] imply

ũk = 0 ∀k < 2k , ũ2k = u #,k|∂ω ∂u m,k ∂ν ω . (43) 
Furthermore, by ( 41) and [START_REF] Ozawa | Singular Hadamard's variation of domains and eigenvalues of the Laplacian[END_REF] we have

gk = 0 ∀k < 2k , g2k = g k u #,k|∂ω = u #,k|∂ω ∂ω u #,k ρ i 0 dσ . (44) 
Then, as an intermediate step for computing the coefficients of the expansion of the u-capacity Cap Ω (εω, u), we consider the quantities ãn , λ(n,l) introduced in Theorem 4.3 for representing the behavior of

ν ω (•) • ∇ u ε (ε•) |∂ω u(ε•). A straightforward computation based on (43), ( 44 
) implies that ãn = 0 ∀n < 2k , ã2k = g2k ṽ0 = ṽ0 u #,k|∂ω ∂ω u #,k ρ i 0 dσ ,
and accordingly

λ(n,0) = 0 ∀n < 2k , λ2k,0 = ũ2k = u #,k|∂ω ∂u m,k ∂ν ω , ( 45 
) λ(n,1) = 0 ∀n < 2k , λ2k,1 = ã2k = ṽ0 u #,k|∂ω ∂ω u #,k ρ i 0 dσ , (46) 
and λ(n,l) = 0 ∀(n, l) such that nl + 1 < 2k and that 2 ≤ l ≤ n + 1 .

In particular, λ(n,l) = 0 for all (n, l) such that n < 2k + 1 and that 2 ≤ l ≤ n + 1. Moreover, a simple computation shows that

ξ n = 0 ∀n < 2k , ξ 2k = ω |∇u #,k | 2 dt .
Finally, by Theorem 5.2 and by integrating equalities ( 45)-( 47), we obtain

c (n,0) = 0 ∀n < 2k , c 2k,0 = - ∂ω ũ2k dσ + ω |∇u #,k | 2 dt = - ∂ω u #,k|∂ω ∂u m,k ∂ν ω dσ + ω |∇u #,k | 2 dt , c (n,1) = 0 ∀n < 2k , c 2k,1 = - ∂ω ã2k dσ = - ∂ω ṽ0 u #,k|∂ω dσ ∂ω u #,k ρ i 0 dσ , and c (n,l) = 0 ∀(n, l) such that n -l + 1 < 2k and that 2 ≤ l ≤ n + 1 .
In particular, c (n,l) = 0 for all (n, l) such that n < 2k + 1 and that 2

≤ l ≤ n + 1. Since u m,k = -1 k! w -[∂ω, θ i k ], then u m,k is harmonic at infinity (cf. ( 39 
)
). As a consequence, the decay properties of its radial derivative (cf. Folland [21, Prop. 2.75]) and the Divergence Theorem imply that ∂ω ∂u m,k ∂ν ω dσ = 0 .

Accordingly,

- ∂ω u #,k|∂ω ∂u m,k ∂ν ω dσ = - ∂ω u #,k|∂ω - ∂ω u #,k|∂ω dσ ∂u m,k ∂ν ω dσ .
Since, u m,k solves problem [START_REF] Novotny | Topological derivatives in shape optimization[END_REF], we have u m,k = u #,k -∂ω u #,k dσ on ∂ω, and thus

- ∂ω u #,k|∂ω - ∂ω u #,k|∂ω dσ ∂u m,k ∂ν ω dσ = - ∂ω u m,k ∂u m,k ∂ν ω dσ .
On the other hand, the harmonicity at infinity of u m,k and the Divergence Theorem imply that

0 < R 2 \ω |∇u m,k | 2 dt = - ∂ω u m,k ∂u m,k
∂ν ω dσ (cf. Folland [21, p. 118]). As a consequence,

- ∂ω u #,k|∂ω ∂u m,k ∂ν ω dσ = R 2 \ω |∇u m,k | 2 dt > 0 . ( 48 
)
Moreover, if we denote by u k the unique solution in

C 1,α loc (R 2 \ ω) of    ∆u k = 0 in R 2 \ ω , u k (t) = u #,k (t)
for all t ∈ ∂ω , sup t∈R 2 \ω |u k (t)| < +∞ , [START_REF] Schauder | Bemerkung zu meiner Arbeit "Potentialtheoretische Untersuchungen I (Anhang)[END_REF] then clearly

u k = u m,k + ∂ω u #,k ρ i 0 dσ ,
and thus

R 2 \ω |∇u k | 2 dt = R 2 \ω |∇u m,k | 2 dt .
We now turn to consider the product

- ∂ω ṽ0 u #,k|∂ω dσ ∂ω u #,k ρ i 0 dσ . We first note that ṽ0 = ν ω • ∇v m,0|∂ω = ν ω • ∇v -[∂ω, ρ i 0 ] |∂ω .
On the other hand, by Proposition 3.1 and the jump formula for the normal derivative of the single layer potential,

ν ω • ∇v -[∂ω, ρ i 0 ] |∂ω = 1 2 ρ i 0 + W * ω [ρ i 0 ] = 1 2 ρ i 0 + 1 2 ρ i 0 = ρ i 0 .
Accordingly,

∂ω ṽ0 u #,k|∂ω dσ = ∂ω u #,k ρ i 0 dσ .
By [19, Proof of Lem. 7.2], we have

∂ω u #,k ρ i 0 dσ = lim t→∞ u k (t) , which implies - ∂ω ṽ0 u #,k|∂ω dσ ∂ω u #,k ρ i 0 dσ = -lim t→∞ u k (t) 2 .
As a consequence, under assumption [START_REF] Maz'ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, (Russian)[END_REF], by Remark 5.3 and formula [START_REF] Maz'ya | Eigenvalue problem in a solid with many inclusions: asymptotic analysis[END_REF], we can deduce the validity of the following (cf. Theorem 1.2).

Theorem 5.4. Let assumption (36) hold. Then

Cap Ω (εω, u) =ε 2k R 2 \ω |∇u k | 2 dt + ω |∇u #,k | 2 dt - lim t→∞ u k (t) 2 (lim t→∞ H i 0 (t) -H o 0 (0) + (2π) -1 log |ε|) + ∞ n=2k+1 ε n n+1 l=n-2k+1 c (n,l) (lim t→∞ H i 0 (t) -H o 0 (0) + (2π) -1 log |ε|) l , ( 50 
)
for all ε ∈] -ε c , ε c [\{0}.
Therefore, if (54) holds, we would like to obtain a more accurate asymptotic expansion of λ N (Ω \ (εω)). We now assume that

there exists k ∈ N \ {0} such that D γ u N (0) = 0 ∀|γ| < k and that D β u N (0) = 0 for some β ∈ N 2 with |β| = k . ( 55 
)
and we set

u N,#,k (t) ≡ (h,j)∈N 2 h+j=k ∂ h 1 ∂ j 2 u N (0) h!j! t h 1 t j 2 ∀t ∈ R 2 , (56) 
Moreover, we denote by u N,k the unique solution in

C 1,α loc (R 2 \ ω) of      ∆u N,k = 0 in R 2 \ ω , u N,k (t) = u N,#,k (t) for all t ∈ ∂ω , sup t∈R 2 \ω |u N,k (t)| < +∞ . ( 57 
)
Then by [START_REF] Valent | Boundary value problems of finite elasticity. Local theorems on existence, uniqueness and analytic dependence on data[END_REF] we have

Cap Ω (εω, u N ) = ε 2k R 2 \ω |∇u N,k | 2 dt + ω |∇u N,#,k | 2 dt + o(ε 2k ) as ε → 0 .
Then, again, by formula ( 6) of Theorem 1.1 we deduce the validity of the following result (from which we deduce Theorem 1.3). Theorem 6.2. Let assumptions (52), (55) hold. Let u N,#,k be as in (56). Let u N,k be the unique solution in C 1,α loc (R 2 \ ω) of (57). Then

λ N (Ω \ (εω)) = λ N (Ω) + ε 2k R 2 \ω |∇u N,k | 2 dt + ω |∇u N,#,k | 2 dt + o(ε 2k ) as ε → 0 + . ( 58 
)
Remark 6.3. We note that in formula (58) the term

R 2 \ω |∇u N,k | 2 dt + ω |∇u N,#,k | 2 dt ( 59 
)
depends both on the behavior near 0 of the eigenfunction u N and on the geometry ω of the perforation. We emphasize that the way the term in (59) depends on Ω is only through the eigenfunction u N .

Optimal location of small holes

Let us now use the above results to discuss how to position a hole in a domain in order to maximize or minimize an eigenvalue. Let Ω and ω satisfy the hypotheses (7) for a given α ∈]0, 1[. Moreover, let us assume that the integer N ≥ 1 is such that λ N (Ω) is simple. The small holes we are considering are sets of the form p + εω, where p ∈ Ω and ε > 0 are such that p + εω ⊂ Ω. Let us point out that we do not a priori exclude that ω touches the boundary of Ω. For a fixed ε ∈]0.ε 0 [ (see the comments following Condition ( 7)), we may define a maximum and a minimum problem. More precisely, we can look for two points p M ε and p m ε in Ω, if they exist, such that (M1) For each p ∈ Ω such that p

+ εω ⊂ Ω , λ N (Ω \ (p M ε + εω)) ≥ λ N (Ω \ (p + εω)) ; (m1) For each p ∈ Ω such that p + εω ⊂ Ω, λ N (Ω \ (p m ε + εω)) ≤ λ N (Ω \ (p + εω)) .
These problems are studied in much more detail, when N = 1, in Section 3.5 of [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF].

In the rest of this section, we are discussing slightly different problems, which can be understood as an asymptotic version of (M1) and (m1). More specifically, we would like to find, under the same assumptions, two points p M and p m in Ω, if they exist, such that: (M2) For each p ∈ Ω, there exists ε M p > 0 such that

λ N (Ω \ (p M + εω)) ≥ λ N (Ω \ (p + εω)) ∀ε ∈]0, ε M p [ ; (m2) For each p ∈ Ω, there exists ε m p > 0 such that λ N (Ω \ (p m + εω)) ≤ λ N (Ω \ (p + εω)) ∀ε ∈]0, ε m p [ .
Also we do not have a complete solution of these problems, we wish to present some remarks.

Let us first consider Problem (M2). As before, we denote by u N a normalized eigenfunction associated with λ N (Ω). If the function |u N | 2 has a unique point of maximum p * in Ω, then p * is the unique solution of Problem (M2). This follows directly from Theorem 6.1. If |u N | 2 has more that one point of maximum, a solution of Problem (M2), if it exists, must be one of them. In order to be more precise, we would have to look at higher order terms in the expansions. Problem (m2) seems more difficult. Indeed, we can sometime prove that it has no solution. In the case N = 1, there exists a (unique) positive and normalized eigenfunction associated with λ 1 (Ω), which we denote by u 1 . Since u 1 is continuous on Ω and vanishes on ∂Ω, for any p ∈ Ω, there exists q ∈ Ω such that 0 < u 1 (q) < u 1 (p). Using again Theorem 6.1, it follows that p is not a solution of (m2), showing that the problem has no solution. In the case N ≥ 2, any eigenfunction associated with λ N (Ω) is orthogonal to u 1 and therefore has a non-empty nodal set. Nevertheless, it is still possible that (m2) has no solution. For instance, let us consider the case where the nodal set of u N consists of a single simple curve γ connecting two points p 1 and p 2 of ∂Ω. If p belongs to γ, by Theorem 6.2,

λ N (Ω \ (p + εω)) = λ N (Ω) + ε 2 R 2 \ω |∇u p N,1 | 2 dt + ω |∇u p N,#,1 | 2 dt + o(ε 2 ) as ε → 0 + , (60) 
where u p N,#,1 and u p N,1 are defined by ( 56) and (57), after a translation sending p to 0. In other words,

u p N,#,1 (t) ≡ ∂ 1 u(p)t 1 + ∂ 1 u(p)t 2 ∀t ∈ R 2 , (61) 
and

u p N,1 is the unique solution in C 1,α loc (R 2 \ ω) of    ∆u p N,1 = 0 in R 2 \ ω , u p N,1 (t) = u p N,#,1 (t) for all t ∈ ∂ω , sup t∈R 2 \ω |u p N,1 (t)| < +∞ . (62) 
From this and Theorem 6.1, it follows that whenever q ∈ Ω \ γ and ε > 0 small enough,

λ N (Ω \ (p + εω)) < λ N (Ω \ (q + εω)).
On the other hand, since ∇u N vanishes at p 1 and p 2 , we have that u p N,#,1 and u p N,1 converge to 0 as p moves on γ towards p 1 or p 2 . Accordingly, the coefficient following ε 2 in Formula (60) goes to 0 as p moves on γ towards p 1 or p 2 (cf. ( 61) and ( 62)). It follows that for any fixed p ∈ γ ∩ Ω such that the coefficient is non-zero, we can find p ∈ γ ∩ Ω such that

λ N (Ω \ (p + εω)) < λ N (Ω \ (p + εω))
for all ε > 0 small enough. As a result, Problem (m2) has no solution in this case, assuming that ω is such that the coefficient never vanishes. We will see in Section 9 that this last condition is satisfied when ω is the interior of an ellipse, in particular when ω is a disk.

If instead u N has an order of vanishing greater than one at some points inside Ω, that is to say if at least two nodal lines meet at some points, Problem (m2) may have a solution. As a first step to find it, we need to look for the set N of those points p ∈ Ω where the largest number of nodal lines intersect. We denote this number by k. Again by Theorem 6.2, we know that for each p ∈ N we have

λ N (Ω \ (p + εω)) = λ N (Ω) + ε 2k R 2 \ω |∇u p N,k | 2 dt + ω |∇u p N,#,k | 2 dt + o(ε 2k ) as ε → 0 + .
Here above,

u p N,#,k (t) ≡ (h,j)∈N 2 h+j=k ∂ h 1 ∂ j 2 u(p) h!j! t h 1 t j 2 ∀t ∈ R 2 , and u p N,k is the unique solution in C 1,α loc (R 2 \ ω) of      ∆u p N,k = 0 in R 2 \ ω , u p N,k (t) = u p N,#,k (t) for all t ∈ ∂ω , sup t∈R 2 \ω |u p N,k (t)| < +∞ .
If N contains a single point, this point is the unique solution of (m2). If not, we have to move to a second step: we need to minimize the coefficient in front of ε 2k . If there exists a point p * ∈ N such that

R 2 \ω |∇u p * N,k | 2 dt+ ω |∇u p * N,#,k | 2 dt < R 2 \ω |∇u p N,k | 2 dt+ ω |∇u p N,#,k | 2 dt ∀p ∈ N \{p * } ,
then this point is the unique solution of Problem (m2). If not, we cannot conclude that a solution exists without looking at higher order terms in the expansions.

We have not explored the relation between Problems (M1) and (M2), respectively (m1) and (m2), or even the existence of solutions of Problems (M1) and (m1). Assuming existence, we could for instance ask the following question: if (M2) has a unique solution p M , do solutions p M ε of (M1) converge to p M when ε → 0 + , and similarly for (m2) and (m1)? Such questions are discussed on page 60 of [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF], but answering them would require a deeper analysis. In particular, we probably need to understand eigenvalue variation for a hole close ∂Ω in order to find the connection between (m1) and (m2).

Numerical simulations

In this section, we present some numerical simulations on the asymptotic behavior of the eigenvalues in a domain with a small hole. Both the domains Ω and ω will have elliptic shapes, but we will consider different rotations of the small hole in order to show the dependence of the asymptotic behavior of the eigenvalues on the geometry of the hole εω and on the relation of its orientation with respect to the nodal lines of a suitably normalized eigenfunction in the unperturbed domain Ω.

We take a, b > 0 and we consider the ellipse E 0 (a, b) parametrized by

E 0 (a, b) = (x, y) ∈ R 2 , x 2 a 2 + y 2 b 2 < 1 . (63) 
We denote by R θ the rotation of angle θ ∈ [0, π/2]. For ε > 0 small enough, we define the perforated domain E ε,θ (a, b) by setting

E ε,θ (a, b) = E 0 (a, b) \ εR θ E 0 ( a 4 , b 4 
).

In other words, we set

Ω ≡ E 0 (a, b) , ω ≡ R θ E 0 ( a 4 , b 4 
) ,

so that Ω \ (εω) = E ε,θ (a, b) .
In the sequel, we fix a = 3, b = 2 and we omit these parameters in the notation. Namely,

E ≡ E 0 (3, 2) , E(ε, θ) ≡ E ε,θ (3, 2) .
As discretization of the parameters, we choose

ε ∈ {1.5 -k , 0 ≤ k ≤ 20} and θ ∈ j 10 π 2 , 0 ≤ j ≤ 10 .
We denote by λ N and λ N (ε, θ) the N -th eigenvalue of the Laplacian with Dirichlet boundary condition in the (unperturbed) ellipse E and in the perforated domain E(ε, θ), respectively. We first note that the first 16 eigenvalues of the Dirichlet Laplacian in the ellipse E are the following: As we can see, all the eigenvalues λ 1 , . . . , λ 16 are simple. Then in Figure 1 we trace the nodal line of the corresponding eigenfunctions. As a preliminary step in our analysis, we look at the behavior of the nodal lines in the perforated domain as ε approaches 0 and for different values of the angle θ. We note that for N ∈ {2, 3, 6, 8, 10, 12, 14, 15} there is only one nodal line passing through 0, whereas for N ∈ {5, 11, 16} there are two nodal lines. As a consequence, in view of the results of Section 6, we expect that

λ N (ε, θ) -λ N ∼ - c N (θ) log ε if N ∈ {1, 4, 7, 9, 13} , λ N (ε, θ) -λ N ∼ c N (θ)ε 2 if N ∈ {2, 3, 6, 8, 10, 12, 14, 15} , λ N (ε, θ) -λ N ∼ c N (θ)ε 4 if N ∈ {5, 11, 16} ,
as ε → 0 + , for some constant c N (θ) > 0 which depends on N and θ. 

" = 1.5 k N (", ⇡ 10 ) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
λ N (ε, θ) -λ N ∼ c N (θ)ε 2 for N ∈ {2, 3} , λ N (ε, θ) -λ N ∼ c N (θ)ε 4 for N ∈ {5, 11} ,
as ε → 0 + , for some constant c N (θ) > 0 which depends on N and θ. Figures 7 -11 below show in a log-log plot a good fitting with the expected behavior. To compute the eigenmodes, we use a finite element method of degree P 4 with at least 2800 triangular elements. We work in a simple precision, so computations are relevant when the gap log(λ N (ε, 0)λ N ) is larger than 10 -8 . It is the reason the computations for N = 5, 11 and ε ≤ 10 -2 are irrelevant. Moreover, for ε fixed, they show a decreasing behavior in θ ∈ [0, π/2] for N = 2, in contrast with an increasing behavior in θ ∈ [0, π/2] for N = 3. Instead, for N = 5 and ε is fixed and small, the quantity λ N (ε, θ)λ N is first increasing and then decreasing.

Finally, we study the limiting behavior as a function of the angle θ. To do so, we set

µ N (ε, θ) = 1 ε α N (λ N (ε, θ) -λ N ) ,
where α N is the order of the second term in the asymptotic expansion, i.e.:

α 2 = α 3 = 2, α 5 = α 11 = 4.
We plot the curve θ → µ N (ε, θ), with ε = 1.5 -k and k = 14 or 16 when N = 2, 3 (in this case, we have a convergence at order 2) and k = 7 or 8 when N = 5, 11. This choice is done to ensure that α N k is constant in both cases. 
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as ε → 0 + , for some constant c N (θ) > 0 which depends on N and θ. Figures 7 -11 below show in a log-log plot a good fitting with the expected behavior. To compute the eigenmodes, we use a finite element method of degree P 4 with at least 2800 triangular elements. We work in a simple precision, so computations are relevant when the gap log(λ N (ε, 0)λ N ) is larger than 10 -8 . It is the reason the computations for N = 5, 11 and ε ≤ 10 -2 are irrelevant. Moreover, for ε fixed, they show a decreasing behavior in θ ∈ [0, π/2] for N = 2, in contrast with an increasing behavior in θ ∈ [0, π/2] for N = 3. Instead, for N = 5 and ε is fixed and small, the quantity λ N (ε, θ)λ N is first increasing and then decreasing.

Finally, we study the limiting behavior as a function of the angle θ. To do so, we set

µ N (ε, θ) = 1 ε α N (λ N (ε, θ) -λ N ) ,
where α N is the order of the second term in the asymptotic expansion, i.e.:

α 2 = α 3 = 2, α 5 = α 11 = 4.
We plot the curve θ → µ N (ε, θ), with ε = 1.5 -k and k = 14 or 16 when N = 2, 3 (in this case, we have a convergence at order 2) and k = 7 or 8 when N = 5, 11. This choice is done to ensure that α N k is constant in both cases. 

Theoretical analysis of the simulations

In this last section we are going to prove analytically what we have seen in Section 8, that is the dependence of simple eigenvalues' behavior on the angle between x 1 -axis and the small ellipse's 9 Theoretical analysis of the simulations

N = 2 N = 3 N = 5 N = 11
In this last section we are going to prove analytically what we have seen in Section 8, that is the dependence of simple eigenvalues' behavior on the angle between x 1 -axis and the small ellipse's major axis.

If we consider the ellipse E 0 in (63) with a > b > 0, it can be written as 9 Theoretical analysis of the simulations

E 0 (a, b) = n (x 1 , x 2 ) 2 R 2 : x 2 1 b 2 + c 2 + x 2 2 b 2 < 1 o , 36 
In this last section we are going to prove analytically what we have seen in Section 8, that is the dependence of simple eigenvalues' behavior on the angle between x 1 -axis and the small ellipse's major axis.

If we consider the ellipse E 0 in (63) with a > b > 0, it can be written as 9 Theoretical analysis of the simulations

E 0 (a, b) = n (x 1 , x 2 ) 2 R 2 : x 2 1 b 2 + c 2 + x 2 2 b 2 < 1 o , 36 
In this last section we are going to prove analytically what we have seen in Section 8, that is the dependence of simple eigenvalues' behavior on the angle between x 1 -axis and the small ellipse's major axis.

If we consider the ellipse E 0 in (63) with a > b > 0, it can be written as If we consider the ellipse E 0 in (63) with a > b > 0, it can be written as

E 0 (a, b) = (x 1 , x 2 ) ∈ R 2 : x 2 1 b 2 + c 2 + x 2 2 b 2 < 1 , 36 
E 0 (a, b) = (x 1 , x 2 ) ∈ R 2 : x 2 1 b 2 + c 2 + x 2 2 b 2 < 1 ,
where c is the distance between the two foci, which satisfies c 2 = a 2b 2 . Up to replacing ε/4 with ε, we can think where c is the distance between the two foci, which satisfies c 2 = a 2 b 2 . Up to replacing "/4 with ", we can think

E(ε, θ) = E 0 (a, b) \ εR θ E 0 (a, b), N = 5 N = 11 k = 14 k = 16 k = 7 k = 8
E(", ✓) = E 0 (a, b) \ "R ✓ E 0 (a, b),
being ✓ the rotation of angle ✓ 2 [0, ⇡/2], as in Section 8.

In view of Theorem 6.2, we aim at computing the quantity

E ⇣ !, u N,#,k ⌘ := Z R 2 \! |ru N,k | 2 dt + Z ! |ru N,#,k | 2 dt (64)
which is indeed the coe cient of the leading term of the eigenvalues' di↵erence expansion. We remark that in this case

! = R ✓ E 0 (a, b), (65) 
depending on ✓, so even (64) is in fact depending on ✓. An explicit computation of it will show how it depends on this angle. As seen in Section 6, the eigenfunction u N is analytic in a neighborhood of 0. In this Section, we assume u N = (cf. assumption (55)). Accordingly, there exist k 2 N \ {0} and P k , a homogeneous polynomial of degree k in two variables, such that

u N (x) = P k (x) + O ⇣ |x| k+1 ⌘ .
It follows, from di↵erentiating the series expansion of u N at 0, that

u N (x) = P k (x) + O ⇣ |x| k 1 ⌘ ,
and since ( + N )u N = 0, we obtain P k = 0, that is to say the polynomial P k is harmonic. Therefore, there exists 2 R \ {0} and

↵ 2] ⇡ 2 , ⇡ 2 ] such that, r k u N (r cos t, r sin t) ! sin(kt + ↵) as r ! 0 in C 1,⌧ ([0, 2⇡]) (66) 
for any ⌧ 2]0, 1[. Moreover, as noted in [START_REF] Abatangelo | Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications[END_REF], is directly linked to the norm of the k-th di↵erential of u N at 0. More precisely, if we consider In view of Theorem 6.2, we aim at computing the quantity

kd j u(x)k 2 := 2 X i 1 ,...,i j =1 @ j u @x i 1 . . . @x i j (x) 2 , 37 
E ω, u N,#,k := R 2 \ω |∇u N,k | 2 dt + ω |∇u N,#,k | 2 dt (64)
which is indeed the coefficient of the leading term of the eigenvalues' difference expansion. We remark that in this case

ω = R θ E 0 (a, b), (65) 
depending on θ, so that even (64) is in fact depending on θ. An explicit computation of it will show how it depends on this angle. As seen in Section 6, the eigenfunction u N is analytic in a neighborhood of 0. In this Section, we assume u N (0) = 0 (cf. assumption (55)). Accordingly, there exist k ∈ N \ {0} and P k , a homogeneous polynomial of degree k in two variables, such that

u N (x) = P k (x) + O |x| k+1 .
It follows, from differentiating the series expansion of u N at 0, that ∆u

N (x) = ∆P k (x) + O |x| k-1 ,
and since (∆ + λ N )u N = 0, we obtain ∆P k = 0, that is to say the polynomial P k is harmonic. Therefore, there exists β ∈ R \ {0} and α ∈] -π 2 , π 2 ] such that,

r -k u N (r cos t, r sin t) → β sin(kt + α) as r → 0 in C 1,τ ([0, 2π]) (66) 
for any τ ∈]0, 1[. Moreover, as noted in [START_REF] Abatangelo | Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications[END_REF], β is directly linked to the norm of the k-th differential of u N at 0. More precisely, if we consider

d j u(x) 2 := 2 i 1 ,...,i j =1 ∂ j u ∂x i 1 . . . ∂x i j (x) 2 , then β 2 = d k u N (0) 2 (k!) 2 2 k-1 .
For the sake of simplicity and without loss of generality, we perform a change of variables by rotating the domain, in such a way that (i) in the new domain, the major axis of the small elliptic hole is lying along the x 1 -axis, so that Equation (65) reads ω = E 0 (a, b);

(ii) Equation (66) now reads

r -k u N (r cos t, r sin t) → β sin(kt + kϕ) as r → 0 in C 1,τ 2π]), (68) 
with ϕ ∈]π/2k, π/2k].

Remark 9.1. Given the above condition, ϕ is unique and -ϕ is, in absolute value, the smallest angle at the origin between the major axis of R θ E 0 (a, b) and a nodal line of the eigenfunction u N . We denote this unique angle ϕ by ϕ(u N , θ).

In order to compute explicitly the quantity in (64) under assumptions (67) and (68), we define the elliptic coordinates (ξ, η) (see for instance [START_REF] Sokolov | Elliptic coordinates[END_REF] or [START_REF] Abatangelo | Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators[END_REF][START_REF] Abatangelo | Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications[END_REF]) by 

x 1 = c cosh(ξ) cos(η), x 2 = c sinh(ξ) sin(η), ξ ∈ [0, +∞[, η ∈ [0, 2π[. ( 69 

Computation of the first contribution

In order to compute the first contribution, we need to compute explicitely the potential W N,k solution to (71). Let us consider the Fourier expansion of W in elliptic coordinates: for any j ∈ N and any j ∈ N \ {0}, respectively. We solve the latter problems by a 0 (ξ) ≡ a 0 ( ξ) for ξ ≥ ξ; a j (ξ) = a j ( ξ) e -j(ξ-ξ) for ξ ≥ ξ, for j ≥ 1; b j (ξ) = b j ( ξ) e -j(ξ-ξ) for ξ ≥ ξ, for j ≥ 1.

By rewriting Formula (48) in the elliptic coordinates (ξ, η), we 

the computation being similar to the previous one. We note that the terms in the sums in the right-hand side of (74) and (75) are nontrivial only if k -2l = ±j, and obtain the values of the coefficients: In accordance with [START_REF] Abatangelo | Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators[END_REF][START_REF] Abatangelo | Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications[END_REF], we use the notation

a j ( ξ) =      0 if k + j odd;
C k := 1 2 2k-1 k j=0 k -2j k j 2 = 1 4 k-1 k-1 2 j=0 k -2j k j 2 .
Furthermore, we define We summarize the analysis of this subsection in the following statement. 

Computation of the second contribution

We recall that u N,#,k is a harmonic homogeneous polynomial. We perform an integration by parts, pass to elliptic coordinates, apply the addition formula for sines and thanks to the mutual orthogonality of trigonometric functions we obtain where the second to last equality follows from the fact that every term of the sum in the third line is zero except when l = j or l = kj. Moreover, the last equality follows easily recalling that k j = k kj .

Comparison with the numerical simulations

According to Theorem 6.2, we have 

λ N (ε, θ) -λ N ∼ ε 2k E R θ E(

  R[0] > 0 and the term R[0] depends on the geometry of ∂Ω = ζ o (∂D) and of ∂ω = ζ i (∂D).
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 43 With the notation introduced in Proposition 4.1, let {ã n } n∈N be the sequence of functions from ∂ω to R defined by ãn ≡ n k=0 gn-k ṽk ∀n ∈ N . Let { λ(n,l) } (n,l)∈N 2 , l≤n+1 be the family of functions from ∂ω to R defined by λ(n,0) ≡ ũn , λ(n,1) ≡ ãn , for all n ∈ N, and λ(n,l) ≡ (-1) for all n, l ∈ N with 2 ≤ l ≤ n + 1. Then there exists ε ∈]0, ε 0 ]∩]0, 1[ such that

Remark 4 . 4 .

 44 With the notation of Theorem 4.3, a straightforward computation shows that

2 dx = ε 2 ω|

 22 n converges uniformly for ε ∈]ε ξ , ε ξ [. (The symbol m 2 (. . . ) denotes the two-dimensional Lebesgue measure of a set). Proof. If ε ∈]ε 0 , ε 0 [\{0}, by the Theorem of change of variable in integrals, we have εω |∇u| (∇u)(εt)| 2 dt .
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 52 With the notation introduced in Proposition 4.1, Theorem 4.3 and Lemma 5.1, let {c (n,l) } (n,l)∈N 2 l≤n+1 be the family of real numbers defined by
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 53 With the notation of Theorem 5.2, we observe that Remark 4.4 and a straightforward computation based on Folland[START_REF] Folland | Introduction to partial differential equations[END_REF] Lem. 3.30] imply that
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 1 Figure 1: Nodal lines of the first 16 eigenfunctions in the ellipse
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 22 Figure 2: Nodal lines of the eigenfunctions associated to N (", ✓), N = 1, 2, 3, 4, 5, 11, ✓ = 0
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 332223323106 Figure 3: Nodal lines of the eigenfunctions associated to N (", ✓), N = 1, 2, 3, 4, 5, 11, ✓ = ⇡10
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 6 Figure 6: Nodal lines of the eigenfunctions associated to λ N (ε, θ), N = 1, 2, 3, 4, 5, 11, θ = π2
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 789 Figure 7: In blue, the plot of log " 7 ! log( N (", 0) N ); in red, for N = 2, 3 the plot of log " 7 ! log " 2 and for N = 5, 11 the plot of log " 7 ! log " 4 N = 2 N = 3 N = 5 N = 11
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 12 Figure 12 confirms that for " fixed the function [0, ⇡ 2 ] 3 ✓ 7 ! µ N (", ✓) is decreasing for N = 2 and increasing for N = 3. Instead, for N = 5, 11, Figure 13 shows that the function [0, ⇡ 2 ] 3 ✓ 7 ! µ N (", ✓) is first increasing and then decreasing.
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 7789 Figure 7: In blue, the plot of log ε → N (ε, 0)-λ N ); in red, for N = 2, 3 the plot of log ε → log ε 2 and for N = 5, 11 the plot of log ε → log ε 4
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 8789 Figure 8: In blue, the plot of log ε → log(λ N (ε, θ)λ ), θ = π 10 ; in red, for N = 2, 3 the plot of log ε → log ε 2 and for N = 5, 11 the plot of log ε → log ε 4 .
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 12359 Figure 12 confirms that for " fixed the function [0, ⇡ 2 ] 3 ✓ 7 ! µ N (", ✓) is decreasing for N = 2 and increasing for N = 3. Instead, for N = 5, 11, Figure 13 shows that the function [0, ⇡ 2 ] 3 ✓ 7 ! µ N (", ✓) is first increasing and then decreasing.
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 12 Figure 12 confirms that for ε fixed the function [0, π 2 ] θ → µ N (ε, θ) is decreasing for N = 2 and increasing for N = 3. Instead, for N = 5, 11, Figure 13 shows that the function [0, π 2 ] θ → µ N (ε, θ) is first increasing and then decreasing.
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 101112 Figure 10: In blue, the plot of log " 7 ! log( N (", ✓) N ), ✓ = 7⇡ 20 ; in red, for N = 2, 3 the plot of log " 7 ! log " 2 and for N = 5, 11 the plot of log " 7 ! log " 4 . N = 2 N = 3 N = 5 N = 11
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 10101112 Figure 10: In blue, the plot of log ε → log(λ N (ε, θ)λ N ), θ = 7π 20 ; in red, for N = 2, 3 the plot of log ε → log ε 2 and for N = 5, 11 the plot of log ε → log ε 4 .
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 11101112 Figure 11: In blue the plot of log ε → log(λ N (ε, θ) -N ), θ = π 2 ; in red, for = 2, 3 the plot of log ε → log ε 2 and for N = 5, 11 the plot of log ε → log ε 4 .
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 12 Figure 12: θ → µ N (1.5 -k , θ), N = 3, = 14, 16
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 13 Figure 13: ✓ 7 ! µ N (1.5 k , ✓), N = 5, 11, k = 7, 8
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 13 Figure 13: θ → µ N (1.5 -k , θ), N = 11, k = 7, 8

) βc k e ikϕ 2

 2 The boundary ∂ω = ∂E 0 (a, b) has equation ξ = ξ, where ξ is defined by the relation c sinh( ξ) = b, that is ξ = log b c + 1 + b 2 c 2 . More precisely, we are considering the function F : (ξ, η) → (x 1 , x 2 ) defined by (69). It is a C ∞ diffeomorphism from D := [0, +∞[×[0, 2π[ onto R 2 . F is actually a conformal map, as noted in [2, Subsection 3.2]. Let us denote D 1,2 (R 2 ) the functions space which is the closure of C ∞ c (R 2 ) with respect to the L 2 norm of the gradient. For any function u ∈ D 1,2 (R 2 ), let us define U:= u • F . Since F is conformal, |∇U | ∈ L 2 (D) with D |∇U | 2 dξdη = R 2 |∇u| 2 dx 1 dx 2 and U is harmonic in D ⊆ D if and only if u is harmonic in F ( D).Let us now denote ψ ϕ k (r cos t, r sin t) := β r k sin(kt + kϕ) for r > 0, t ∈ [0, 2π[ and define the complex variables z := x 1 + ix 2 and ζ := ξ + iη. Then we haveψ ϕ k (x 1 , x 2 ) = Im(βe ikϕ z k ); since z = F (ξ, η) = c cosh(ζ)and taking into account the Binomial Theorem we obtainΨ ϕ k (ξ, η) := ψ ϕ k • F (ξ, η) = Im(βe ikϕ (c cosh ζ) k ) = Im  -2j)ξ sin (k -2j)η + kϕIn this way, the first contribution in (64) is preciselyR 2 \ω |∇u N,k | 2 dt = ] ξ,+∞[×]0,2π[ |∇W N,k | 2 dξdη (70) where W N,k is the unique solution in C 1,α loc ] ξ, +∞[×[0, 2π[ to the problem              -∆W N,k = 0, in ] ξ, +∞[×[0, 2π[, W N,k (ξ, η) = Ψ ϕ k ( ξ, η), on ξ = ξ, (ξ,η)∈] ξ,+∞[×[0,2π[ |W N,k (ξ, η)| < +∞ W (ξ, 0) = W (ξ, 2π), for all ξ ∈] ξ, +∞[.(71)which is the analogous of problem (57) in elliptic coordinates, that isW N,k = u N,k • F .As well, the second contribution in (64) isω |∇u N,#,k | 2 dt = ]0, ξ[×]0,2π[ |∇Ψ ϕ k | 2 dξdη,that is Ψ ϕ k = u N,#,k • F , since u N,#,k = ψ ϕ k in view of (56).

Wπ 2π 0 Wπ 2π 0 W

 00 N,k (ξ, η) = a 0 (ξ) 2 + j≥1 (a j (ξ) cos(jη) + b j (ξ) sin(jη))wherea j (ξ) = 1 N,k (ξ, η) cos(jη) dη for j ∈ N, b j (ξ) = 1 N,k (ξ, η) sin(jη) dη for j ∈ N \ {0}.Therefore we have0 = -∆ (ξ,η) W N,k = a 0 (ξ) 2 + j≥1 (a j (ξ)j 2 a j (ξ)) cos(jη) + (b j (ξ)j 2 b j (ξ)) sin(jη) .Imposing the boundary conditions for ξ ∈] ξ, +∞[, the latter equation implies     a j (ξ)j 2 a j (ξ) = 0 for ξ ≥ ξ a j ( ξ) = 1 π 2π 0 Ψ ϕ k ( ξ, η) cos(jη) dη sup ξ≥ ξ |a j (ξ)| < +∞and j (ξ)j 2 b j (ξ) = 0 for ξ ≥ ξ b j ( ξ) = 1 π 2π 0 Ψ ϕ k ( ξ, η) sin(jη) dη sup ξ≥ ξ |b j (ξ)| < +∞ (72)

1 a

 1 j a j ( ξ) cos(jη) + b j ( ξ) sin(jη) a l ( ξ) cos(lη) + b l ( ξ) sin(lη) dη = π j≥1 j a 2 j ( ξ) + b 2 j ( ξ) .(73)In order to conclude the analysis on this first contribution, let us compute the quantities a 2 j ( ξ) and b 2 j ( ξ). By definition, for any j ≥ -2l)η cos(jη) dη,(74)where the last equality follows the addition formula for the sine and the mutual orthogonality of trigonometric functions. As well, b j ( ξ) = βc k -2l)η sin(jη) dη,

1 ≤ j ≤ k k + j even πβ 2 c 2k 4 k-1 j k k+j 2 2 sin 2 = 1 ≤ j ≤ k k + j even πβ 2 c 2k 2 2k-1 j k k+j 2 2c 2k 2 2k k j=0 k -2j k j 2 e 2

 1221222 j odd;βc k 2 k-1 cos(kϕ) k k+j 2 sinh k ξ if k + j even.Finally,R 2 \ω |∇u N,k | 2 dt = kϕ cosh 2 j ξ + cos 2 kϕ sinh 2 j ξ cosh 2j ξcos 2kϕ .The latter sum can be rewritten to giveR 2 \ω |∇u N,k | 2 dt = πβ 2 (k-2j) ξcos 2kϕ .

2 e 2

 22 (k-2j) ξ .

Proposition 9 . 2 .

 92 Let u N,k be the unique C 1,α loc (R 2 \ ω) solution to Problem (57). ThenR 2 \ω |∇u N,k | 2 dt = -πβ 2 c 2k 2 C k cos 2kϕ(u N , θ) + πβ 2 c 2k D k ( ξ)for any θ ∈ [0, π/2], with ϕ(u N , θ) defined in Remark 9.1.

2 (

 2 2j)e (k-2j) ξ+(k-2l) ξ 2π 0 sin (k -2j)η + kϕ sin (k -2l)η + kϕ dη = 2j)e (k-2j) ξ+(k-2l) ξ cos 2 (kϕ) 2π 0 sin (k -2j)η sin (k -2l)η dη + sin 2 (kϕ) 2π 0 cos (k -2j)η cos (k -2l)η dη k -2j) e 2(k-2j) ξ(76)

2 e 2 b 2 c 2 ,

 222 a, b), u N,#,k as ε → 0, where E R θ E(a, b), u N,#,k is the quantity defined in Equation (64). Summing up the contributions in Proposition 9.2 and Equation (76), we findE R θ E(a, b), u N,#,k = -πβ 2 c 2k 2 C k cos 2kϕ(u N , θ) + πβ 2 c 2k E k ( ξ), (k-2j) ξ .and ϕ(u N , θ) is defined in Remark 9.1. Let us note that the second term in the right-hand side of Equation (77) can be written as a polynomial in a and b. Indeed, we have so that, for any non-negative integer m, e m ξ = b c

  and θ i [ε] introduced in Propositions 2.1 and 2.3 (see also Lanza de Cristoforis [31, §5] and [18, §2.4]).

  31, Theorem 5.3] and [18, Theorem 3.1]).

	Proposition 4.1. Let {(ρ o k , ρ i k )} k∈N and {(θ o k , θ i k )} k∈N be as in Propositions 3.1 and 3.2, respec-tively. Let

= 1.04

= 2.13 
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Remark 5.5. Therefore, by [START_REF] Sokolov | Elliptic coordinates[END_REF] we have

Moreover, we note that the terms R 2 \ω |∇u k | 2 dt and ω |∇u #,k | 2 dt depend both on the geometrical properties of the set ω and on the behavior at 0 of the function u (but not on Ω).

6 Asymptotic expansion of λ N (Ω \ (εω))

The aim of this section is to obtain an asymptotic expansion of λ N (Ω \ (εω)) by combining the results on Cap Ω (εω, u) of Section 5 and the approximation fomula [START_REF] Besson | Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. (French) [Asymptotic behavior of the eigenvalues of the Laplacian in a domain with a hole[END_REF] for the eigenvalues (see Courtois [15, Proof of Theorem 1.2] and Abatangelo, Felli, Hillairet, and Lena [1, Theorem 1.4]).

To do so, we take α ∈]0, 1[, Ω and ω as in [START_REF] Böhme | Zur Struktur der Lösungsmenge des Plateauproblems[END_REF] and we assume that the N-th eigenvalue λ N (Ω) for the Dirichlet-Laplacian is simple

In order to study λ N (Ω\(εω)) as ε → 0, by [START_REF] Besson | Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. (French) [Asymptotic behavior of the eigenvalues of the Laplacian in a domain with a hole[END_REF] we need to consider the behavior of Cap Ω (εω, u N ). By elliptic regularity theory (see for instance Theorem 1.2, page 205, in [START_REF] Friedman | Partial differential equations[END_REF]), u N is analytic in a neighborhood of 0. Next we note that by [START_REF] Maz'ya | Eigenvalue problem in a solid with many inclusions: asymptotic analysis[END_REF] we have

where {c (n,l) } (n,l)∈N 2 l≤n+1 as in Theorem 5.2 and H i 0 and H o 0 are as in Remark 5.3.

Then by formula [START_REF] Besson | Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. (French) [Asymptotic behavior of the eigenvalues of the Laplacian in a domain with a hole[END_REF] we immediately deduce the validity of the following well-known result.

Theorem 6.1. Let assumption (52) hold.Then

Clearly, formula (53) of Theorem 6.1 in case Figure 1 shows that the origin 0 (which is the point where the hole collapses when " = 0) belongs to a nodal line of an eigenfunction associated to the eigenvalue N for N 2 {2, 3, 5, 6, 8, 10, 11, 12, 14, 15, 16}.

As a preliminary step in our analysis, we look at the behavior of the nodal lines in the perforated domain as " approaches 0 and for di↵erent values of the angle ✓. We note that for N 2 {2, 3, 6, 8, 10, 12, 14, 15} there is only one nodal line passing through 0, whereas for N 2 {5, 11, 16} there are two nodal lines. As a consequence, in view of the results of Section 6, we expect that

as " ! 0 + , for some constant c N (✓) > 0 which depends on N and ✓. Figures 23456show how the angle ✓ a↵ects the convergence of the nodal lines as " tends to 0. 

with

Formula (78) confirms the simulations on Figure 12, which correspond to a vanishing order k = 1, where ϕ(u 2 , θ) = θπ/2 for θ ∈]0, π/2], ϕ(u 2 , 0) = π/2 and ϕ(u 3 , θ) = θ. It also confirms the simulations on Figure 13, corresponding to a vanishing order k = 2; there, for N = 11 and N = 15, ϕ(u N , θ) = θ when θ ∈ [0, π/4] and ϕ(u N , θ) = θπ/2 when θ ∈]π/4, π/2]. We have thus explained the variations of the functions θ → λ N (ε, θ)λ N .

Finally, starting from Formula (78), we can recover the u-capacity of a disk and that of a segment, given respectively in Theorems 1.13 and 1.9 of [START_REF] Abatangelo | Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators[END_REF]. We achieve this by letting either b go to a or b go to 0 and by a suitable scaling.