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Long-term field studies coupled with quantitative genomics offer a powerful means to understand the genetic bases underlying

quantitative traits and their evolutionary changes. However, analyzing and interpreting the time scales at which adaptive evolution

occurs is challenging. First, while evolution is predictable in the short term, with strikingly rapid phenotypic changes in data series,

it remains unpredictable in the long term. Second, while the temporal dynamics of some loci with large effects on phenotypic

variation and fitness have been characterized, this task can be complicated in cases of highly polygenic trait architecture implicating

numerous small effect size loci, or when statistical tests are sensitive to the heterogeneity of some key characteristics of the

genome, like variation in recombination rate along the chromosomes. After introducing these aforementioned challenges, we

discuss a recent investigation of the genomic architecture and spatio-temporal variation in great tit bill length, which was related

to the recent use of bird feeders. We discuss how this case study illustrates the importance of considering different temporal scales

and evolutionary mechanisms both while analyzing trait temporal trends and when searching for and interpreting the signals of

putative genomic footprints of selection. More generally this commentary discusses interesting challenges for unraveling the time

scale at which adaptive traits evolve and their genomic bases.
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Impact summary
An important goal in evolutionary biology is to under-

stand how individual traits evolve, leading to fascinating

variations in time and space. Long-term field studies

have been crucial in trying to understand the timing, ex-

tent, and ecological determinants of such trait variation

in wild populations. In this context, recent genomic tools

can be used to look for the genetic bases underlying

such trait variation and can provide clues on the nature

and timing of their evolution. However, the analysis and

the interpretation of the time scales at which evolution

occurs remain challenging. First, analyzing long-term

data series can be tricky; short-term changes are highly

predictable whereas long-term evolution is much less

predictable. A second difficult task is to study the

architecture of complex quantitative traits and to

decipher the timing and roles of the several genomic

mechanisms involved in their evolution. This commen-

tary introduces these challenges and discusses a recent

investigation of the nature and timing of ecological

and genomic factors responsible for variation in great

tit bill length. Overall, we raise cautionary warnings

regarding several conceptual and technical features

and limitations when coupling analyses of long-term

and genomic data to study trait evolution in wild

populations.

Longitudinal field studies have brought invaluable insight

for the understanding of evolutionary processes (Clutton-

Brock and Sheldon 2010). Long-term studies notably allowed

characterization of the temporality of trait variation and the
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strength and directionality of natural selection underlying such

variation. Some of these long-term examinations of key pheno-

typic traits detected strikingly fast phenotypic change, driven by

rapid ecological changes (Grant and Grant 2006). In contrast,

many long-term studies failed to reveal micro-evolutionary

change and response to selection (Merila et al. 2001; Grant

and Grant 2002). While examining longitudinal data looking

for both long-term trends as well as short-term fluctuations has

the potential to shed light on evolutionary trajectories in natural

populations, our ability to understand and more notably predict

evolution remains limited outside the laboratory. Quantitative

genetic models were initially developed with the aim of pre-

dicting evolutionary change, based on estimates of selection

and additive genetic variation (Falconer 1960). Their predictive

power worked efficiently for the genetic improvement of complex

traits in many animal and plant breeding programs. Yet when

spatio-temporal ecological heterogeneity is involved, evolution

in the wild remains largely unpredictable (Pemberton 2010; Pujol

et al. 2018).

Coupling such long-term studies with genomic tools is a pow-

erful way to improve our understanding of the genetic bases un-

derlying evolutionary changes in response to environmental vari-

ation. Rapid and recent monogenic adaptations based on de-novo

mutations are often used as examples, for instance the rise of the

melanic morph of the peppered moth Biston betularia following

the industrial revolution (van’t Hof et al. 2016). Similarly, there

are famous examples of rapid parallel monogenic or oligogenic

adaptation based on long lasting standing genetic variation segre-

gating in heterogeneous environments, for example coloration in

deer mice Peromyscus and armor plates in stickleback Gasteros-

teus aculeatus (Barret and Hoekstra 2011; Nelson and Cresko

2018). However, genomic analyses are facing several challenges

when it comes to making inferences about polygenic adaptation

and quantitative trait evolution. First, loci effect sizes are often

small, requiring thousands, if not millions, of both single nu-

cleotide polymorphisms (SNPs) and individuals for genome wide

association studies (GWAS) to reveal significant effects. Such an

investigation requires technical commitments (Wellenreuther and

Hansson 2016; Gienapp et al. 2017a), but also a conceptual shift

toward suppressing our desire to discover large effect alleles that

are, in theory, rarely responsible for quantitative variation (Rock-

man 2011). Second, genome characteristics and especially varia-

tion in recombination rate along the genome can cause variation in

the extent of background selection (defined as the loss of genetic

diversity at a neutral locus due to negative selection against linked

deleterious alleles) (Charlesworth et al. 1993; Charlesworth

2013; Nordborg et al. 1996). This variation in recombination can

confound or bias detections of positive selection and hence our

comprehension of the timing and nature of evolutionary trajecto-

ries based on genomic data (Roesti et al. 2012; Burri et al. 2015;

Berner and Roesti 2017; Burri 2017; Comeron 2017; Delmore

et al. 2018). Nevertheless, several studies have begun to decipher

the polygenic mechanisms of rapid evolution of quantitative traits.

Avian bill morphology has played a prominent role in

empirical studies of evolution and natural selection (Lack 1947;

Grant 1999), perhaps because the size and shape of bills show

large variations across and within bird species and are shaped

by strong selective forces since they directly determine foraging

efficiency on various food sources. For instance, the emblematic

study of Darwin’s finches on the Galapagos island of Daphne

Mayor aimed at capturing evolutionary changes in bill size (Boag

and Grant 1981; Grant and Grant 1993). From 1977 to 1978,

bill size increased markedly after a severe drought in 1977. This

analysis clearly demonstrated that extreme climatic events such

as an El niño event are strong drivers of bill size evolution in

this species. After 30 years of perspective, however, Grant and

Grant (2002) concluded that while evolution of bill length was

predictable as a rapid response to strong selection, it remained

unpredictable on a slightly longer microevolutionary scale.

Although the question of predictability of evolution across time

scales remains challenging, even in the genomic era (Nosil et al.

2018), genomic tools did provide insights on the evolution of bill

size in the context of the rapid diversification of Darwin’s finches.

A handful of genes were found to be significantly associated

with bill size and shape in the medium ground finch Geospiza

fortis (Lamichhaney et al. 2016), among which a major locus has

been shown to influence bill dimensions in the Darwin finches’

entire radiation (Lamichhaney et al. 2015). These genomic

analyses hence cracked the genomic architecture of this trait

variation at both small and large microevolutionary scale, with

the predominant control of a few large effect loci.

In a recent study, Bosse et al. (2017) investigated the genetic

architecture of bill length in the Great tit Parus major, using a

tremendous amount of data from long-term research programs in

Wytham woods in the UK and in the Netherlands (NL). Applying

modern analyses of both population and quantitative genomics

using 500 k SNP, the authors provide insight into the signatures

of divergent selection in the studied populations and the genomic

architecture of variation in bill length. In line with the quantita-

tive nature of variation in bill length and with quantitative genet-

ics theory (Lynch and Walsh 1998), the authors showed that the

genetic architecture of bill length was highly polygenic. Specifi-

cally, the authors showed, using a mixture analysis fitting all the

SNPs simultaneously, that 3009 SNPs explained collectively 31%

of bill length phenotypic variation. None of these SNPs reached

genome wide significance in the GWAS with bill length, revealing

small effect sizes of individual variants. In accordance with re-

cent quantitative genomic findings notably for other traits in great

tits (e.g., Robinson et al. 2013), the proportion of variance in bill

length explained by each chromosome amazingly scaled with its
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size, demonstrating that the many SNPs additively explaining bill

length are distributed throughout the genome. The polygenic anal-

ysis also predicted the difference in bill length observed between

the UK and the NL, further illustrating the polygenic nature of

this trait variation. This evidence for a polygenic control of bill

length with no large effect SNPs is hence very different from the

previous example on Darwin finches’ bill with large effect loci.

Nevertheless, Bosse et al. (2017) also showed that variation at

a single gene, col4A5, was associated with bill length (although

not reaching genome wide significance). Bosse et al. (2017) then

discussed whether an extended use of feeders, that are more abun-

dant in the UK, might have driven the evolution of larger bills in

the UK compared to the NL. Among the arguments pointing to

feeders as drivers of longer bill lengths in UK great tits, Bosse

et al. (2017) reported that col4A5 was associated with bill length

in the UK but not in the NL, was highly differentiated between

the UK and the NL, and was associated with greater reproductive

success and higher activity at feeding sites in the UK. In addition,

they reported that bills were longer in the UK compared to main-

land Europe (Fig. 4A in Bosse et al. 2017) and increased from

1982 to 2007 in the UK (Fig. 4B in Bosse et al. 2017).

We argue in this comment that the speculation on the role

of feeders on bill length evolution is not well supported by these

arguments. Based on both phenotypic and genomic data, we pro-

pose instead that differences in bill length between the UK and

the NL might have been evolving on a longer time scale than the

contemporary use of feeders. First, an examination of bill length

monitoring shows puzzling temporal and geographic patterns that

may not incriminate the use of feeders. Second, the genomic pat-

terns found at the region containing col4A5 might be compatible

with the combined effect of variation in recombination rate and

background selection, hence questioning the putative recent role

of feeders as agents of positive selection.

The bill length trend inferred from the long-term monitoring

is highly dependent on the time scale considered. Inspired by

the readings of articles such as the Grant and Grant (2006) study

relating the effects of rare and extreme events on the evolution

of phenotypic traits, we carefully inspected the evolution of bill

length during the studied period, looking for particularly rapid

changes. We reanalyzed the data using a breakpoint computations

method (coin R-package) aiming at localizing such striking

change. The best cutpoint was found between 1986 and 1987

(maxT = 7.41, P-value < 2.2 × 10–16), which corresponds to a

conspicuous change in bill length. Measures from the five years

preceding 1987 differed from subsequent years (t-test: t = −7.28,

df = 674.53, P-value = 9.1 × 10–13). Although a linear regression

through the entire period, from 1982 to 2007, as implemented by

Bosse et al., yielded a positive slope, removing the five measures

prior to 1987, bill length significantly decreased from 1987 to

2007 (Fig. 1A, Linear model from 1987 to 2007 either taking
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Figure 1. Decrease of mean bill length (A) and tarsus length (B)

but conservation of the allometry between both traits (C), from

1987 to 2007 (red lines) in Wytham great tits. Regressions from

1982 to 2007 as in the original article by Bosse et al. are shown

by the blue lines. Dots and bars illustrate means and standard

errors, respectively, for each year for each variable. Shaded areas

represent 95% standard error around regressions lines.

tarsus length into account, or not, F = 7.13, P-value = 8.2 ×
10–4; F = 13.2, P-value: 2.9 × 10–4, respectively). A LOESS

model confirms the decrease in bill length during the second part

of the record. More generally, slopes of linear models linking bill

length to time, using all of the possible combinations of 10–25

consecutive years (simply removing 1–16 years at the beginning,

or the end, or both, of the data-series), were often positive when

including one or more data points collected between 1982 and

1987, while negative slopes were often observed when excluding

these years (Fig. 2), further illustrating that both time periods

yield opposite patterns. Furthermore, tarsus length also decreased
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Figure 2. Slopes of linear models of bill length temporal evolu-

tion, including every possible combination of 10–25 consecutive

years of data, with or without one to several years of data from

1982 to 1986.

significantly both over the 1987–2007 and the 1982–2007 periods

(Fig. 1B, F = 6.61, P-value = 0.01 and F = 24.07, P-value =
9.9 × 10–7, respectively). Correspondingly, the bill length/tarsus

length ratio did not change significantly from 1987 to 2007 (Fig. 1

C, F = 1.51, P-value = 0.28), indicating no change in bill length,

when scaled to tarsus length, over this period. The origin of

this cutpoint is important to investigate, since it could constitute

evidence for a response, either genetic or plastic, of both bill

and tarsus lengths to a rapid abiotic or biotic change or to a

methodological change. It seems at present difficult to decipher

whether bill length or tarsus length or both, if any, were targeted

by selection. Indeed, both traits are commonly phenotypically

and genetically positively correlated in passerines (Teplitsky et al.

2014; Poissant et al. 2016), hence should often evolve together.

Overall, these results very likely rule out the possibility of a con-

temporary (1982–2007) positive effect of feeders on bill length.

One could nevertheless argue that bill length could have

increased at a longer time scale than the 1982–2007 period, but

still recent enough to incriminate the use of feeders. Figure 3

however shows the absence of a clear pattern of bill length increase

in museum specimens collected in the UK. Although more data

are needed to confirm the pattern, it suggests that larger bill length

in the UK seems to have evolved over a longer time period than the

one during which feeders have been used. Moreover, bill length

across Europe does not display a clear dichotomy between the

UK and mainland Europe but rather smooth spatial variations
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Figure 3. Variation in mean bill length in the UK from 1850 to

2007, based on museum records used in Bosse et al. 2017.

Figure 4. Variation in bill length across European countries for

both female (in blue) and male (in green) great tit specimens

from museums. Letters A and B illustrate significant differences

between sites and “ns” refers to nonsignificant differences (Tukey

HSD).

(Fig. 4), with an ANOVA showing a significant effect of country

(P = 3.75 × 10–7) but not of sex (P = 0.345), with UK birds having

longer bills compared to three other countries (France, Italy, and

the NL). This spatial variation also challenges the suggestion by

Bosse et al. (2017) of a recent increase in bill length in British

great tits caused by feeders.

We then question whether the evolution of the genomic re-

gion containing the gene col4A5, which was the corner stone

linking bill length, activity at feeders, reproductive success, and
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divergent selection, could have been influenced by recombina-

tion rate variation and background selection, rather than recent

positive selection due to feeders. While the decay of LD is very

fast in the great tit genome (marginal after 2 kb, as shown in

Fig. S1 in Bosse et al. 2017, and in Fig. 5A here (see supple-

mentary material 1 for method details)), col4A5 was found in

a large (>1 Mb) genomic region with high long distance (20–

200 Kb) LD in the UK (Fig. 5B). The FST between the UK and

the NL was high along this region (Fig. 5D here; Fig. S3A in

Bosse et al. 2017). The eigenGWAS in this region was significant

using both populations simultaneously for the entire set of SNPs

(upper panel Fig. S2 in Bosse et al. 2017) and for chromosome

4A only (Fig. 5E). As argued by Bosse et al. (2017), such results

are compatible with recent strong positive selection in the UK

over this large stretch of DNA on chromosome 4A. However, this

large stretch of high LD around col4A5 was not only found in the

UK but also in the NL (Fig. 5C). The eigenGWAS in this region

was also significant for both populations separately (Fig. 5F and

G). Furthermore, this large region was previously identified by

Laine et al. (2016) as showing a signature of selective sweeps

and reduced nucleotide diversity at the scale of the entire species

distribution rather than only in the UK (Sixth chromosome in

Fig. 2 in Laine et al. 2016). This same region was also identified

as showing elevated differentiation in several lineages and pop-

ulations of Ficedula flycatchers (Ellegren et al. 2012; Fig. 1C in

Burri et al. 2015). Therefore, given the existence of this large ge-

nomic region with reduced variation, increased LD, and increased

divergence at several spatial scales in great tits, and in flycatchers,

it seems unlikely that the mechanism shaping this region has been

acting only in the UK, recently, and implying mainly positive sec-

tion. Burri et al. (2015) determined that the high differentiation

and high LD at this region, shared across flycatcher lineages, was

due to the effect of linked selection combined with low recombi-

nation and issued a crucial warning: “scans are likely to identify

recombination-mediated elevations of differentiation not neces-

sarily attributable to selective sweeps.” Accordingly, we propose

that low recombination (potentially reflecting pericentromeric re-

gions) and background selection in the region containing col4A5

in great tits could have resulted in locally reduced genetic diver-

sity, increased differentiation and increased LD that could have

altogether mimicked signatures of recent positive selection.

To illustrate the general challenge raised here in differen-

tiating recombination rate variation combined with background

selection from positive selection, we present a very simple simu-

lation of a 20 Mb chromosome (hence comparable to the length

of chromosome 4A in great tits) containing a region of 1.6 Mb

with greatly reduced recombination (comparable to the length of

the col4A5 haplotypes), with random occurrence of neutral and

deleterious mutations but no beneficial ones (see supplementary

material 2 for methods details). We show that for an average
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Figure 5. Genomic reanalysis of chromosome 4A using the data

from Bosse et al. (2017). (A) Smoothed linkage disequilibrium (LD)

decay with genomic distance in UK and NL (pooled) great tits;

Smoothed long distance (between SNPs distant from 20 to 200 Kb)

LD variation in UK (B) and NL (C); (D) Single-marker FST between UK

and NL; Single-marker significance of eigenGWAS for chromosome

A4 in the entire sample (E) and only UK (F) and NL (G). The gray

area indicates the region in which col4A5 is located.
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Figure 6. Genomic analysis of a simulated 20 Mb chromosome

evolving in a single population, with a 1.6 Mb region of reduced

recombination (indicated by a gray area), and random occurrence

of neutral and deleterious mutations and absence of beneficial

mutations, simulated in SLiM. (A) Smoothed LD decay with ge-

nomic distance, (B) Smoothed long distance (between sites distant

from 20 to 200 Kb) LD variation, (C) Single-marker and smoothed

significativity of eigenGWAS, (D) Single-marker and smoothed in-

tegrated Extended Haplotype Homozygosity (iES), (E) 200 kb and

smoothed nucleotide diversity.

LD decay comparable to what was found in great tits (Fig. 6A),

long distance LD (Fig. 6B), eigenGWAS (Fig. 6C), integrated ex-

tended haplotype homozygosity (Fig. 6D) and nucleotide diversity

(Fig. 6E) all show striking deviations in the recombination

coldspot compared to the rest of the chromosome. Therefore, this

simple simulation illustrates that such a pattern as that observed

by Bosse et al. (2017) is compatible with the combined action of

large-scale variation in recombination and background selection.

Neglecting the effects of variation in recombination and LD

along the genome might have not only resulted in false-positive

footprints of selection in coldspots of recombination but also in

false negatives in regions with a higher recombination rate (Berner

and Roesti 2017). The large sliding window used in Bosse et al.

(sliding over 200 kb while the average LD is highly reduced after

2 Kb) potentially worsened this problem by capturing principally

elevated differentiation in large regions with increased LD possi-

bly resulting from extended lower recombination due to structural

variations. It may have also diluted narrow (i.e., narrower than the

sliding window) peaks of elevated differentiation in more com-

mon regions with lower LD outside of recombination coldspots.

Unfortunately, this probably relatively common caveat holds re-

gardless of the nature of selection (i.e., positive or purifying)

and is a purely mathematical problem of mismatch between the

sliding window length and the extent of LD variation along the

genome. It typically occurs when the unit of the sliding window

is the base pair instead of the centimorgan. In fact, such large slid-

ing windows relative to the LD decay should be used as neutral

local baselines to ascertain the effects of variation in LD and re-

combination along the genome, with local outliers detected when

comparing local residuals to such baselines (Roesti et al. 2012;

Burri 2017).

All these considerations suggest that, although the pattern

of increased divergence at col4A5 is apparently compatible with

strong positive selection, as suggested by Bosse et al (2017),

the combined role of background selection, strong recombination

rate variation, and invariably large averaging window while long

distance LD is variable, should be more comprehensively tested.

Correspondingly, accounting for these factors may also uncover

more variants under stronger positive selection located outside of

the few low recombination regions. In this context, the causality of

the associations between col4A5 and bill length, activity at feeders

and reproductive success in the UK, requires further clarifications.

This case study offers exciting avenues of research to unravel

the determinants of both recent and long-term as well as spatial

variations in quantitative traits in the Great tit but also in other

emblematic species displaying quantitative trait variations. Spa-

tial trait variation could be unraveled in multitrait GWAS using

polygenic frameworks, inspired by a pioneering study on great tit

breeding phenology (Gienapp et al. 2017b). Additionally, a for-

mal selection analysis relating bill length to overwinter survival

when birds are most likely to benefit from food provided by peo-

ple, is required to elucidate the nature of the evolutionary forces

behind bill length variation. Finally, including the effect of vari-

ation in recombination rate, background selection, and LD along

the genome to draw local neutral envelopes of genomic differenti-

ation and modulate the local width of sliding windows, will likely
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help identify further candidate loci (Roesti et al. 2012, 2013; Burri

2017; Comeron 2017; Delmore et al. 2018). Genomic analyses

performed in other populations across Europe could also help

determine the timing and the nature of selection, by taking into

account the temporal dynamics of the differentiation landscape

(Burri 2017). We wish to conclude by emphasizing the impor-

tance of integrating, or at least recognizing, the widespread and

sometimes strong variation in recombination rate along genomes,

which can in some circumstances distort our understanding of

evolutionary processes based on genomic investigations (Roesti

et al. 2012; Burri et al. 2015; Berner and Roesti 2017; Burri 2017;

Comeron 2017; Delmore et al. 2018).
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