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Abstract

We establish an explicit expression for the conditional Laplace transform of the
integrated Volterra Wishart process in terms of a certain resolvent of the covariance
function. The core ingredient is the derivation of the conditional Laplace transform
of general Gaussian processes in terms of Fredholm’s determinant and resolvent. Fur-
thermore, we link the characteristic exponents to a system of non-standard infinite
dimensional matrix Riccati equations. This leads to a second representation of the
Laplace transform for a special case of convolution kernel. In practice, we show that
both representations can be approximated by either closed form solutions of conven-
tional Wishart distributions or finite dimensional matrix Riccati equations stemming
from conventional linear-quadratic models. This allows fast pricing in a variety of
highly flexible models, ranging from bond pricing in quadratic short rate models with
rich autocorrelation structures, long range dependence and possible default risk, to
pricing basket options with covariance risk in multivariate rough volatility models.
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1 Introduction

We are interested in the d×d Volterra Wishart process XX> where X is the d×m-matrix
valued Volterra Gaussian process

Xt = g0(t) +

∫ t

0
K(t, s)dWs,

for some given input curve g0 : [0, T ] → Rd×m, suitable kernel K : [0, T ]2 → Rd×d and
d×m-matrix Brownian motion W , for a fixed time horizon T > 0.

The introduction of the kernel K allows for flexibility in financial modeling as illustrated
in the two following examples. First, one can consider asymmetric (possibly negative)
quadratic short rates of the form

rt = tr
(
X>t QXt

)
+ ξ(t)

where Q ∈ Sd+, ξ is an input curve used for matching market term structures and tr stands
for the trace operator. The kernel K allows for richer autocorrelation structures than the
one generated with the conventional Hull and White (1990) and Cox, Ingersoll, and Ross
(2005) models. Second, for d = m, one can build stochastic covariance models for d–assets
S = (S1, . . . , Sd) by considering the following dynamics for the stock prices:

dSt = diag(St)XtdBt

where B is d-dimensional and correlated with W . Then, the instantaneous covariance
between the assets is stochastic and given by d〈logS〉t

dt = XtX
>
t ∈ Sd+. When d = m = 1,

one recovers the Volterra version of the Stein and Stein (1991) or Schöbel and Zhu (1999)
model. Here, singular kernels K satisfying lims↑t |K(t, s)| =∞, allow to take into account
roughness of the sample paths of the volatility, as documented in Bennedsen et al. (2016);
Gatheral et al. (2018). As an illustrative example for d = m = 1, one could consider the
Riemann-Liouville fractional Brownian motion

Xt =
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs,

either with H ∈ (0, 1/2) to reproduce roughness when modeling the variance process, or
with H ∈ (1/2, 1) to account for long memory in short rate models.

In both cases, integrated quantities of the form
∫ ·

0 XsX
>
s ds play a key role for pricing

zero-coupon bonds and options on covariance risk. In order to keep the model tractable,
one needs to come up with fast pricing and calibration techniques. The main objective
of the paper is to show that these models remain highly tractable, despite the inherent
non-markovianity and non-semimartingality due to the introduction of the kernel K. For
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w ∈ Sd+, our main result (Theorem 3.3) provides the explicit expression for the conditional
Laplace transform:

E
[
exp

(
−
∫ T

t
tr
(
wXsX

>
s

)
ds

) ∣∣∣ Ft] = exp

(
φt,T +

∫
(t,T ]2

tr
(
gt(s)

>Ψt,T (ds, du)gt(u)
))

,

where (φ,Ψ) are defined by

∂tφt,T = −m
∫

(t,T ]2
tr
(

Ψt,T (ds, du)K(u, t)K(s, t)>
)
, φT,T = 0,

Ψt,T (ds, du) = −wδ{s=u}(ds, du)−
√
wRwt,T (s, u)

√
wdsdu,

with gt(s) = E[Xs|Ft] the forward process, Ct(s, u) = E[(Xs − gt(s))(Xu − gt(u))>|Ft]
the conditional covariance function, and Rwt,T : [0, T ]2 → Rd×d the Fredholm resolvent of
(−2
√
wCt
√
w) on [0, T ] given by

Rwt,T (s, u) = −2
√
wCt(s, u)

√
w −

∫ T

t
2
√
wCt(s, z)

√
wRwt,T (z, u)dz, t ≤ s, u ≤ T.

Using the integral operator Ct induced by the covariance kernel Ct, i.e. (Ctf)(s) =∫ T
0 Ct(s, u)f(u)du for f ∈ L2

(
[0, T ],Rd×m

)
, the Laplace transform can be re-expressed in

analytic form

E
[
exp

(
−
∫ T

t
tr
(
wXsX

>
s

)
ds

) ∣∣∣ Ft] =
exp

(
−〈gt,

√
w (id + 2

√
wCt
√
w)
−1√

wgt〉L2
t

)
det (id + 2

√
wCt
√
w)

m/2

where 〈f, g〉L2
t

=
∫ T
t tr

(
f(s)>g(s)

)
ds and det stands for the Fredholm determinant.

The Laplace transform is exponentially quadratic in the forward process (gt)t≤T , and
cannot in general be recovered from that of finite dimensional affine Volterra processes
introduced in Abi Jaber et al. (2019a), see Remark 2.1. We also mention that the mod-
els studied here are quadratic constructions of Gaussian processes and do not pose any
difficulty regarding existence and uniqueness, in contrast for instance with conventional
Wishart processes that go beyond squares of Gaussians, see Bru (1991).

Furthermore, we link Ψ to a system of non-standard infinite dimensional backward
Riccati equations in the general case of non-convolution kernels. This allows us to deduce
a second representation of the Laplace transform for a special case of convolution kernels
in the form

K(t, s) = k(t− s)1s≤t such that k(t) =

∫
R+

e−xtµ(dx), t > 0,
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for some suitable signed measure µ, showing, similarly to Cuchiero and Teichmann (2019);
Harms and Stefanovits (2019), that the Volterra Wishart process can be seen as a super-
position of possibly infinitely many conventional linear-quadratic models written on the
infinite dimensional process

Yt(x) =

∫ t

0
e−x(t−s)dWs, t ≥ 0, x ∈ R+.

In particular, this second representation not only allows us to recover the expressions for the
Laplace transform derived in the aforementioned articles but, most importantly, provides
an explicit solution for the corresponding infinite dimensional Riccati equations.

Although explicit, the expression for the Laplace transform is not known in closed form,
except for certain cases. We provide two approximation procedures either by closed form
solutions of conventional Wishart distributions (Section 2.2) or finite dimensional matrix
Riccati equations stemming from conventional linear-quadratic models (Section 3.3). These
approximations can then be used to price bonds with possible default risk, or options
on covariance in multivariate (rough) volatility models by Laplace transform techniques
(Section 4).

Literature Conventional Wishart processes initiated by Bru (1991) and introduced
in finance by Gourieroux and Sufana (2003) have been intensively applied, together with
their variants, in term structure and stochastic covariance modeling, see for instance Alfonsi
(2015); Buraschi et al. (2010); Cuchiero et al. (2011, 2016); Da Fonseca et al. (2007, 2008);
Gouriéroux et al. (2009); Muhle-Karbe et al. (2012). Conventional linear quadratic models
have been characterized in Chen et al. (2004); Cheng and Scaillet (2007). Volterra Wishart
processes have been recently studied in Cuchiero and Teichmann (2019); Yue and Huang
(2018). Applications of certain quadratic Gaussian processes can be found in Benth and
Rohde (2018); Corcuera et al. (2013); Harms and Stefanovits (2019); Kleptsyna et al.
(2002). Gaussian stochastic volatility models have been treated in Gulisashvili (2018);
Gulisashvili et al. (2019).

Outline In Section 2 we derive the Laplace transform of general quadratic Gaussian
processes in RN , we provide a first approximation procedure by closed form expressions
and link the characteristic exponent to non-standard Riccati equations. These results are
then used in Section 3 to deduce the Laplace transforms of Volterra Wishart processes.
We also provide a second representation formula for the Laplace transform together with
an approximation scheme for a special class of convolution kernels. Section 4 presents
applications to pricing: (i) bonds in quadratic Volterra short rate models with possible
default risk; (ii) options on volatility for basket products in Volterra Wishart (rough)
covariance models. Some technical results are collected in the appendices.

Notations For T > 0, we define L2([0, T ]2,RN×N ) to be the space of measurable
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functions F : [0, T ]2 → RN×N such that∫ T

0

∫ T

0
|F (t, s)|2dtds <∞.

For any F,G ∈ L2([0, T ]2,RN×N ) we define the ?-product by

(F ? G)(s, u) =

∫ T

0
F (s, z)G(z, u)dz, s, u ≤ T, (1.1)

which is well-defined in L2([0, T ]2,RN×N ) due to the Cauchy-Schwarz inequality. We de-
note by F ∗ the adjoint kernel of F in L2([0, T ],RN×N ), that is

F ∗(s, u) = F (u, s)>, s, u ≤ T.

For any kernel F ∈ L2([0, T ]2,RN×N ), we denote by F the integral operator from L2([0, T ],RN )
into itself induced by the kernel F that is

(Fg)(s) =

∫ T

0
F (s, u)g(u)du, g ∈ L2([0, T ],RN ).

If F and G are two integral operators induced by the kernels F and G in L2([0, T ]2,RN×N ),
then FG is an integral operator induced by the kernel F ? G.

SN+ stands for the cone of symmetric non-negative semidefinite N × N -matrices, tr
denotes the trace of a matrix and IN is the N × N identity matrix. The vectorization
operator is denoted by vec and the Kronecker product by ⊗, we refer to Appendix B for
more details.

2 Quadratic Gaussian processes

Throughout this section, we fix T > 0, N ≥ 1 and let Z denote a RN -valued square-
integrable Gaussian process on a filtered probability space (Ω,F , (Ft)t≤T ,P) with mean
function g0(s) = E[Zs] and covariance kernel given by C0(s, u) = E[(Zs − g0(s))(Zu −
g0(u))>], for each s, u ∈ [0, T ]. We note that g0 and C0 may depend on T , but we do not
make this dependence explicit to ease notations.

2.1 Fredholm’s representation and first properties

Assume that C0 is continuous in both variables. Then, there exists a kernel KT ∈
L2([0, T ]2,RN×N ) and a N -dimensional Brownian motion W such that

Zt = g0(t) +

∫ T

0
KT (t, s)dWs, (2.1)
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for all t ≤ T , see Sottinen and Viitasaari (2016, Theorem 12 and Example 2). In particular,
C0 = KT ? K

∗
T , that is

C0(s, u) =

∫ T

0
KT (s, z)KT (u, z)>dz, s, u ≤ T.

For any t ≤ s, Zs admits the following decomposition

Zs = g0(s) +

∫ t

0
KT (s, u)dWu +

∫ T

t
KT (s, u)dWu, (2.2)

showing that conditional on Ft, Zs is again a Gaussian process with conditional mean

gt(s) = E[Zs|Ft] = g0(s) +

∫ t

0
KT (s, u)dWu, t ≤ s ≤ T,

and conditional covariance function

Ct(s, u) = E[(Zs − gt(s))(Zu − gt(u))>|Ft]

=

∫ T

t
KT (s, z)KT (u, z)>dz, t ≤ s, u ≤ T. (2.3)

Again we drop the possible dependence of gt and Ct on T , and we note in particular that
for each s, u ≤ T , t→ Ct(s, u) is absolutely continuous on [0, s ∧ u] with density

Ċt(s, u) = −K(s, t)K(u, t)>, (2.4)

and that the process t 7→ gt(s) is a semimartingale on [0, s) with dynamics

dgt(s) = KT (s, t)dWt, t < s.

We are chiefly interested in the SN+ -valued process ZZ>. The following remark shows
that, in general, ZZ> cannot be recast as an affine Volterra process as studied in Abi Jaber
et al. (2019a).

Remark 2.1. To fix ideas, we set g0 ≡ Z0 ∈ RN . An application of Itô’s formula yields

gt(s)gt(s)
> = Z0Z

>
0 +

∫ t

0
KT (s, u)KT (s, u)>du

+

∫ t

0
KT (s, u)dWugu(s)> +

∫ t

0
gu(s)dW>u KT (s, u)>, t < s.

Taking the limit s→ t leads to the dynamics

ZtZ
>
t = Z0Z

>
0 +

∫ t

0
KT (t, u)KT (t, u)>du

+

∫ t

0
KT (t, u)dWugu(t)> +

∫ t

0
gu(t)dW>u KT (t, u)>. (2.5)
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This shows, that in general, because of the presence of the infinite dimensional process
t 7→ gt in the dynamics, ZZ> does not satisfy a stochastic Volterra equation in the form

Yt = Y0 +

∫ t

0
K(t, s)b(Ys)ds+

∫ t

0
σ(Ys)dW

>
s K(t, s)> +

∫ t

0
K(t, s)dWsσ(Ys)

>,

where b, σ : RN 7→ RN×N . For this reason, ZZ> falls beyond the scope of the processes
studied in Abi Jaber et al. (2019a). Except for very specific cases, for instance, when
KT ≡ IN , we have gu(s) = Zu for all u < s, and (2.5) reduces to the well-known dynamics
of Wishart processes as introduced by Bru (1991).

Whence, the conditional Laplace transform of ZZ> cannot be deduced from Abi Jaber
et al. (2019a, Theorem 4.3). Nonetheless, it can be directly computed from Wishart dis-
tributions that we recall in Appendix A.

Theorem 2.2. Fix t ≤ s ≤ T . Conditional on Ft, ZsZ>s follows a Wishart distribution

ZsZ
>
s ∼|Ft

WISN

(
1/2, gt(s)gt(s)

>, 2Ct(s, s)
)
.

Further, for any u ∈ SN+ , the conditional Laplace transform reads

E
[
exp

(
−Z>s uZs

) ∣∣∣ Ft] =
exp

(
−gt(s)>u (IN + 2Ct(s, s)u)−1 gt(s)

)
det (IN + 2Ct(s, s)u)1/2

.

Proof. Fix t ≤ s ≤ T , conditional on Ft, it follows from (2.2) that Zs is a Gaussian vector
in RN with mean vector gt(s) ∈ RN and covariance matrix Ct(s, s) ∈ RN×N . The claimed
result now follows from Proposition A.1.

In particular, if N = 1, t = 0 and s = T , one obtains the well-known chi-square
distribution

E
[
exp

(
−uZ2

T

)]
=

exp
(
−ug0(T )2

1+2uC0(T,T )

)
(1 + 2uC0(T, T ))1/2

, u ≥ 0.

The computation of the Laplace transform for the integrated squared process is more
involved and is treated in the next subsection.

2.2 Conditional Laplace transform of the integrated quadratic process

We are interested in computing the conditional Laplace transform

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] , w ∈ SN+ , t ≤ T. (2.6)
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For t = 0 and for centered processes, such computations appeared several times in the
literature showing that the quantity of interest can be decomposed as an infinite product
of independent chi-square distributions, see for instance Anderson and Darling (1952);
Cameron and Donsker (1959); Varberg (1966). The same methodology can be readily
adapted to our dynamical case and makes use of the celebrated Kac–Siegert/Karhunen–
Loève representation of the process Y =

√
wZ whose conditional covariance function is

Cwt =
√
wCt
√
w, see Kac and Siegert (1947); Karhunen (1946); Loeve (1955). For this, we

fix t ≤ T , we consider the inner product on L2([t, T ],RN ) given by

〈f, g〉L2
t

=

∫ T

t
f(s)>g(s)ds, f, g ∈ L2([t, T ],RN ),

and we assume that Ct is continuous in both variables1. By definition, the covariance
kernel Cwt is symmetric and nonnegative in the sense that

Cwt (s, u) = Cwt (u, s)>, s, t ≤ T,

and ∫ T

t

∫ T

t
f(s)>Cwt (s, u)f(u)duds ≥ 0, f ∈ L2([t, T ],RN ).

An application of Mercer’s theorem, see Shorack and Wellner (2009, Theorem 1 p.208),
yields the existence of a countable orthonormal basis (ent,T )n≥1 in L2([t, T ],RN ) and a
sequence of nonnegative real numbers (λnt,T )n≥1 with

∑
n≥1 λ

n
t,T <∞ such that

Cwt (s, u) =
∑
n≥1

λnt,T e
n
t,T (s)ent,T (u)>, t ≤ s, u ≤ T, (2.7)

and ∫ T

t
Cwt (s, u)ent,T (u)du = λnt,T e

n
t,T (s), t ≤ s ≤ T, n ≥ 1, (2.8)

where the dependence of (ent,T , λ
n
t,T ) on w is dropped to ease notations. This means that

(λnt,T , e
n
t,T )n≥1 are the eigenvalues and the eigenvectors of the integral operator

√
wCt
√
w

from L2([t, T ],RN ) into itself induced by Cwt :

(
√
wCt

√
wf)(s) =

∫ T

t
Cwt (s, u)f(u)du, t ≤ s ≤ T, f ∈ L2([t, T ],RN ).

As a consequence of Mercer’s theorem, conditional on Ft, the process Y admits the Kac–
Siegert representation

Ys =
√
wgt(s) +

∑
n≥1

√
λnt,T ξ

nent,T (s), t ≤ s ≤ T, (2.9)

1This is equivalent to assuming that the centered Gaussian process (Z·−E[Z·]) is mean-square continuous.
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where, conditional on Ft, (ξn)n≥1 is a sequence of independent standard Gaussian random
variables, see Shorack and Wellner (2009, Theorem 2 p.210 and the comment below (14) on
p.212). We now introduce the quantities needed for the computation of (2.6) in Theorem 2.3
below. We denote by id the identity operator on L2([t, T ],RN ), i.e. (idf)(s) = f(s), by
(id + 2

√
wCt
√
w)−1 the integral operator generated by the kernel∑

n≥1

1

1 + 2λnt,T
ent,T (s)ent,T (u)>, (2.10)

and we set

det(id + 2
√
wCt

√
w) :=

∏
n≥1

(
1 + 2λnt,T

)
. (2.11)

The last expression is well defined due to the convergence of the series (
∑m

n=1 λ
n
t,T )m≥1 and

the inequality

1 + 2

m∑
n=1

λnt,T ≤
m∏
n=1

(
1 + 2λnt,T

)
≤ exp

(
2

m∑
n=1

λnt,T

)
, m ≥ 1.

Theorem 2.3. Fix w ∈ SN+ and t ≤ T . Assume that the function (s, u) 7→ Ct(s, u) is
continuous. Then,

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣Ft] =
exp

(
−〈gt,

√
w (id + 2

√
wCt
√
w)
−1√

wgt〉L2
t

)
det (id + 2

√
wCt
√
w)

1/2
. (2.12)

Proof. Fix t ≤ T . Parseval’s identity gives 〈
√
wgt,
√
wgt〉L2

t
=
∑

n≥1〈
√
wgt, e

n
t,T 〉2L2

t
so that∫ T

t
Z>s wZsds = 〈Y, Y 〉L2

t
=
∑
n≥1

(√
λnt,T ξ

n + 〈
√
wgt, e

n
t,T 〉L2

t

)2
,

where the first equality follows from the definition Y :=
√
wZ and the second equality is

a consequence of (2.9). By the independence of the sequence (ξn)n≥1 and the dominated
convergence theorem we can compute

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] =
∏
n≥1

E
[
exp

(
−
(√

λnt,T ξ
n + 〈

√
wgt, e

n
t,T 〉L2

t

)2
) ∣∣∣ Ft]

=
∏
n≥1

1√
1 + 2λnt,T

exp

(
− 1

1 + 2λnt,T
〈
√
wgt, e

n
t,T 〉2L2

t

)

= det(id + 2
√
wCt

√
w)−1/2

× exp

−∑
n≥1

1

1 + 2λnt,T
〈
√
wgt, e

n
t,T 〉2L2

t

 ,
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where the second equality is obtained from the chi-square distribution, since the random

variable
(
λnt,T ξ

n + 〈
√
wgt, e

n
t,T 〉L2

t

)
is Gaussian with mean 〈

√
wgt, e

n
t,T 〉L2

t
and variance λnt,T ,

for each n ≥ 1, see Proposition A.1. The claimed expression now follows upon observing
that, thanks to (2.10),

〈gt,
√
w
(
id + 2

√
wCt

√
w
)−1√

wgt〉L2
t

=
∑
n≥1

1

1 + 2λnt,T
〈
√
wgt, e

n
t,T 〉2L2

t
.

Remark 2.4. The determinant (2.11) is named after Fredholm (1903) who defined it for
the first time through the following expansion

det(id + C) =
∑
n≥0

1

n!

∫ T

t
. . .

∫ T

t
det [(C(si, sj))1≤i,j≤n] ds1 . . . dsn,

where C is a generic integral operator of trace class with continuous kernel C. Lidskii’s
theorem ensures that Fredholm’s definition is equivalent to

det(id + C) = exp (Tr (log (id + C))) ,

where Tr(C) =
∫ T
t tr(C(s, s))ds, and consequently equivalent to the infinite product expres-

sion as in (2.11), refer to Simon (1977) for more details.

Closed form solutions are known in some standard cases.

Example 2.5. Set N = 1, t = 0, T = 1 and Z = W , where W is a standard Brownian
motion and Z0 ∈ R. Then, g0(s) = 0 and C0(s, u) = s ∧ u and the eigenvalues and
eigenvectors of the eigenproblem (2.8) are well-known and given by

λn0,1 =
w

(n− 1/2)2π2
and en0,1(s) =

√
2 sin

((
n− 1

2

)
πs

)
, n ≥ 1.

Using the identity∏
n≥1

(
1 + 2λn0,1

)
=
∏
n≥1

(
1 +

2w

(n− 1/2)2π2

)
= cosh

√
2w,

(2.12) reads

E
[
exp

(
−w

∫ 1

0
W 2
s ds

)]
=
(

cosh
√

2w
)−1/2

. (2.13)

For arbitrary kernels C, the eigenpairs (λn, en)n≥1 are, in general, not known in closed
form. This is the case for instance for the fractional Brownian motion. We provide in the
next subsection an approximation by closed form formulas.

10



2.3 Approximation by closed form expressions

A natural idea to approximate (2.12) is to discretize the time-integral. Fix t ≤ T and
let (sni , α

n
i ), i = 1, . . . , n be a quadrature rule on [t, T ], i.e.∫ T

t
f(s)ds = lim

n→∞

n∑
i=1

αni f(sni ).

By the dominated convergence theorem it follows that

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = lim
n→∞

E

[
exp

(
−

n∑
i=1

αni Z
>
sni
wZsni

) ∣∣∣ Ft] ,
for all w ∈ SN+ . For each n, (Zsn1 , . . . , Zsnn)> being Gaussian, the right hand side is known in
closed form. This is the object of the next proposition which will make use of the Kronecker
product ⊗ and the vectorization operator vec, we refer to Appendix B for more details.
Proposition 2.6. Fix w ∈ SN+ and t ≤ T .

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = lim
n→∞

exp
(
−gn>t wn (InN + 2Cnt wn)−1 gnt

)
det (InN + 2Cnt wn)1/2

, (2.14)

where wn = (diag(αn1 , . . . , α
n
n)⊗ w) ∈ RnN×nN , gnt is the nN -vector

gnt =

gt(s
n
1 )

...
gt(s

n
n)

 , (2.15)

and Cnt is the nN × nN -matrix with entries

(Cnt )p,q = Ct(s
n
i , s

n
k)jl, p = (i− 1)N + j, q = (k − 1)N + l, (2.16)

for all i, k = 1, . . . , n, and j, l = 1, . . . , N.

Proof. We simply observe that

n∑
i=1

αni Z
>
sni
wZsni = Zn> (diag(αn1 , . . . , α

n
n)⊗ w) Zn,

where Zn = vec(Zn) and Zn = (Zsn1 , . . . , Zsnn). Conditional on Ft, Zn being a Gaussian

vector in RnN with mean vector (2.15) and covariance matrix (2.16), the claimed result
readily follows from Proposition A.1 combined with the dominated convergence theorem.
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We now illustrate the approximation procedure in practice for N = 1. Consider a one
dimensional fractional Brownian motion WH with Hurst index H ∈ (0, 1) and set

I(H) = E
[
exp

(
−
∫ 1

0

(
WH
s

)2
ds

)]
. (2.17)

The (unconditional) covariance function of the fractional Brownian motion is given by

CH0 (s, u) =
1

2

(
|s|2H + |u|2H − |s− u|2H

)
. (2.18)

Fix n ≥ 1 we consider two quadrature rules on [0, 1]: the left Riemann sum with sni = i/n
and αni = 1/n and the Gauss-Legendre rule advocated in Bornemann (2010). Since WH is
centered, (2.15) reads gn0 = 0 and the right hand side in (2.14) reduces to

In(H) = det
(
In + 2CH,n0 diag(αn1 , . . . , α

n
n)
)− 1

2
, (2.19)

where CH,n0 (i, j) = CH0 (sni , s
n
j ), i, j = 1, . . . , n. We proceed as follows. First, we determine

the reference value of (2.17) for several values of H. For H = 1/2, the exact value is
I(1/2) = cosh(

√
2)−1/2, recall (2.13). For H ∈ {0.1, 0.3, 0.7, 0.9}, we run a Monte–Carlo

simulation to estimate I(H) with the trapezoidal rule with a 95% confidence interval and
106 sample paths with 103 time steps for each sample path. Second, for each value of H,
we compute In(H) as in (2.19), for several values of n with the left Riemann sum and the
Gauss–Legendre quadrature. The results are collected in Tables 1–2 and Figure 1 below.
We observe that the Gauss–Legendre quadrature performs better than the left Riemann
sum rule, especially for higher values of H. When H ≥ 0.5, even with n = 10, In(H) with
the Gauss–Legendre rule falls already within the 95% confidence interval of the Monte–
Carlo simulation. Other quadrature rules can be used in Proposition 2.6, see for instance
Bornemann (2010). We refer to Remark 3.4 below for a numerical illustration in higher
dimensions.
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Figure 1: Convergence of In(H) with the Riemann sum (blue) and the Gauss–Legendre
quadrature (green) towards the benchmark MC value I(H) (red) for different values of
(H,n) from Table 1. The dashed lines delimit the 90% confidence interval of the Monte–
Carlo simulation.

H 0.1 0.3 0.5 0.7 0.9

ref. I(H) 0.50065 0.60775 0.67757* 0.72523 0.76023

n\In(H)
10 0.50310 0.59301 0.65763 0.70376 0.73779
20 0.50081 0.59961 0.66727 0.71445 0.74810
30 0.50027 0.60291 0.67160 0.71912 0.75386
50 0.50019 0.60433 0.67337 0.72101 0.75581
100 0.50025 0.60608 0.67545 0.72321 0.75801
200 0.50037 0.60701 0.67650 0.72431 0.75924
500 0.50051 0.60757 0.67714 0.72498 0.75992
1000 0.50058 0.60776 0.67735 0.72520 0.76015

Table 1: Approximation of I(H) by In(H) with the left Riemann sum for several values of
H with n ranging between 10 and 1000. *exact value for I(1/2).

H 0.1 0.3 0.5 0.7 0.9

ref. I(H) 0.50065 0.60775 0.67757* 0.72523 0.76023

n\In(H)
10 0.51331 0.61075 0.67810 0.72550 0.76039
20 0.50665 0.60895 0.67771 0.72544 0.76038
30 0.50447 0.60850 0.67763 0.72543 0.76038
50 0.50279 0.60820 0.67759 0.72543 0.76038
100 0.50162 0.60804 0.67758 0.72542 0.76038
200 0.50109 0.60799 0.67757 0.72542 0.76038
500 0.50081 0.60797 0.67757 0.72542 0.76038
1000 0.50072 0.60797 0.67757 0.72542 0.76038

Table 2: Approximation of I(H) by In(H) with the Gauss–Legendre quadrature for several
values of H with n ranging between 10 and 1000. *exact value for I(1/2).
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2.4 Connection to Riccati equations

The expression (2.12) is reminiscent of the formula obtained for finite dimensional Wishart
processes in Bru (1991) and more generally that of linear quadratic diffusions, see Cheng
and Scaillet (2007), suggesting a connection with infinite dimensional Riccati equations.
Indeed, setting

φt,T = −1

2
Tr
(
log
(
id + 2

√
wCt

√
w
))
,

Ψt,T = −
√
w
(
id + 2

√
wCt

√
w
)−1√

w,

it follows from Remark 2.4 that (2.12) can be rewritten as

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = exp
(
φt,T + 〈gt,Ψt,T gt〉L2

t

)
, t ≤ T. (2.20)

Since t→ Ct(s, u) is absolutely continuous with density Ċt(s, u) given by (2.4), one would
expect t → Ct to be strongly differentiable2 with derivative Ċt given by the integral
operator

(Ċtf)(s) =

∫ T

t
Ċt(s, u)f(u)du, f ∈ L2([0, T ],RN ), s ≤ T. (2.21)

By taking the derivatives we get that (φ,Ψ) solves the following system of operator Riccati
equations

φ̇t,T = Tr
(
Ψt,T Ċt

)
, φT,T = 0, (2.22)

Ψ̇t,T = 2Ψt,T

√
wĊt

√
wΨt,T , ΨT,T = −wid, (2.23)

where Ḟt denotes the derivative of Ft with respect to t.
This induces a system of Riccati equations for the kernels. To see this, we introduce

the concept of resolvent. Fix t ≤ T and define the kernel

Rwt,T (s, u) =
∑
n≥1

(
1

1 + 2λnt,T
− 1

)
ent,T (s)ent,T (u)>, t ≤ s, u ≤ T. (2.24)

It is straightforward to check, using (2.7), that for all t ≤ s, u ≤ T ,

2

∫ T

t
Rwt,T (s, z)Cwt (z, u)dz =2

∫ T

t
Cwt (s, z)Rwt,T (z, u)dz = −Rwt,T (s, u)− 2Cwt (s, u).(2.25)

2We recall that t 7→ Ct is strongly differentiable at time t ≥ 0, if there exists a bounded linear operator
Ċt from L2

(
[0, T ],RN

)
into itself such that

lim
h→0

1

h
‖Ct+h −Ct − hĊt‖op = 0, where ‖G‖op = sup

f∈L2([0,T ],RN )

‖Gf‖L2

‖f‖L2
.
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Rwt,T is called the resolvent kernel of (−2Cwt ) and the integral operator Rw
t,T induced by

Rwt,T satisfies the relation

Rw
t,T = (id + 2

√
wCt

√
w)−1 − id, (2.26)

so that Ψt,T can be re-expressed in terms of the resolvent

Ψt,T = −wid−
√
wRw

t,T

√
w.

The next theorem, whose proof is postponed to Appendix C, establishes the representation
of the Laplace transform together with the Riccati equations (2.22)-(2.23) in terms of the
induced kernel

Ψt,T (ds, du) = −wδs=u(ds, du) + ψt,T (s, u)dsdu, (2.27)

where ψt,T = −
√
wRwt,T

√
w is the density of Ψt,T with respect to the Lebesgue measure.

We recall the ?-product defined in (1.1).

Theorem 2.7. Fix w ∈ SN+ and T > 0. Assume that the function (s, u) 7→ Ct(s, u) is
continuous, for each t ≤ T , such that

sup
t≤T

sup
t≤s,u≤T

|Ct(s, u)| <∞. (2.28)

Assume that t 7→ Ct is strongly differentiable on [0, T ] with derivative (2.21). Then,

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = exp

(
φt,T +

∫
(t,T ]2

gt(s)
>Ψt,T (ds, du)gt(u)

)
, t ≤ T,

where t 7→ Ψt,T is given by (2.27) and φt,T by

φ̇t,T = −
∫

(t,T ]2
tr
(

Ψt,T (ds, du)KT (u, t)KT (s, t)>
)
, φT,T = 0.

In particular, t 7→ Ψt,T solves the Riccati equation with moving boundary

ψ̇t,T = 2Ψt,T ? Ċt ?Ψt,T on (t, T ]2 a.e., (2.29)

ψt,T (t, ·) = ψt,T (·, t)> = 0 on [t, T ] a.e.
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We note that, since ψt,T (s, u) = 0 whenever s ∧ u ≤ t, equation (2.29) is the compact
form of

ψ̇t,T (s, u) = −2wKT (s, t)KT (u, t)>w

− 2wKT (s, t)

∫ T

t
KT (z, t)>ψt,T (z, u)dz

− 2

∫ T

t
ψt,T (s, z)KT (z, t)dzKT (u, t)>w

− 2

∫ T

t
ψt,T (s, z)KT (z, t)dz

∫ T

t
KT (z′, t)>ψt,T (z′, u)dz′, t < s, u ≤ T a.e.

and the expanded form of φ is given by

φ̇t,T =

∫ T

t
tr
(
wKT (s, t)KT (s, t)>

)
ds−

∫ T

t

∫ T

t
tr
(
ψt,T (s, u)KT (u, t)KT (s, t)>

)
dsdu.

Remark 2.8. The Riccati equation (2.29) can be compared to the Bellman (1957) and
Krein (1955) variation formula for Fredholm’s resolvent, see also Golberg (1973); Schu-
mitzky (1968).

3 The Volterra Wishart process and its Laplace transforms

Fix T > 0 and a filtered probability space (Ω,F , (Ft)t≤T ,P) supporting a d ×m–matrix
valued Brownian motion W . In this section, we consider the special case of the matrix-
valued Volterra Gaussian process

Xt = g0(t) +

∫ t

0
K(t, s)dWs, (3.1)

where g0 : [0, T ]→ Rd×m is continuous and K : [0, T ]→ Rd×d is a d× d–measurable kernel
of Volterra type, that is K(t, s) = 0 for s > t. Compared to (2.1), since the kernel K is of
Volterra type, the integration in (3.1) goes up to time t rather than T .

Under the assumption

sup
t≤T

∫ T

0
|K(t, s)|2ds <∞ and lim

h→0

∫ T

0
|K(u+ h, s)−K(u, s)|2ds = 0, u ≤ T, (3.2)

the stochastic convolution

Nt =

∫ t

0
K(t, s)dWs,

is well defined as an Itô integral, for each t ∈ [0, T ]. Furthermore, Itô’s isometry leads to

E
[
|Nt −Ns|2

]
≤ 2

∫ t

s
|K(t, u)|2du+ 2

∫ T

0
|K(t, u)−K(s, u)|2du (3.3)
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which goes to 0 as s → t showing that N is mean-square continuous, and by virtue of
Peszat and Zabczyk (2007, Proposition 3.21), the process N admits a predictable version.
Furthermore, by the Burkholder-Davis-Gundy inequality applied on the local martingale(∫ r

0 K(t, s)dWs

)
r∈[0,t)

, it holds that

sup
t≤T

E
[∣∣∣∣∫ t

0
K(t, s)dWs

∣∣∣∣p] ≤ cp,T
(

sup
t≤T

∫ T

0
|K(t, s)|2ds

)p/2
<∞, p ≥ 2, (3.4)

where cp,T is a positive constant only depending on T and p. Kernels satisfying (3.2) are
known as Volterra kernels of continuous and bounded type in L2 in the terminology of
Gripenberg et al. (1990, Definitions 9.2.1, 9.5.1 and 9.5.2).

We now provide several kernels of interest that satisfy (3.2). In particular, we stress
that (3.2) does not exclude a singularity of the kernel at s = t.

Example 3.1. (i) For H ∈ (0, 1), the fractional Brownian motion with covariance func-
tion (2.18) admits a Volterra representation of the form (3.1) on [0, T ] with the kernel

KH(t, s) =
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
, s ≤ t,

where 2F1 is the Gauss hypergeometric integral, see Decreusefond and Ustunel (1999).

(ii) If K is continuous on [0, T ]2, then (3.2) is satisfied by boundedness and the dominated
convergence theorem. This is the case for instance for the Brownian Bridge W T1

conditioned to be equal to W T1
0 at a time T1: for all T < T1, W T1 admits the Volterra

representation (3.1) on [0, T ] with the continuous kernel K(t, s) = (T1 − t)/(T1 − s),
for all s, t ≤ T .

(iii) If K1 an K2 satisfy (3.2) then so does K1 ? K2 by an application of Cauchy-Schwarz
inequality.

(iv) Any convolution kernel of the form K(t, s) = k(t − s)1s≤t with k ∈ L2([0, T ],Rd×d)
satisfies (3.2). Indeed, for any t ≤ T ,∫ T

0
|K(t, s)|2ds =

∫ t

0
|k(t− s)|2ds =

∫ t

0
|k(s)|2ds ≤

∫ T

0
|k(s)|2ds,

yielding the first part of (3.2). The second part follows from the L2-continuity of k,
see (Brezis, 2010, Lemma 4.3).

We denote the conditional expectation of X by

gt(s) = E [Xs|Ft] , t ≤ s ≤ T, (3.5)
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which is well-defined thanks to (3.4). For each t ≥ 0, we denote by Ct the conditional
covariance function of X with respect to Ft, that is

Ct(s, u) =

∫ s∧u

t
K(s, r)K(u, r)>dr, t ≤ s, u ≤ T. (3.6)

C satisfies the assumption of Theorem 2.7 as shown in the next lemma. The expression
of the strong derivative of Ct is given in terms of the density Ċt of the kernel Ct given by
(2.4) under the following additional assumption on the kernel:

sup
t≤T

∫ T

0
|K(s, t)|2ds <∞. (3.7)

Lemma 3.2. Under (3.2), (s, u) 7→ Ct(s, u) is continuous, for all t ≤ T and (2.28) holds.
Furthermore, under (3.7), t → Ct is strongly differentiable on [0, T ] with derivative Ċt at
t ≤ T given by the integral operator induced by the kernel Ct given by (2.4), that is

(Ċtf)(s) =

∫ T

0
Ċt(s, u)f(u)du =

∫ T

t
Ċt(s, u)f(u)du, f ∈ L2

(
[0, T ],RN

)
.

Proof. First, it follows from (3.3) that the process X is mean-square continuous, which
implies the continuity of (s, u) 7→ Ct(s, u). Second, an application of the Cauchy-Schwarz
inequality on (3.6) yields

|Ct(s, u)|2 ≤

(
sup
s′≤T

∫ T

0
|K(s′, r)|2dr

)2

which proves (2.28). Finally, to prove the differentiability statement, we fix t ≤ T and first
observe that ∫ T

0

∫ T

0
|Ċt(s, u)|2dsdu =

(∫ T

0
|K(s, t)|2ds

)2

which is finite by virtue of (3.7). Whence, the kernel Ċt belongs to L2
(
[0, T ]2,RN×N

)
so

that it induces a linear bounded integral operator Ċt from L2
(
[0, T ],RN

)
into istelf. We

now prove that r 7→ Cr is differentiable at t with derivative given by Ċt. For this, fix
f ∈ L2

(
[0, T ],RN

)
, s ≤ T and h such that t+ h ≤ T . Using the fact that, for all u, s ≤ T ,

t 7→ Ct(s, u) is absolutely continuous with density Ċt(s, u), we get that

(Ct+hf)(s)− (Ctf)(s)− h(Ċtf)(s) =

∫ T

0

∫ t+h

t

(
Ċr(s, u)− Ċt(s, u)

)
drf(u)du := A(s).
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We now bound the right hand side in L2
(
[0, T ],RN

)
. Successive applications of the Cauchy-

Schwarz inequality together with the Fubini-Tonelli theorem yield

‖A‖2L2 =

∫ T

0

∣∣∣∣∫ T

0

∫ t+h

t

(
Ċr(s, u)− Ċt(s, u)

)
drf(u)du

∣∣∣∣2 ds
≤ h‖f‖2B

∫ t+h

t

∫ T

0

∫ T

t

∣∣∣Ċr(s, u)− Ċt(s, u)
∣∣∣2 dudsdr

Therefore,

1

h
‖Ct+h −Ct − hĊt‖op ≤

∫ t+h

t

∫ T

0

∫ T

0

∣∣∣Ċr(s, u)− Ċt(s, u)
∣∣∣2 dudsdr.

The right hand side goes to 0 by virtue of (3.7), which ends the proof.

3.1 A first representation

By construction the process XX> is Sd+–valued and its Laplace transforms can be deduced
from Theorems 2.2 and 2.7. Indeed, using the vectorization operator vec, which stacks the
column of a d×m–matrix A one underneath another in a vector of dimension N = dm, see
Appendix B, the study of the matrix valued process X reduces to that of the Rdm-valued
Gaussian process Z = vec(X) as done in Section 2.

The following theorem represents the main result of the paper.

Theorem 3.3. Let X be the d×m–matrix valued process defined in (3.1) for some Volterra
kernel K satisfying (3.2) and (3.7). Fix t ≤ T . For any u ∈ Sd+,

E
[
exp

(
− tr

(
uXTX

>
T

)) ∣∣∣ Ft] =
exp

(
− tr

(
u (Id + 2Ct(T, T )u)−1 gt(T )gt(T )>

))
det (Id + 2Ct(T, T )u)m/2

. (3.8)

For any w ∈ Sd+, the Laplace transform

Lt,T (w) = E
[
exp

(
−
∫ T

t
tr
(
wXsX

>
s

)
ds

) ∣∣∣ Ft] ,
is given by

Lt,T (w) = exp

(
φt,T +

∫
(t,T ]2

tr
(
gt(s)

>Ψt,T (ds, du)gt(u)
))

, (3.9)

where (φ,Ψ) are defined by

φ̇t,T = −m
∫

(t,T ]2
tr
(

Ψt,T (ds, du)K(u, t)K(s, t)>
)
, φT,T = 0, (3.10)

Ψt,T (ds, du) = −wδ{s=u}(ds, du)−
√
wRwt,T (s, u)

√
wdsdu, on [t, T ], (3.11)
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where Rwt,T is the d× d–matrix valued resolvent of (−2
√
wCt
√
w), with Ct the conditional

covariance function (3.6) and gt the conditional mean given by (3.5). In particular, t 7→
Ψt,T solves the Riccati equation with moving boundary

ψ̇t,T = 2Ψt,T ? Ċt ?Ψt,T on (t, T ]2 a.e., (3.12)

ψt,T (t, ·) = ψt,T (·, t)> = 0 on [t, T ] a.e., (3.13)

where ψt,T (s, u) =
√
wRwt,T (s, u)

√
w.

Proof. Setting Z = vec(X) and W = vec(W ), an application of the vectorization operator
vec on both sides of the d×m–matrix valued equation (3.1) yields the N := dm dimensional
vector valued Gaussian process

Zs = vec (g0(s)) +

∫ s

0
K(s, u)dWu. (3.14)

where K is the RN×N kernel

K : (s, u) 7→ (Im ⊗K(s, u))

coming from the relation (B.1), with ⊗ the Kronecker product. Whence, the conditional
mean and covariance functions of Z are given respectively by vec(gt) and

Ct(s, u) = (Im ⊗ Ct(s, u)), u, s ≤ T. (3.15)

In addition, due to (B.2),

tr(wXX>) = Z>(Im ⊗ w)Z, w ∈ SN .

• We first prove (3.8). Fix t ≤ T and u ∈ Sd+. An application of Theorem 2.2 yields

E
[
exp

(
−Z>T (Im ⊗ u)ZT

) ∣∣∣ Ft] =
exp (−Ht(T ))

det (IN + 2Ct(T, T )(Im ⊗ u))1/2
,

with

Ht(T ) = vec(gt(T ))>(Im ⊗ u) (IN + 2Ct(T, T )(Im ⊗ u))−1 vec(gt(T )).

We observe that by (3.15) and successive applications of the product rule (B.3)

(IN + 2Ct(T, T )(Im ⊗ u))−1 = ((Im ⊗ Id) + 2(Im ⊗ Ct(T, T ))(Im ⊗ u))−1

= (Im ⊗ (Id + 2Ct(T, T )u))−1

=
(
Im ⊗ (Id + 2Ct(T, T )u)−1

)
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where the last equality follows from (B.5). Another application of (B.3) combined with
(B.2) yields that

Ht(T ) = tr
(
u (Id + 2Ct(T, T )u)−1 gt(T )gt(T )>

)
.

Similarly,

det (IN + 2Ct(T, T )(Im ⊗ u)) = det (Im ⊗ (Id + 2Ct(T, T )u))

= det (Im ⊗ (Id + 2Ct(T, T )u))

= det (Id + 2Ct(T, T )u)m

where we used (B.6) for the last identity. Combining the above proves (3.8).
• We now prove (3.9). Fix t ≤ T and w ∈ Sd+. An application of Theorem 2.7, justified by
Lemma 3.2, yields that

Lt,T (w) = exp

(
φt,T +

∫
(t,T ]2

vec(gt(s))
>Ψ̃t,T (ds, du) vec(gt(u))

)
, (3.16)

where

φ̇t,T = −
∫

(t,T ]2
tr
(

Ψ̃t,T (ds, du)K(u, t)K(s, t)>
)
, φT,T = 0, (3.17)

Ψ̃t,T (ds, du) = −(Im ⊗ w)δs=u(ds, du)− (Im ⊗
√
w)R̃wt,T (s, u)(Im ⊗

√
w)dsdu,

and R̃wt,T is the resolvent of 2Cwt (s, u). The claimed expressions now follows provided we
prove that

R̃wt,T =
(
Im ⊗Rwt,T

)
, (3.18)

where Rwt,T is the resolvent kernel of 2Cwt (s, u). Indeed, if this is the case, then, using the
the product rule (B.3) we get that

Ψ̃t,T = (Im ⊗Ψt,T ) , (3.19)

where Ψt,T is given by (3.11), so that, by (B.2),

vec(gt(s))
>Ψ̃t,T (ds, du) vec(gt(u)) = tr

(
gt(s)

>Ψt,T (ds, du)gt(u)
)
.

Plugging (3.19) back in (3.17) and using the identity (B.4) yields (3.10). Combining the
above shows that (3.16) is equal to (3.9). We now prove (3.18). For this, we define

Rwt,T =
(
Im ⊗Rwt,T

)
. Then, it follows from the resolvent equation (2.25) of Rwt,T and the

product rule (B.3) that Rwt,T solves

Rwt,T = −2Ct − 2Rwt,T ? Ct, Rwt,T ? Ct = Ct ?Rwt,T ,
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showing that Rwt,T is a resolvent of (−2Ct). By uniqueness of the resolvent, see Gripenberg
et al. (1990, Lemma 9.3.3), (3.18) holds.
• Finally, the Riccati equations (3.12)–(3.13) follow along the same lines by invoking The-
orem 2.7.

Remark 3.4. Proposition 2.6 can be applied to the vectorized Gaussian process Z = vec(X)
given by (3.14) to get an approximation formula for

E
[
exp

(
−
∫ T

t
tr
(
wXsX

>
s

)
ds

) ∣∣∣ Ft] = E
[
exp

(
−
∫ T

t
tr
(
Z>s (Im ⊗ w)Zs

)
ds

) ∣∣∣ Ft] .
To illustrate the convergence, we consider d = m, K ≡ Id and g0 ≡ X0 ∈ Rd×d. In this
case, the Laplace transform of the integrated process XX> is given in the following closed
form, see Gnoatto and Grasselli (2014, Theorem 1),

E
[
exp

(
−
∫ T

0
tr
(
wXsX

>
s

)
ds

)]
= exp

(
−φ(T )− tr

(
ψ(T )X0X

>
0

))
,

with

φ(T ) =
d

2
tr(log(cosh(

√
2wT )))

ψ(T ) =
1

2

(
cosh(

√
2wT )

)−1 (√
2w sinh(

√
2wT )

)
.

We set d = 2,

X0 =

(
0.1 0.3
0.2 0.4

)
, w =

(
1 0.5

0.5 1

)
,

and we test the approximation of Proposition 2.6 with the left Riemann sum and the Gauss-
Legendre quadrature applied to the vectorized Gaussian process Z = vec(X). The conver-
gence is illustrated in Table 3 as the discretization step n varies.

3.2 A second representation for certain convolution kernels

The aim of this section is to link the Volterra Wishart distribution with conventional linear-
quadratic processes (Chen et al., 2004; Cheng and Scaillet, 2007) for the special case of
convolution kernels:

K(t, s) = k(t− s)1s≤t such that k(t) =

∫
R+

e−xtµ(dx), t > 0, (3.20)

where µ is a d×m–measure of locally bounded variation satisfying∫
R+

(
1 ∧ x−1/2

)
|µ|(dx) <∞, (3.21)
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Reference value 0.1749568

n Riemann Gauss-Legendre
10 0.1592312 0.1756507
20 0.1666600 0.1751393
30 0.1693255 0.1750393
50 0.1715292 0.1749869
100 0.1732245 0.1749645
200 0.1740860 0.1749588
500 0.1746074 0.1749572
1000 0.1747819 0.1749569

Table 3: Approximation with n ranging between 10 and 1000.

and |µ| is the total variation of the measure, as defined in Gripenberg et al. (1990, Defini-
tion 3.5.1). The condition (3.21) ensures that k is locally square integrable, see Abi Jaber
et al. (2019b, Lemma A.1). This is inspired by the approach initiated in Carmona et al.
(2000) and generalized to stochastic Volterra equations in Abi Jaber and El Euch (2019b);
Cuchiero and Teichmann (2019); Harms and Stefanovits (2019).

Several kernels of interest satisfy (3.20)-(3.21) such as weighted sums of exponentials

and the Riemann-Liouville fractional kernel KRL(t) = tH−1/2

Γ(H+1/2) , for H ∈ (0, 1/2). We refer

to Abi Jaber et al. (2019b, Example 2.2) for more examples.
A straightforward application of stochastic Fubini’s theorem provides the representation

of (Xt, gt)t≥0 in terms of µ and the possibly infinite system of d×m-matrix-valued Ornstein-
Uhlenbeck processes

Yt(x) =

∫ t

0
e−x(t−s)dWs, t ≥ 0, x ∈ R+,

see for instance Abi Jaber et al. (2019b, Theorem 2.3).

Lemma 3.5. Assume that K is of the form (3.20) with µ satisfying (3.21), then

Xt = g0(t) +

∫
R+

µ(dx)Yt(x), t ≤ T,

gt(s) = g0(s) +

∫
R+

e−x(s−t)µ(dx)Yt(x), t ≤ s ≤ T.

Combined with (3.9), we get an exponentially quadratic representations of the charac-
teristic function of XX> in terms of the process Y .
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Theorem 3.6. Assume that K is of the form (3.20) with µ satisfying (3.21) and fix w ∈ Sd+.
Then,

Lt,T (w) = exp

(
Θt,T + 2 tr

(∫
R+

Λt,T (x)>µ(dx)Yt(x)

)

+ tr

(∫
R2
+

Yt(x)>µ(dx)>Γt,T (x, y)µ(dy)Yt(y)

))
, (3.22)

where t 7→ (Θt,T ,Λt,T ,Γt,T ) are given by

Θt,T =

∫
(t,T ]2

tr
(
g0(s)>Ψt,T (ds, du)g0(s)

)
+ φt,T , (3.23)

Λt,T (x) =

∫
(t,T ]2

e−x(s−t)Ψt,T (ds, du)g0(u), (3.24)

Γt,T (x, y) =

∫
(t,T ]2

e−x(s−t)Ψt,T (ds, du)e−y(u−t), (3.25)

with (φ,Ψ) as in (3.10)-(3.11).

A direct differentiation of (Θ,Λ,Γ) combined with the Riccati equations (3.12)–(3.13)
for (φ,Ψ) yield a system of Riccati equation for (Θ,Λ,Γ).

Proposition 3.7. The functions t 7→ (Θt,T ,Λt,T ,Γt,T ) given by (3.23), (3.24) and (3.25)
solve the system of backward Riccati equations

Θ̇t,T = −R0(t,Λt,T ,Γt,T ), ΘT,T = 0, (3.26)

Λ̇t,T (x) = xΛt,T (x)−R1(t,Λt,T ,Γt,T )(x), ΛT,T (x) = 0, (3.27)

Γ̇t,T (x, y) = (x+ y)Γt,T (x, y)−R2(Γt,T )(x, y), ΓT,T (x, y) = 0, (3.28)

where

R0(t,Λ,Γ) = − tr
(
g0(t)>wg0(t)

)
+m tr

(∫
R2
+

Γ(x, y)µ(dy)µ(dx)>

)

+ 2 tr

((∫
R+

Λ(x)>µ(dx)

)(∫
R+

Λ(y)>µ(dy)

)>)
,

R1(t,Λ,Γ)(x) = −wg0(t) + 2

(∫
R+

Γ(x, x′)µ(dx′)

)(∫
R+

Λ(y)>µ(dy)

)>
,

R2(Γ)(x, y) = −w + 2

(∫
R+

Γ(x, x′)µ(dx′)

)(∫
R+

Γ(y, y′)µ(dy′)

)>
.
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Similar Riccati equations to that of Γ have appeared in the literature when dealing
with convolution kernels of the form (3.20) in the presence of a quadratic structure, see
Abi Jaber et al. (2019b, Theorem 3.7), Alfonsi and Schied (2013, Theorem 1), Harms and
Stefanovits (2019, Lemma 5.4), Cuchiero and Teichmann (2019, Corollary 6.1). A general
existence and uniqueness result for more general equations has been recently obtained in
Abi Jaber et al. (2019c).

Remark 3.8. The expression (3.22) can be re-written in the following compact form

Lt,T (w) = exp (Θt,T + 2〈Λt,T , Yt〉µ + 〈Yt,Γt,TYt〉µ) .

where Γt,T is the integral operator acting on L1(µ,Rd×m) induced by the kernel Γt,T :

(Γt,T f)(x) =

∫
R+

Γt,T (x, y)µ(dy)f(y), f ∈ L1(µ,Rd×m)

and 〈·, ·〉µ is the dual pairing

〈f, g〉µ = tr

(∫
R+

f(x)>µ(dx)>g(x)

)
, (f, g) ∈ L1(µ,Rd×m)× L∞(µ>,Rd×m).

We end this subsection with two examples establishing the connection with conventional
quadratic models.

Example 3.9. Fix Σ ∈ Rd×d. For the constant case k ≡ Σ we have µ(dx) = Σδ0(dx),
suppµ = {0} and Yt(0) = Wt ∈ Rd×m. For g0(t) ≡ 0, Λ ≡ 0 and (3.26) and (3.28) read

Θ̇t,T = −m tr
(

Γt,T (0, 0)ΣΣ>
)
, ΘT,T = 0,

Γ̇t,T (0, 0) = w − 2Γt,T (0, 0)ΣΣ>Γt,T (0, 0), ΓT,T (0, 0) = 0.

These are precisely the conventional backward matrix Riccati equations encountered for
conventional Wishart processes, see Alfonsi (2015, Equation (5.15)). In this case, we recover
the well-known Markovian expression for the conditional Laplace transform (3.22):

E
[
exp

(∫ T

t
tr
(
−wWsW

>
s

)
ds

) ∣∣∣ Ft] = exp
(

Θt,T + tr
(

Γt,T (0, 0)WtW
>
t

))
.

Example 3.10. Fix n ≥ 1, xni ∈ R+ and cni ∈ Rd×d, i = 1, . . . , n. Consider the kernel

kn(t) =
n∑
i=1

cni e
−xni t, t ≥ 0, (3.29)
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which corresponds to the measure µn(dx) =
∑n

i=1 c
n
i δxni (dx). The system of Riccati equa-

tions (3.26), (3.27) (3.28) is reduced to a system of finite dimensional matrix Riccati equa-
tions for with values in R× Rnd×m × Rnd×nd given by:

Θ̇n
t,T = tr

(
g0(t)>wg0(t)

)
−m tr

(
Γnt,TC

n
)
− 2 tr

(
Λn>t,TC

nΛnt,T

)
, Θn

T,T = 0, (3.30)

Λ̇nt,T = Dn
t +BnΛnt,T − 2Γnt,TC

nΛnt,T , ΛnT,T = 0, (3.31)

Γ̇nt,T = An +BnΓnt,T + Γnt,TB
n> − 2Γnt,TC

nΓnt,T , ΓnT,T = 0, (3.32)

where for all r = 1, . . . ,m i, j,= 1, . . . , n and k, l = 1, . . . , d, p = (i−1)d+k, q = (j−1)d+l,

(Dn
t )pr = (wg0(t))kr, (Λnt,T )pr = Λt,T (xi)

kr,

(Cn)pq = (cni c
n>
j )kl, (Γnt,T )pq = Γt,T (xni , x

n
j )kl,

and An and Bn are the nd× nd defined by

An = (1n ⊗ w), Bn = (diag(xn1 , . . . , x
n
n)⊗ Id)

with 1n the n× n matrix with all components equal to 1. The Riccati equation (3.32) can
be linearized by doubling the dimension and its solution is given explicitly by

Γnt,T = G2(T − t)G4(T − t)−1, t ≤ T,

where (
G1(t) G2(t)
G3(t) G4(t)

)
= exp

(
t

(
−Bn −An
−2Cn Bn

))
, t ≤ T,

see Levin (1959). Furthermore, we recover the well-known Markovian expression for the
conditional Laplace transform (3.22):

Lnt,T (w) = exp
(

Θn
t,T + 2 tr

(
Λn>t,T Ỹ

n
t

)
+ tr

(
Γnt,T Ỹ

n
t Ỹ

n>
t

))
, (3.33)

where

(Ỹ n
t )pr = (cni Yt(x

n
i ))kr, (3.34)

p = (i− 1)d+ k, for each i = 1, . . . , n, k = 1, . . . , d, r = 1, . . . ,m.

The previous example shows that Volterra Wishart processes can be seen as a superposi-
tion of possibly infinitely many conventional linear-quadratic processes in the sense of Chen
et al. (2004); Cheng and Scaillet (2007). This idea is used to build another approximation
procedure in the next subsection.
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3.3 Another approximation procedure

An application of the Burkholder-Davis-Gundy inequality yields the following stability
result for the sequence

Xn
t = gn0 (t) +

∫ t

0
kn(t− s)dWs, n ≥ 1,

where gn0 : [0, T ]→ Rd×m and kn ∈ L2([0, T ],Rd×d), for each n ≥ 1.

Lemma 3.11. Fix k ∈ L2([0, T ],Rd×d) and g0 : [0, T ] → Rd×m measurable and bounded.
If ∫ T

0
|kn(s)− k(s)|2ds→ 0 and sup

t≤T
|gn0 (t)− g0(t)| → 0, as n→∞, (3.35)

then,

sup
t≤T

E [|Xn
t −Xt|p]→ 0, as n→∞, p ≥ 2.

Combined with Example 3.10, we obtain another approximation scheme for the Laplace
transform based on finite-dimensional matrix Riccati equations (compare with Remark 3.4).

Proposition 3.12. Fix w ∈ Sd+ and t ≤ T . For each n, let kn be as in (3.29) for some
xni ∈ R+ and cni ∈ Rd×d. Assume that (3.35) holds. Then,

Lt,T (w) = lim
n→∞

exp
(

Θn
t,T + 2 tr

(
Λn>t,T Ỹ

n
t

)
+ tr

(
Γnt,T Ỹ

n
t Ỹ

n>
t

))
where (Θn,Λn,Γn) solve (3.30), (3.31) and (3.32) and Ỹ n is given by (3.34).

Proof. Fix t ≤ s ≤ T . Writing Xn>
s wXn

s −X>s wXs = (Xn
s +Xs)

>w(Xn
s −Xs), we get by

the Cauchy-Schwarz inequality that

E

[∣∣∣∣∫ T

t
(Xn>

s wXn
s −X>s wXs)ds

∣∣∣∣2
]
≤ c sup

s≤T

(
E
[
|Xs|2

]
+ E

[
|Xn

s |2
])

sup
s≤T

E
[
|Xn

s −Xs|2
]
,

for some constant c independent of n. It follows from Lemma 3.11 that (sups≤T E
[
|Xn

s |2
]
)n≥1

is uniformly bounded in n, so that the right hand side converges to 0 as n→∞. Whence,∫ T
t Xn>

s wXn
s ds →

∫ T
t X>s wXsds a.s. along a subsequence and the claimed convergence

follows from the dominated convergence theorem combined with (3.33).

For d = m = 1 and k of the form (3.20) for some measure µ, for suitable partitions
(ηni )0≤i≤n of R+, the choice

cni =

∫ ηni

ηni−1

µ(dx) and xni =
1

cni

∫ ηni

ηni−1

xµ(dx), i = 1, . . . , n,
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ensures the L2-convergence of the kernels kn in (3.29), we refer to Abi Jaber (2019);
Abi Jaber and El Euch (2019a) for such constructions, see also Harms (2019) for other
choices of quadratures and for a detailed study of strong convergence rates.

4 Applications

4.1 Bond pricing in quadratic Volterra short rate models with default
risk

We consider a quadratic short rate model of the form

rt = tr
(
X>t QXt

)
+ ξ(t), t ≤ T,

where X is the d ×m Volterra process as in (3.1), Q ∈ Sd+ and ξ : [0, T ] → R is an input
curve used to match today’s yield curve and/or control the negativity level of the short
rate. The model replicates the asymmetrical distribution of interest rates, allows for rich
auto-correlation structures, and the possibility to account for long range dependence, see
for instance Benth and Rohde (2018); Corcuera et al. (2013).

An application of Theorem 3.3 yields the price P (·, T ) of a zero-coupon bond with
maturity T :

P (t, T ) = E
[
exp

(
−
∫ T

t
rsds

) ∣∣∣ Ft] = exp

(
−
∫ T

t
ξ(s)ds

)
Lt,T (Q), t ≤ T,

where L is given by (3.9). In this case, the zero-coupon yield with time to maturity τ = T−t
is quadratic in g and reads

yt(τ) = − 1

T − t
logP (t, T )

=
1

τ

∫ t+τ

t
ξ(s)ds+

1

τ
〈gt,Ψt,t+τgt〉L2

t
+
m

2τ
log det

(
id + 2

√
QCt,t+τ

√
w
)
,

with Ψt,t+τ =
√
Q
(
id + 2

√
QCt,t+τ

√
Q
)−1√

Q and 〈f, g〉Lt =
∫ t+τ
t tr(f(s)>g(s))ds. The

role of the input curve ξ becomes apparent: it allows to perfectly match any given yield
curve and/or possibly push the yields into negative territory (observe that Ψt,t+τ is a non-
negative operator). Furthermore, various shapes of the deformation of the yield curve can
be replicated. For instance, the left graph of Figure 2 shows that in the one dimensional set-
ting, when X = WH with WH a fractional Brownian motion with Hurst index H ∈ (0, 1),
the variation of the Hurst index H can produce inverse, hump-shaped and normal yield
curves. The combination of two independent fractional Brownian motion with different
Hurst indices lead to richer deformations as displayed on the right graph of Figure 2.
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Figure 2: Left: Sensitivity of the yield curve T 7→ y0(T ) with respect to the Hurst index
for d = m = 1, X = WH and ξ ≡ 0. Right: yield curve T 7→ y0(T ) for d = 2, m = 1,
X = (WH1 ,WH2)>, (H1, H2) = (0.05, 0.9), (Q11, Q12, Q22) = (0.4, 0.05, 0.1) and ξ ≡ 0

From the dynamical perspective, for two maturities τ1, τ2, the instantaneous covariance
of the variation of the yields over time is given by

d〈y·(τ1), y·(τ2)〉t =
4

τ1τ2
tr
(

(K∗Ψt,t+τ1)(1tgt)(t) ((K∗Ψt,t+τ2)(1tgt)(t))
>
)
dt,

which is stochastic, non-trivial and allow sign changing across time. For instance, for the
standard case K(t, s) = e−B(t−s)η and g0(t) ≡ X0, with B, η,X0 ∈ Rd×d, we have that
gt(s) = Xt for all s ≥ t, one recovers the expression of the instantaneous covariance in a
Wishart short rate model (see Buraschi et al. (2010)):

d〈y·(τ1), y·(τ2)〉t =
4

τ1τ2
tr
(

Ψ̄t,τ1XtX
>
t Ψ̄>t,τ2

)
dt

with Ψ̄t,τi =
∫

(t,t+τi]2
e−B(s−t)ηΨt,t+τi(ds, du).

Compared to the standard case, more general kernels allow to capture both “time
series” and “cross section” features of interest rates even with one single factor, see for
instance Backus and Zin (1993); Dai and Singleton (2003); Ritchken and Chuang (2000):

• Figure 3 highlights the auto-correlation structure of short rates: for H = 0.9 the
rates are highly persistent as observed in practice;

• Figure 4 shows the term structure of the variance of the yields: the case H = 0.9 al-
lows to reproduce a humped term structure decaying at a slower rate than exponential
(i.e. for the standard case H = 0.5) in agreement with the empirical observations.
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The impact is amplified in a multifactor setting where all the factors share the same Hurst
index, as shown by the principal component analysis on Figure 5. It might be interesting
to consider a mixture of several factors with different Hurst indices to better capture the
behavior of yields across several maturities.
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Figure 3: Simulation of monthly short rates (top left) with Xt = 2.5 + 1
Γ(H+1/2)

∫ t
0 (t −

s)H−1/2dWs and varying H index: H = 0.1 (red), H = 0.5 (black) and H = 0.9 (blue)
with the corresponding autocorrelation plots.
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Figure 4: Impact of the Hurst index on the term structure of the variance of yields with
Xt = 2.5 + 1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2dWs.
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Figure 5: Impact of the Hurst index on the principal component analysis of the covariance
of the yields with d = 3, m = 1, Qii = 1 and Q12 = Q23 = 0.5 and Xi

t = 0.33 +
1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2dW i

s , i = 1, . . . , 3.

One can also add multiple spreads by considering stochastic processes of the form

λt = tr
(
X>t Q̃Xt

)
+ ξ̃(t), t ≤ T,

for some Q̃ ∈ Sd+ and ξ̃ : [0, T ]→ R+ bounded function. By definition the spread is nonneg-
ative, correlated to the short rate with a possible long range dependence or roughness. The
introduction of λ can serve in two ways. Either in a multiple curve modeling framework,
to add a risky curve on top of the non-risk one with instantaneous rate r + λ or to model
default time. In the latter case, λ would correspond to the instantaneous intensity of a
Poisson process N such that the default time τ is defined as the first jump time of N . In
both cases, we denote by P̃ (·, T ) the price of the risky curve or the price of a defaultable
bond paying 1τ≤T at maturity T . Then, on {t < τ}, the price is given by

P̃ (t, T ) = E
[
exp

(
−
∫ T

t
(rs + λs)ds

) ∣∣∣ Ft]
= exp

(
−
∫ T

t
(ξ(s) + ξ̃(s))ds

)
Lt,T (Q+ Q̃),

for all t ≤ T , we refer to Lando (1998) for more details on the derivation of the defaultable
bond price.
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4.2 Pricing options on volatility/variance for basket products in Volterra
Wishart covariance models

We consider d ≥ 1 risky assets S = (S1, . . . , Sd) such that the instantaneous realized
covariance is given by

d〈logS〉t = XtX
>
t dt (4.1)

where X is the d×m process as in (3.1). The following specifications for the dynamics of
S fall into this framework.

Example 4.1. (i) The Volterra Wishart covariance model for d = m:

dSt = diag(St)XtdBt, S0 ∈ Rd+

Xt = g0(t) +

∫ t

0
K(t, s)dWs,

with g0 : [0, T ] → Rd×d, a suitable measurable kernel K : [0, T ]2 → Rd×d, a d × d
Brownian motion W and

Bj = tr
(
Wjρ

>
j

)
+

√
1− tr

(
ρjρ>j

)
W⊥,j , j = 1, . . . , d,

for some ρj ∈ Rd×m such that tr
(
ρjρ
>
j

)
≤ 1, for j = 1, . . . , n, where W⊥ is a

d–dimensional Brownian motion independent of W .

(ii) The Volterra Stein-Stein model when d = m = 1:

dSt = StXtdBt, S0 > 0,

Xt = g0(t) +

∫ t

0
K(t, s)dWs, d〈B,W 〉t = ρdt,

for some ρ ∈ [−1, 1].

The approach of Carr and Lee (2008), based on Schürger (2002), can be adapted to
price various volatility and variance options on basket products. Indeed, consider a basket
product of the form

Pαt =
d∑
j=1

αj logSjt = α> logSt, t ≤ T,

for some α = (α1, . . . , αd)
> ∈ Rd. It follows from (4.1) that the integrated realized variance

Σα of Pα is given by

Σα
t =

∫ t

0
α>XsX

>
s αds =

∫ t

0
tr
(
αα>XsX

>
s

)
ds, t ≤ T.
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Fix q ∈ (0, 1] and consider the q-th power variance swap whose payoff at maturity T is
given by

(Σα
T )q − F =

(∫ T

0
tr
(
αα>XsX

>
s

)
ds

)q
− F,

for some strike F ≥ 0. In particular, for q = 1/2 one recovers a volatility swap and for
q = 1 a variance swap. The value of the contract being null at t = 0, the fair strike F ∗q
reads

F ∗q = E

[(∫ T

0
tr
(
αα>XsX

>
s

)
ds

)q]
.

The following proposition establishes the expression of the fair strike in terms of the
Laplace transform provided by Theorem 3.3.

Proposition 4.2. Assume that 0 < q < 1, then the fair strike of the q-th power variance
swap is given by

F ∗q =
q

Γ(1− q)

∫ ∞
0

1− L0,T

(
zαα>

)
zq+1

dz,

where L is given by (3.9). If q = 1, the fair strike for the variance swap reads

F ∗1 =

∫ T

0
tr
(
αα>g0(s)g0(s)>ds

)
ds+

∫ T

0

∫ s

0
tr
(
αα>K(s, u)K(s, u)>

)
duds.

Proof. For 0 < q < 1, applying the identity

vq =
q

Γ(1− q)

∫ ∞
0

1− e−zv

zq+1
dz, 0 < q < 1, v ≥ 0,

see Schürger (2002), to v =
∫ T

0 tr
(
αα>XsX

>
s

)
ds, taking expectation and invoking Tonelli’s

theorem together with Theorem 3.3 yield the claimed identity. For q = 1, one could proceed
by differentiating the Laplace transform or more simply by using the dynamics of XX> as
in Remark 2.1.

Similarly, one can obtain the following formulas for negative powers

E

[(∫ T

0
tr
(
αα>XsX

>
s

)
ds+ ε

)−q]
=

1

Γ(1 + q)

∫ ∞
0
L0,T (z1/qαα>)e−z

1/qεdz, ε, q > 0,

using the integral representation, taken from Schürger (2002),

v−q =
1

qΓ(1 + q)

∫ ∞
0

e−z
1/qvdz, q, v > 0.

Again, the approximation formulas of Remark 3.4 and Section 3.3 can be applied to
compute L0,T .
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A Wishart distribution

Proposition A.1. Let ξ be an RN Gaussian vector with mean vector µ ∈ RN and co-
variance matrix Σ ∈ SN+ , then ξξ> follows a non-central Wishart distributions with shape
parameter 1/2, scale parameter 2Σ and non-centrality parameter µµ>, written as

ξξ> ∼WISN

(
1

2
, µµ>, 2Σ

)
.

Furthermore,

E
[
exp

(
− tr

(
uξξ>

))]
=

exp
(
− tr

(
u(IN + 2Σu)−1µµ>

))
det (IN + 2Σu)1/2

, u ∈ SN+ .

B Matrix tools

We recall some definitions and properties of matrix tools used in the proofs throughout the
article. For a complete review and proofs we refer to Magnus and Neudecker (2019).

Definition B.1. The vectorization operator vec is defined from Rd×m to Rdm by stacking
the columns of a d × m-matrix A one underneath another in a dm–dimensional vector
vec(A), i.e.

vec(A)p = Aij , p = (j − 1)d+ i,

for all i = 1, . . . , d and j = 1, . . . ,m.

Definition B.2. Let A ∈ Rd1×m1 and B ∈ Rd2×m2. The Kronecker product (A ⊗ B) is
defined as the d1d2 ×m1m2 matrix

A⊗B =

 A11B · · · A1m1B
...

...
Ad11B · · · Ad1m1B

 .

or equivalently

(A⊗B)pq = AikBjl, p = (i− 1)d2 + j, q = (k − 1)m2 + l,

for all i = 1, . . . , d1, j = 1, . . . , d2, k = 1, . . . ,m1 and l = 1, . . . ,m2.
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Proposition B.3. For matrices A,B,C,D,X,w of suitable dimensions, the following re-
lations hold:

vec(AXB) =
(
B> ⊗A

)
vec(X) (B.1)

tr(A>wA) = vec(A)>(Im ⊗ w) vec(A) (B.2)

(A⊗B) (C ⊗D) = (AC ⊗BD) (B.3)

tr(A⊗B) = tr(A) tr(B) (B.4)

(A⊗B)−1 = (A−1 ⊗B−1) (B.5)

det(Im ⊗A) = det(A)m. (B.6)

C Proof of Theorem 2.7

Throughout this section we assume that the function (s, u) 7→ Ct(s, u) is continuous such
that (2.28) holds, where Ct is given by (2.3).

For each t ≤ T , we consider the integral operator Ct induced by the kernel Ct

(Ctf)(s) =

∫ T

0
Ct(s, u)f(u)du =

∫ T

t
Ct(s, u)f(u)du, f ∈ L2([0, T ],RN ), s ≤ T,

where the last equality follows from the fact that Ct(s, u) = 0 for any u ≤ t. We assume
that t 7→ Ct is differentiable with derivative Ċt given by (2.21).

Lemma C.1. Let w ∈ SN+ and t 7→ Rwt,T be defined as in (2.24). Then,

sup
t≤T

∫ T

t

∫ T

t
|Rwt (s, u)|2dsdu <∞, (C.1)

sup
t≤T

sup
t≤s≤T

∫ T

t
|Rwt (s, u)|2du <∞, (C.2)

sup
t≤T

sup
t≤s,u≤T

|Rwt,T (s, u)| <∞. (C.3)

Proof. Fix t ≤ T . It follows from (2.24) that∫ T

t

∫ T

t
|Rwt (s, u)|2dsdu =

∑
n≥1

4(λnt,T )2

(1 + 2λnt,T )2
≤ 4

∑
n≥1

(λnt,T )2 = 4|w|
∫ T

t

∫ T

t
|Ct(s, u)|2dsdu,

which, combined with (2.28), proves (C.1). Furthermore, an application of Jensen and
Cauchy-Schwarz inequalities on the resolvent equation (2.25) yields

|Rwt (s, u)|2 ≤ 8 sup
t′≤T

sup
t′≤s′,u′≤T

|Ct′,T (s′, u′)|2
(

1 + T

∫ T

t
|Rwt (z, u)|2dz

)
, t ≤ s, u ≤ T.
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Integrating the previous identity with respect to u leads to∫ T

t
|Rwt (s, u)|2du ≤ 8T sup

t′≤T
sup

t′≤s′,u′≤T
|Ct′,T (s′, u′)|2

(
1 + T

∫ T

t

∫ T

t
|Rwt (z, u)|2dzdu

)
,

for all s ≥ t. Combined with (2.28) and (C.1), we obtain (C.2). Finally, it follows from the
resolvent equation (2.25) together with Jensen and Cauchy-Schwarz inequalities that

|Rt(s, u)|2 ≤ 8 sup
t′≤T

sup
t′≤s′,u′≤T

|Ct′,T (s′, u′)|2
(

1 + T

∫ T

t
|Rwt (s, z)|2dz

)
for all t ≤ s, u ≤ T . The right hand side is bounded by a finite quantity which does not
depend on t, thanks to (2.28) and (C.2), yielding (C.3).

Lemma C.2. For each t ≤ s ≤ T , u 7→ Rwt,T (s, u) is continuous. For each s, u ≤ T ,
t 7→ Rwt,T (s, u) is continuous.

Proof. The first statement follows directly from the continuity of (s, u) 7→ Ct(s, u) for all
t ≤ T , the resolvent equation (2.25) and the dominated convergence theorem which is
justified by (2.28). The second statement is proved as follows. Fix t ≤ s, u ≤ T and h ∈ R
such that 0 ≤ t+ h ≤ T . The resolvent equation (2.25) yields

Rwt+h(s, u)−Rwt (s, u) = −2(Cwt+h(s, u)− Cwt (s, u))

− 2

∫ T

t
Rwt+h(s, z)(Cwt+h(z, u)− Cwt (z, u))dz

− 2

∫ T

t
(Rwt+h(s, z)−Rwt (s, z))Cwt (z, u)dz

+ 2

∫ t+h

t
Rwt+h(s, z)Cwt+h(z, u)dz

= I + II + III + IV

Since t 7→ Ct(s, u) is absolutely continuous, we have that I → 0 as h → 0 and also
that II → 0 by an application of Cauchy–Schwarz inequality, the bound (C.3), and the
dominated convergence theorem, which is justified by (2.28). To prove that III → 0, we
fix q ∈ RN and fu(s) := Cwt (s, u)q. Then,∫ T

t
(Rwt+h(s, z)−Rwt (s, z))Cwt (z, u)qdz = (Rw

t+hfu)(s)− (Rw
t fu)(s)→ 0, as h→ 0,

where the convergence follows from the continuity of t 7→ Rw
t obtained from that of t 7→ Ct,

recall (2.26). By arbitrariness of q, we get III → 0. Finally, it follows from (2.28) and
(C.3), that IV → 0 as h → 0. Combining the above yields Rwt+h(s, u) → Rwt (s, u) as
h→ 0.
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Lemma C.3. t 7→ Rwt,T (s, u) is absolutely continuous for almost every (s, u) such that

Ṙwt,T (s, u) = −2
√
wĊt,T (s, u)

√
w − 2

∫ T

t

√
wĊt,T (s, z)

√
wRwt,T (z, u)dz

− 2

∫ T

t
Rwt,T (s, z)

√
wĊt,T (z, u)

√
wdz

− 2

∫ T

t

∫ T

t
Rwt,T (s, z)

√
wĊt,T (z, z′)

√
wRwt,T (z′, u)dzdz′, on [t, T ] a.e.

with the boundary condition

Rwt,T (·, t) = Rwt,T (t, ·)> = 0, t ≤ T. (C.4)

Proof. The boundary condition (C.4) follows from the resolvent equation (2.25) and the
fact that Ct(·, t) = Ct(t, ·)> = 0, for all t ≤ T .
Step 1. It follows from (2.26) and the fact that t 7→ Ct is differentiable, that t 7→ Rw

t,T is
differentiable, so that

(Rw
t+h,T f)(s) = (Rw

t,T f)(s) + h(Ṙw
t,T f)(s) + o(|h|), f ∈ L2([0, T ],RN ), s ≤ T,(C.5)

for all h ∈ R such that 0 ≤ t+ h ≤ T , with

Ṙw
t,T = −2(id + Rw

t,T )
√
wĊt,T

√
w(id + Rw

t,T ).

The right hand side being a composition of integral operators, Ṙw
t,T is again an integral

operator with kernel given by

−2(δ +Rwt,T ) ?
√
wĊt,T

√
w ? (δ +Rwt,T ),

where by some abuse of notations δ denotes the kernel induced by the identity operator id,
that is (idf)(s) =

∫ T
t δs=u(ds, du)f(u) = f(s).

Step 2. Fix f a measurable and bounded function, t, h such that 0 ≤ t+h ≤ T , s ≤ T and
write

(Rw
t+h,T f)(s, u) =

∫ T

t+h
Rwt+h,T (s, u)f(u)du

= (Rw
t,T f)(s, u) +

∫ T

t

(
Rwt+h,T (s, u)−Rwt,T (s, u)

)
f(u)du

−
∫ t+h

t

(
Rwt+h,T (s, u)−Rwt,T (s, u)

)
f(u)du

+

∫ t+h

t

(
Rwt,T (s, t)−Rwt,T (s, u)

)
f(u)du

= I + II + III + IV
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where we used the vanishing boundary condition (C.4) to introduce Rwt,T (s, t) in IV. Sub-
tracting the previous equation to (C.5) yields

II = h(Ṙw
t,T f)(s)− III− IV + o(|h|). (C.6)

An application of the Heine–Cantor theorem yields that the continuity statements in
Lemma C.2 can be strengthened to uniform continuity. Whence, for an arbitrary ε > 0
and for h small enough,

sup
u∈[t,t+h]

|Rwt,T (s, t)−Rwt,T (s, u)|+ sup
u∈[t,t+h]

|Rwt+h,T (s, u)−Rwt,T (s, u)| ≤ ε, t ≤ s ≤ T.

This yields |III|+ |IV| ≤ chε, for some constant c > 0, so that taking limits in (C.6) gives

lim
h→0

1

h
II = (Ṙw

t,T f)(s).

An application of the dominated convergence theorem, which is justified by (C.3), yields
that for any u, s ≤ T t 7→ Rt(s, u) is absolutely continuous with

Ṙwt (s, u) = −2(δ +Rwt,T ) ?
√
wĊt,T

√
w ? (δ +Rwt,T ),

which is the claimed expression.

We can now complete the proof of Theorem 2.7.

Proof of Theorem 2.7. The claimed expression for the Laplace transform follows from (2.20),
the Riccati equation for Ψ as defined in (2.27) follows from Lemma C.3, and that of φ is
straightforward from (2.22).
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Aurélien Alfonsi. Affine diffusions and related processes: simulation, theory and applications, vol-
ume 6. Springer, 2015.
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