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Abstract

We establish an explicit expression for the conditional Laplace transform of the
integrated Volterra Wishart process in terms of a certain resolvent of the covariance
function. The core ingredient is the derivation of the conditional Laplace transform
of general Gaussian processes in terms of Fredholm’s determinant and resolvent. Fur-
thermore, we link the characteristic exponents to a system of non-standard infinite
dimensional matrix Riccati equations. This leads to a second representation of the
Laplace transform for a special case of convolution kernel. In practice, we show that
both representations can be approximated by either closed form solutions of conven-
tional Wishart distributions or finite dimensional matrix Riccati equations stemming
from conventional linear-quadratic models. This allows fast pricing in a variety of
highly flexible models, ranging from bond pricing in quadratic short rate models with
rich autocorrelation structures, long range dependence and possible default risk, to
pricing basket options with covariance risk in multivariate rough volatility models.
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1 Introduction

We are interested in the d×d Volterra Wishart process XX> where X is the d×m-matrix
valued Volterra Gaussian process

Xt = g0(t) +

∫ t

0
K(t, s)dWs,

for some given input curve g0 : [0, T ] → Rd×m, suitable kernel K : [0, T ]2 → Rd×d and
d×m-matrix Brownian motion W , for a fixed time horizon T > 0.

The introduction of the kernel K allows for flexibility in financial modeling as illustrated
in the two following examples. First, one can consider asymmetric (possibly negative)
quadratic short rates of the form

rt = tr
(
X>t QXt

)
+ ξ(t)

where Q ∈ Sd+, ξ is an input curve used for matching market term structures and tr stands
for the trace operator. The kernel K allows for richer autocorrelation structures then the
one generated with the conventional Hull and White (1990) and Cox, Ingersoll, and Ross
(2005) models. Second, for d = m, one can build stochastic covariance models for d–assets
S = (S1, . . . , Sd) by considering the following dynamics for the stock prices:

dSt = diag(St)XtdBt

where B is d-dimensional and correlated with W . Then, the instantaneous covariance
between the assets is stochastic and given by d〈logS〉t

dt = XtX
>
t ∈ Sd+. When d = m = 1,

one recovers the Volterra version of the Stein and Stein (1991) or Schöbel and Zhu (1999)
model. Here, singular kernels K satisfying lims↑t |K(t, s)| =∞, allow to take into account
roughness of the sample paths of the volatility, as documented in Bennedsen et al. (2016);
Gatheral et al. (2018). As an illustrative example for d = m = 1, one could consider the
Riemann-Liouville fractional Brownian motion

Xt =
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs, (1.1)

either with H ∈ (0, 1/2) to reproduce roughness when modeling the variance process, or
with H ∈ (1/2, 1) to account for long memory in short rate models.

In both cases, integrated quantities of the form
∫ ·
0XsX

>
s ds play a key role for pricing

zero-coupon bonds and options on covariance risk. In order to keep the model tractable,
one needs to come up with fast pricing and calibration techniques. The main objective
of the paper is to show that these models remain highly tractable, despite the inherent
non-markovianity and non-semimartingality due to the introduction of the kernel K. For
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w ∈ Sd+, our main result (Theorem 3.3) provides the explicit expression for the conditional
Laplace transform:

E
[
exp

(
−
∫ T

t
tr
(
X>s wXs

)
ds

) ∣∣∣ Ft] = exp

(
φt,T +

∫
(t,T ]2

tr
(
gt(s)

>Ψt,T (ds, du)gt(u)
))

,

where (φ,Ψ) are defined by

∂tφt,T = −m
∫
(t,T ]2

tr
(

Ψt,T (ds, du)K(u, t)K(s, t)>
)
, φT,T = 0,

Ψt,T (ds, du) = −wδ{s=u}(ds, du)−
√
wRwt,T (s, u)

√
wdsdu,

with gt(s) = E[Xs|Ft] the forward process, Ct(s, u) = E[(Xs − gt(s))(Xu − gt(u))>|Ft]
the conditional covariance function, and Rwt,T : [0, T ]2 → Rd×d the Fredholm resolvent of
(−2
√
wCt
√
w) on [0, T ] given by

Rwt,T (s, u) = −2
√
wCt(s, u)

√
w −

∫ T

t
2
√
wCt(s, z)

√
wRwt,T (z, u)dz, t ≤ s, u ≤ T.

The Laplace transform is exponentially quadratic in the forward process (gt)t≤T , and
cannot in general be recovered from that of affine Volterra processes introduced in Abi Jaber
et al. (2019a), see Remark 2.1. This should be contrasted with the classical case K ≡ Id
where linear-quadratic models can be recast into the framework of affine processes by a
suitable extension of the state space, see Cheng and Scaillet (2007); Duffie et al. (2003).
Furthermore, we link Ψ to a system of non-standard infinite dimensional backward Riccati
equations. This leads to a second representation of the Laplace transform for a special
case of convolution kernel, showing that the Volterra Wishart process can be seen as a
superposition of possibly infinitely many conventional linear-quadratic models.

Although explicit, the expression for the Laplace transform is not known in closed form,
except for certain cases. We provide two approximation procedures either by closed form
solutions of conventional Wishart distributions (Section 2.3) or finite dimensional matrix
Riccati equations stemming from conventional linear-quadratic models (Section 3.3). These
approximations can then be used to price bonds with possible default risk, or options
on covariance in multivariate (rough) volatility models by Laplace transform techniques
(Section 4).

Literature Conventional Wishart processes initiated by Bru (1991) and introduced
in finance by Gourieroux and Sufana (2003) have been intensively applied, together with
their variants, in term structure and stochastic covariance modeling, see for instance Alfonsi
(2015); Buraschi et al. (2010); Cuchiero et al. (2011, 2016); Da Fonseca et al. (2007, 2008);
Gouriéroux et al. (2009); Muhle-Karbe et al. (2012). Conventional linear quadratic models
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have been characterized in Chen et al. (2004); Cheng and Scaillet (2007). Volterra Wishart
processes have been recently studied in Cuchiero and Teichmann (2019); Yue and Huang
(2018). Applications of certain quadratic Gaussian processes can be found in Benth and
Rohde (2018); Corcuera et al. (2013); Harms and Stefanovits (2019); Kleptsyna et al.
(2002). Gaussian stochastic volatility models have been treated in Gulisashvili (2018);
Gulisashvili et al. (2019).

Outline In Section 2 we derive the Laplace transform of general quadratic Gaussian
processes in RN , we provide a first approximation procedure by closed form expressions
and link the characteristic exponent to non-standard Riccati equations. These results are
then used in Section 3 to deduce the Laplace transforms of Volterra Wishart processes.
We also provide a second representation formula for the Laplace transform together with
an approximation scheme for a special class of convolution kernels. Section 4 presents
applications to pricing: (i) bonds in quadratic Volterra short rate models with possible
default risk; (ii) options on volatility for basket products in Volterra Wishart (rough)
covariance models. Some technical results are collected in the appendices.

Notations For T > 0, we define L2([0, T ]2,RN×N ) to be the space of measurable
functions F : [0, T ]2 → RN×N such that∫ T

0

∫ T

0
|F (t, s)|2dtds <∞.

For any F,G ∈ L2([0, T ]2,RN×N ) we define the ?-product by

(F ? G)(s, u) =

∫ T

0
F (s, z)G(z, u)du, s, u ≤ T, (1.2)

which is well-defined in L2([0, T ]2,RN×N ) due to the Cauchy-Schwarz inequality. We de-
note by F ∗ the adjoint kernel of F in L2([0, T ],RN×N ), that is

F ∗(s, u) = F (u, s)>, s, u ≤ T.

For any kernel F ∈ L2([0, T ]2,RN×N ), we denote by F the integral operator from L2([0, T ],RN )
into itself induced by the kernel F that is

(F g)(s) =

∫ T

0
F (s, u)g(u)du, g ∈ L2([0, T ],RN ).

If F and G are two integral operators induced by the kernels F and G in L2([0, T ]2,RN×N ),
then FG is an integral operator induced by the kernel F ? G.

SN+ stands for the cone of symmetric non-negative semidefinite N × N -matrices, tr
denotes the trace of a matrix and IN is the N × N identity matrix. The vectorization
operator is denoted by vec and the Kronecker product by ⊗, we refer to Appendix B for
more details.
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2 Quadratic Gaussian processes

Throughout this section, we fix T > 0, N ≥ 1 and let Z denote a RN -valued square-
integrable Gaussian process on a filtered probability space (Ω,F , (Ft)t≤T ,P) with mean
function g0(s) = E[Zs] and covariance kernel given by C0(s, u) = E[(Zs − g0(s))(Zu −
g0(u))>], for each s, u ∈ [0, T ]. We note that g0 and C0 may depend on T , but we do not
make this dependence explicit to ease notations.

2.1 Fredholm’s representation and first properties

Assume that C0 is continuous in both variables. Then, there exists a kernel KT ∈
L2([0, T ]2,RN×N ) and a N -dimensional Brownian motion W such that

Zt = g0(t) +

∫ T

0
KT (t, s)dWs, (2.1)

for all t ≤ T , see Sottinen and Viitasaari (2016, Theorem 12 and Example 2). In particular,
C0 = KT ? K

∗
T , that is

C0(s, u) =

∫ T

0
KT (s, z)KT (u, z)>dz, s, u ≤ T.

For any t ≤ s, Zs admits the following decomposition

Zs = g0(s) +

∫ t

0
KT (s, u)dWu +

∫ T

t
KT (s, u)dWu, (2.2)

showing that conditional on Ft, Zs is again a Gaussian process with conditional mean

gt(s) = E[Zs|Ft] = g0(s) +

∫ t

0
KT (s, u)dWu, t ≤ s ≤ T,

and conditional covariance function

Ct(s, u) = E[(Zs − gt(s))(Zu − gt(u))>|Ft]

=

∫ T

t
KT (s, z)KT (u, z)>dz, t ≤ s, u ≤ T. (2.3)

Again we drop the possible dependence of gt and Ct on T , and we note in particular that
for each s, u ≤ T , t→ Ct(s, u) is absolutely continuous on [0, s ∧ u] with density

Ċt(s, u) = −K(s, t)K(u, t)>, (2.4)

and that the process t 7→ gt(s) is a semimartingale on [0, s) with dynamics

dgt(s) = KT (s, t)dWt, t < s.
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We are chiefly interested in the SN+ -valued process ZZ>. The following remark shows
that, in general, ZZ> cannot be recast as an affine Volterra process as studied in Abi Jaber
et al. (2019a).

Remark 2.1. To fix ideas, we set g0 ≡ Z0 ∈ RN . An application of Itô’s formula yields

gt(s)gt(s)
> = Z0Z

>
0 +

∫ t

0
KT (s, u)KT (s, u)>du

+

∫ t

0
KT (s, u)dWugt(u)> +

∫ t

0
gt(u)dW>u KT (s, u)>, t < s.

Taking the limit s→ t leads to the dynamics

ZtZ
>
t = Z0Z

>
0 +

∫ t

0
KT (t, u)KT (t, u)>du

+

∫ t

0
KT (t, u)dWugt(u)> +

∫ t

0
gt(u)dW>u KT (t, u)>. (2.5)

In particular, for KT ≡ IN , we have gt(·) = Z, and (2.5) reduces to the well-known
dynamics of Wishart processes as introduced by Bru (1991).

Whence, the conditional Laplace transform of ZZ> cannot be deduced from Abi Jaber
et al. (2019a, Theorem 4.3). Nonetheless, it can be directly computed from Wishart dis-
tributions that we recall in Appendix A.

Theorem 2.2. Fix t ≤ s ≤ T . Conditional on Ft, ZsZ>s follows a Wishart distribution

ZsZ
>
s ∼|Ft

WISN

(
1/2, gt(s)gt(s)

>, 2Ct(s, s)
)
.

Further, for any u ∈ SN+ , the conditional Laplace transform reads

E
[
exp

(
−Z>s uZs

) ∣∣∣ Ft] =
exp

(
−gt(s)>u (IN + 2Ct(s, s)u)−1 gt(s)

)
det (IN + 2Ct(s, s)u)1/2

.

Proof. Fix t ≤ s ≤ T , conditional on Ft, it follows from (2.2) that Zs is a Gaussian vector
in RN with mean vector gt(s) ∈ RN and covariance matrix Ct(s, s) ∈ RN×N . The claimed
result now follows from Proposition A.1.

In particular, if N = 1, t = 0 and s = T , one obtains the well-known chi-square
distribution

E
[
exp

(
−uZ2

T

)]
=

exp
(
−ug0(T )2

1+2uC0(T,T )

)
(1 + 2uC0(T, T ))1/2

, u ≥ 0.

The computation of the Laplace transform for the integrated squared process is more
involved and is treated in the next subsection.
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2.2 Conditional Laplace transform of the integrated quadratic process

We are interested in computing the conditional Laplace transform

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] , w ∈ SN+ , t ≤ T. (2.6)

For t = 0 and for centered processes, such computations appeared several times in the
literature showing that the quantity of interest can be decomposed as an infinite product
of independent chi-square distributions, see for instance Anderson and Darling (1952);
Cameron and Donsker (1959); Varberg (1966). The same methodology can be readily
adapted to our dynamical case and makes use of the celebrated Kac–Siegert/Karhunen–
Loève representation of the process Y =

√
wZ whose conditional covariance function is

Cwt =
√
wCt
√
w, see Kac and Siegert (1947); Karhunen (1946); Loeve (1955). For this, we

fix t ≤ T , we consider the inner product on L2([t, T ],RN ) given by

〈f, g〉L2
t

=

∫ T

t
f(s)>g(s)ds, f, g ∈ L2([t, T ],RN ),

and we assume that Ct is continuous in both variables. By definition, the covariance kernel
Cwt is symmetric and nonnegative in the sense that

Cwt (s, u) = Cwt (u, s)>, s, t ≤ T,

and ∫ T

t

∫ T

t
f(s)>Cwt (s, u)f(u)duds ≥ 0, f ∈ L2([t, T ],RN ).

An application of Mercer’s theorem, see Shorack and Wellner (2009, Theorem 1 p.208),
yields the existence of a countable orthonormal basis (ent,T )n≥1 in L2([t, T ],RN ) and a
sequence of nonnegative real numbers (λnt,T )n≥1 with

∑
n≥1 λ

n
t,T <∞ such that

Cwt (s, u) =
∑
n≥1

λnt,T e
n
t,T (s)ent,T (u)>, t ≤ s, u ≤ T, (2.7)

and ∫ T

t
Cwt (s, u)ent,T (u)du = λnt,T e

n
t,T (s), t ≤ s ≤ T, n ≥ 1, (2.8)

where the dependence of (ent,T , λ
n
t,T ) on w is dropped to ease notations. This means that

(λnt,T , e
n
t,T )n≥1 are the eigenvalues and the eigenvectors of the integral operator

√
wCt
√
w

from L2([t, T ],RN ) into itself induced by Cwt :

(
√
wCt

√
wf)(s) =

∫ T

t
Cwt (s, u)f(u)du, t ≤ s ≤ T, f ∈ L2([t, T ],RN ).
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As a consequence of Mercer’s theorem, conditional on Ft, the process Y admits the Kac–
Siegert representation

Ys =
√
wgt(s) +

∑
n≥1

√
λnt,T ξ

nent,T (s), t ≤ s ≤ T, (2.9)

where, conditional on Ft, (ξn)n≥1 is a sequence of independent standard Gaussian random
variables, see Shorack and Wellner (2009, Theorem 2 p.210 and the comment below (14) on
p.212). We now introduce the quantities needed for the computation of (2.6) in Theorem 2.3
below. We denote by id the identity operator on L2([t, T ],RN ), i.e. (idf)(s) = f(s), by
(id + 2

√
wCt
√
w)−1 the integral operator generated by the kernel∑

n≥1

1

1 + 2λnt,T
ent,T (s)ent,T (u)>, (2.10)

and we set

det(id + 2
√
wCt

√
w) :=

∏
n≥1

(
1 + 2λnt,T

)
. (2.11)

The last expression is well defined due to the convergence of the series (
∑m

n=1 λ
n
t,T )m≥1 and

the inequality

1 + 2
m∑
n=1

λnt,T ≤
m∏
n=1

(
1 + 2λnt,T

)
≤ exp

(
2

m∑
n=1

λnt,T

)
, m ≥ 1.

Theorem 2.3. Fix w ∈ SN+ and t ≤ T . Assume that the function (s, u) 7→ Ct(s, u) is
continuous. Then,

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣Ft] =
exp

(
−〈gt,

√
w (id + 2

√
wCt
√
w)
−1√

wgt〉L2
t

)
det (id + 2

√
wCt
√
w)

1/2
. (2.12)

Proof. Fix t ≤ T . Parseval’s identity gives 〈
√
wgt,
√
wgt〉L2

t
=
∑

n≥1〈
√
wgt, e

n
t,T 〉2L2

t
so that

∫ T

t
Z>s wZsds = 〈Y, Y 〉L2

t
=
∑
n≥1

(√
λnt,T ξ

n + 〈
√
wgt, e

n
t,T 〉L2

t

)2
,

where the first equality follows from the definition Y :=
√
wZ and the second equality is

a consequence of (2.9). By the independence of the sequence (ξn)n≥1 and the dominated
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convergence theorem we can compute

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] =
∏
n≥1

E
[
exp

(
−
(√

λnt,T ξ
n + 〈

√
wgt, e

n
t,T 〉L2

t

)2) ∣∣∣ Ft]

=
∏
n≥1

1√
1 + 2λnt,T

exp

(
− 1

1 + 2λnt,T
〈
√
wgt, e

n
t,T 〉2L2

t

)

= det(id + 2
√
wCt

√
w)−1/2

× exp

−∑
n≥1

1

1 + 2λnt,T
〈
√
wgt, e

n
t,T 〉2L2

t

 ,

where the second equality is obtained from the chi-square distribution, since the random

variable
(
λnt,T ξ

n + 〈
√
wgt, e

n
t,T 〉L2

t

)
is Gaussian with mean 〈

√
wgt, e

n
t,T 〉L2

t
and variance λnt,T ,

for each n ≥ 1, see Proposition A.1. The claimed expression now follows upon observing
that, thanks to (2.10),

〈gt,
√
w
(
id + 2

√
wCt

√
w
)−1√

wgt〉L2
t

=
∑
n≥1

1

1 + 2λnt,T
〈
√
wgt, e

n
t,T 〉2L2

t
.

Remark 2.4. The determinant (2.11) is named after Fredholm (1903) who defined it for
the first time through the following expansion

det(id + C) =
∑
n≥0

1

n!

∫ T

t
. . .

∫ T

t
det [(C(si, sj))1≤i,j≤n] ds1 . . . dsn,

where C is a generic integral operator with continuous kernel C. Lidskii’s theorem ensures
that Fredholm’s definition is equivalent to

det(id + C) = exp (Tr (log (id + C))) ,

where Tr(C) =
∫ T
t C(s, s)ds, and consequently equivalent to the infinite product expression

as in (2.11), refer to Simon (1977) for more details.

Closed form solutions are known in some standard cases.

Example 2.5. Set N = 1, t = 0, T = 1 and Z = W , where W is a standard Brownian
motion and Z0 ∈ R. Then, g0(s) = 0 and C0(s, u) = s ∧ u and the eigenvalues and
eigenvectors of the eigenproblem (2.8) are well-known and given by

λn0,1 =
w

(n− 1/2)2π2
and en0,1(s) =

√
2 sin

((
n− 1

2

)
πs

)
, n ≥ 1.

9



Using the identity∏
n≥1

(
1 + 2λn0,1

)
=
∏
n≥1

(
1 +

2w

(n− 1/2)2π2

)
= cosh

√
2w,

(2.12) reads

E
[
exp

(
−w

∫ 1

0
W 2
s ds

)]
=
(

cosh
√

2w
)−1/2

. (2.13)

For arbitrary kernels C, the eigenpairs (λn, en)n≥1 are, in general, not known in closed
form. This is the case for instance for the fractional Brownian motion. We provide in the
next subsection an approximation by closed form formulas.

2.3 Approximation by closed form expressions

A natural idea to approximate (2.12) is to discretize the time-integral. Fix t ≤ T and let
sni = t+ i(T − t)/n, i = 0, . . . , n. By the dominated convergence theorem it follows that

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = lim
n→∞

E

[
T − t
n

exp

(
−

n∑
i=1

Z>sni wZs
n
i
ds

) ∣∣∣ Ft] ,
for all w ∈ SN+ . For each n, (Zsn1 , . . . , Zsnn)> being Gaussian, the right hand side is known in
closed form. This is the object of the next proposition which will make use of the Kronecker
product ⊗ and the vectorization operator vec, we refer to Appendix B for more details.

Proposition 2.6. Fix w ∈ SN+ and t ≤ T .

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = lim
n→∞

exp
(
gn>t wn (InN + 2Cnt wn)−1 gnt

)
det (InN + 2Cnt wn)1/2

, (2.14)

where wn = T−t
n (In ⊗ w) ∈ RnN×nN , gnt is the nN -vector

gnt =

gt(s
n
1 )

...
gt(s

n
n)

 , (2.15)

and Cnt is the nN × nN -matrix with entries

(Cnt )p,q = Ct(s
n
i , s

n
k)jl, p = (i− 1)N + j, q = (k − 1)N + l, (2.16)

for all i, k = 1, . . . , n, and j, l = 1, . . . , N.
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Proof. We simply observe that

n∑
i=1

Z>sni wZs
n
i

= Zn> (In ⊗ w) Zn,

where Zn = vec(Zn) and Zn = (Zsn1 , . . . , Zsnn). Zn being a Gaussian vector in RnN with
mean vector (2.15) and covariance matrix (2.16), the claimed result readily follows from
Proposition A.1 combined with the dominated convergence theorem.

We now illustrate the approximation procedure in practice for N = 1. Consider a one
dimensional fractional Brownian motion WH with Hurst index H ∈ (0, 1) and set

I(H) = E
[
exp

(
−
∫ 1

0

(
WH
s

)2
ds

)]
. (2.17)

The (unconditional) covariance function of the fractional Brownian motion is given by

CH0 (s, u) =
1

2

(
|s|2H + |u|2H − |s− u|2H

)
. (2.18)

Fix n ≥ 1 and a uniform partition (sni )0≤i≤n of [0, 1]. Since WH is centered, (2.15) reads
gn0 = 0 and the right hand side in (2.14) reduces to

In(H) = det

(
In +

2

n
CH,n0

)− 1
2

, (2.19)

where CH,n0 (i, j) = CH0 (sni , s
n
j ), i, j = 1, . . . , n. We proceed as follows. First, we determine

the reference value of (2.17) for several values of H. For H = 1/2, the exact value is
I(1/2) = cosh(

√
2)−1/2, recall (2.13). For H ∈ {0.1, 0.3, 0.7, 0.9}, we run 500 Monte–Carlo

simulations to get I(H) with 104 sample paths each and 103 time steps. Second, for each
value of H, we compute In(H) as in (2.19), for several values of n. The results are collected
in Table 1 and Figure 1 below. We observe that for n = 50, In(H) falls already within
the 90% confidence interval of the Monte–Carlo simulation, for any value of H. Other
quadrature rules can be used in Proposition 2.6, see for instance Bornemann (2010).
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H 0.1 0.3 0.5 0.7 0.9

ref. I(H) 0.50038 0.60748 0.67757* 0.72506 0.76012

n\In(H)
10 0.50310 0.59301 0.65763 0.70376 0.73779
20 0.50081 0.59961 0.66727 0.71445 0.74810
30 0.50027 0.60291 0.67160 0.71912 0.75386
50 0.50019 0.60433 0.67337 0.72101 0.75581
100 0.50025 0.60608 0.67545 0.72321 0.75801
200 0.50037 0.60701 0.67650 0.72431 0.75924
500 0.50051 0.60757 0.67714 0.72498 0.75992
1000 0.50058 0.60776 0.67735 0.72520 0.76015

Table 1: Approximation of I(H) by In(H) for several values of H with n ranging between
10 and 1000. *exact value for I(1/2).
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Figure 1: Convergence of In(H) (blue) towards the benchmark MC value I(H) (red) for
different values of (H,n) from Table 1. The dashed lines delimit the 90% confidence interval
of the Monte–Carlo simulation.

2.4 Connection to Riccati equations

The expression (2.12) is reminiscent of the formula obtained for finite dimensional Wishart
processes in Bru (1991) and more generally that of linear quadratic diffusions, see Cheng
and Scaillet (2007), suggesting a connection with infinite dimensional Riccati equations.
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Indeed, setting

φt,T = −1

2
Tr
(
log
(
id + 2

√
wCt

√
w
))
,

Ψt,T = −
√
w
(
id + 2

√
wCt

√
w
)−1√

w,

it follows from Remark 2.4 that (2.12) can be rewritten as

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = exp
(
φt,T + 〈gt,Ψt,T gt〉L2

t

)
, t ≤ T. (2.20)

Since t→ Ct is absolutely continuous, t→ Ct is differentiable (see Appendix C). By taking
the derivatives we get that (φ,Ψ) solves the following system of operator Riccati equations

φ̇t,T = Tr
(
Ψt,T Ċt

)
, φT,T = 0, (2.21)

Ψ̇t,T = 2Ψt,T

√
wĊt

√
wΨt,T , ΨT,T = 0, (2.22)

where Ḟt denotes the derivative of Ft with respect to t.
This induces a system of Riccati equations for the kernels. To see this, we introduce

the concept of resolvent. Fix t ≤ T and define the kernel

Rwt,T (s, u) =
∑
n≥1

(
1

1 + 2λnt,T
− 1

)
ent,T (s)ent,T (u)>, t ≤ s, u ≤ T. (2.23)

It is straightforward to check, using (2.7), that for all t ≤ s, u ≤ T ,

2

∫ T

t
Rwt,T (s, z)Cwt (z, u)dz =2

∫ T

t
Cwt (s, z)Rwt,T (z, u)dz = −Rwt,T (s, u)− 2Cwt (s, u).(2.24)

Rwt,T is called the resolvent kernel of (−2Cwt ) and the integral operator Rw
t,T induced by

Rwt,T satisfies the relation

Rw
t,T = (id + 2

√
wCt

√
w)−1 − id, (2.25)

so that Ψt,T can be re-expressed in terms of the resolvent

Ψt,T = −wid−
√
wRw

t,T

√
w.

The next theorem, whose proof is postponed to Appendix C, establishes the representation
of the Laplace transform together with the Riccati equations (2.21)-(2.22) in terms of the
induced kernel

Ψt,T (ds, du) = −wδs=u(ds, du) + ψt,T (s, u)dsdu, (2.26)

where ψt,T = −
√
wRwt,T

√
w is the density of Ψt,T with respect to the Lebesgue measure.

We recall the ?-product defined in (1.2).
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Theorem 2.7. Fix w ∈ SN+ and T > 0. Assume that the function (s, u) 7→ Ct(s, u) is
continuous, for each t ≤ T , such that

sup
t≤T

sup
t≤s,u≤T

|Ct(s, u)| <∞. (2.27)

Then,

E
[
exp

(
−
∫ T

t
Z>s wZsds

) ∣∣∣ Ft] = exp

(
φt,T +

∫
(t,T ]2

gt(s)
>Ψt,T (ds, du)gt(u)

)
, t ≤ T,

where t 7→ Ψt,T is given by (2.26) and φt,T by

φ̇t,T = −
∫
(t,T ]2

tr
(

Ψt,T (ds, du)KT (u, t)KT (s, t)>
)
, φT,T = 0.

In particular, t 7→ Ψt,T solves the Riccati equation with moving boundary

ψ̇t,T = 2Ψt,T ? Ċt ?Ψt,T on (t, T ]2 a.e., (2.28)

ψt,T (t, ·) = ψt,T (·, t)> = 0 on [t, T ] a.e.

We note that, since ψt,T (s, u) = 0 whenever s ∧ u ≤ t, equation (2.28) is the compact
form of

ψ̇t,T (s, u) = −2wKT (s, t)KT (u, t)>w

− 2wKT (s, t)

∫ T

t
KT (z, t)>ψt,T (z, u)dz

− 2

∫ T

t
ψt,T (s, z)KT (z, t)dzKT (u, t)>w

− 2

∫ T

t
ψt,T (s, z)KT (z, t)dz

∫ T

t
KT (z′, t)>ψt,T (z′, u)dz′, t < s, u ≤ T a.e.

and the expanded form of φ is given by

φ̇t,T =

∫ T

t
tr
(
wKT (s, t)KT (s, t)>

)
ds−

∫ T

t

∫ T

t
tr
(
ψt,T (s, u)KT (u, t)KT (s, t)>

)
dsdu.

Remark 2.8. The Riccati equation (2.28) can be compared to the Bellman (1957) and
Krein (1955) variation formula for Fredholm’s resolvent, see also Golberg (1973); Schu-
mitzky (1968).
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3 The Volterra Wishart process and its Laplace transforms

Fix T > 0 and a filtered probability space (Ω,F , (Ft)t≤T ,P) supporting a d ×m–matrix
valued Brownian motion W . In this section, we consider the special case of the matrix-
valued Volterra Gaussian process

Xt = g0(t) +

∫ t

0
K(t, s)dWs, (3.1)

where g0 : [0, T ]→ Rd×m is continuous and K : [0, T ]→ Rd×d is a d× d–measurable kernel
of Volterra type, that is K(t, s) = 0 for s > t. Compared to (2.1), since the kernel K is of
Volterra type, the integration in (3.1) goes up to time t rather than T .

Under the assumption

sup
t≤T

∫ T

0
|K(t, s)|2ds <∞ and lim

h→0

∫ T

0
|K(u+ h, s)−K(u, s)|2ds = 0, u ≤ T, (3.2)

the stochastic convolution

Nt =

∫ t

0
K(t, s)dWs,

is well defined as an Itô integral, for each t ∈ [0, T ]. Furthermore, Itô’s isometry leads to

E
[
|Nt −Ns|2

]
≤ 2

∫ t

s
|K(t, u)|2du+ 2

∫ T

0
|K(t, u)−K(s, u)|2du

which goes to 0 as s → t showing that N is mean-square continuous, and by virtue of
Peszat and Zabczyk (2007, Proposition 3.21), the process N admits a predictable version.
Furthermore, by the Burkholder-Davis-Gundy inequality, it holds that

sup
t≤T

E
[∣∣∣∣∫ t

0
K(t, s)dWs

∣∣∣∣p] ≤ cp,T
(

sup
t≤T

∫ T

0
|K(t, s)|2ds

)p/2
<∞, p ≥ 2, (3.3)

where cp,T is a positive constant only depending on T and p. Kernels satisfying (3.2) are
known as Volterra kernels of continuous and bounded type in L2 in the terminology of
Gripenberg et al. (1990, Definitions 9.2.1, 9.5.1 and 9.5.2).

We now provide several kernel of interest that satisfy (3.2). In particular, we stress
that (3.2) does not exclude a singularity of the kernel at s = t.

Example 3.1. (i) For H ∈ (0, 1), the fractional Brownian motion with covariance func-
tion (2.18) admits a Volterra representation of the form (3.1) on [0, T ] with the kernel

KH(t, s) =
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
, s ≤ t,

where 2F1 is the Gauss hypergeometric integral, see Decreusefond and Ustunel (1999).
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(ii) If K is continuous on [0, T ]2, then (3.2) is satisfied by boundedness and the dominated
convergence theorem. This is the case for instance for the Brownian Bridge W T1

conditioned to be equal to W T1
0 at a time T1: for all T < T1, W

T1 admits the Volterra
representation (3.1) on [0, T ] with the continuous kernel K(t, s) = (T1 − t)/(T1 − s),
for all s, t ≤ T .

(iii) If K1 an K2 satisfy (3.2) then so does K1 ? K2 by an application of Cauchy-Schwarz
inequality.

(iv) Any convolution kernel of the form K(t, s) = k(t − s)1s≤t with k ∈ L2([0, T ],Rd×d)
satisfies (3.2). Indeed, for any t ≤ T ,∫ T

0
|K(t, s)|2ds =

∫ t

0
|k(t− s)|2ds =

∫ t

0
|k(s)|2ds ≤

∫ T

0
|k(s)|2ds,

yielding the first part of (3.2). The second part follows from the L2-continuity of k,
see (Brezis, 2010, Lemma 4.3).

We denote the conditional expectation of X by

gt(s) = E [Xs|Ft] , t ≤ s ≤ T, (3.4)

which is well-defined thanks to (3.3). For each t ≥ 0, we denote by Ct the conditional
covariance function of X with respect to Ft, that is

Ct(s, u) =

∫ s∧u

t
K(s, r)K(u, r)>dr, t ≤ s, u ≤ T. (3.5)

C satisfies the assumption of Theorem 2.7 as shown in the next lemma.

Lemma 3.2. Under (3.2), (s, u) 7→ Ct(s, u) is continuous, for all t ≤ T and (2.27) holds.

Proof. Fix t, s, u ≤ T and h such that 0 ≤ s+ h ≤ T . We write

Ct(s+ h, u)− Ct(s, u) =

∫ s∧u

t
(K(s+ h, r)−K(s, r))K(u, r)>dr

+

∫ (s+h)∧u

s∧u
K(s+ h, r)K(u, r)>dr

= I + II.

An application of Cauchy-Schwarz inequality yields

|I|2 ≤
∫ T

0
|K(s+ h, r)−K(s, r)|2dr

∫ T

0
|K(u, r)|2dr,
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which goes to 0 as h→ 0 thanks to (3.2). Another application of Cauchy-Schwarz inequality
leads to

|II|2 ≤ sup
s′≤T

∫ T

0
|K(s′, r)|2dr

∫ (s+h)∧u

s∧u
|K(u, r)|2dr,

which goes to 0 as h → 0 again thanks to (3.2). Finally, a third application of Cauchy-
Schwarz inequality on (3.5) yields

|Ct(s, u)|2 ≤

(
sup
s′≤T

∫ T

0
|K(s′, r)|2dr

)2

which proves (2.27).

3.1 A first representation

By construction the process XX> is Sd+–valued and its Laplace transforms can be deduced
from Theorems 2.2 and 2.7. Indeed, using the vectorization operator vec, which stacks the
column of a d×m–matrix A one underneath another in a vector of dimension N = dm, see
Appendix B, the study of the matrix valued process X reduces to that of the Rdm-valued
Gaussian process Z = vec(X) as done in Section 2.

The following theorem represents the main result of the paper.

Theorem 3.3. Let X be the d×m–matrix valued process defined in (3.1). Fix t ≤ T . For
any u ∈ Sd+,

E
[
exp

(
− tr

(
X>T uXT

)) ∣∣∣ Ft] =
exp

(
− tr

(
u (Id + 2Ct(T, T )u)−1 gt(T )gt(T )>

))
det (Id + 2Ct(T, T )u)m/2

. (3.6)

For any w ∈ Sd+, the Laplace transform

Lt,T (w) = E
[
exp

(
−
∫ T

t
tr
(
X>s wXs

)
ds

) ∣∣∣ Ft] ,
is given by

Lt,T (w) = exp

(
φt,T +

∫
(t,T ]2

tr
(
gt(s)

>Ψt,T (ds, du)gt(u)
))

, (3.7)

where (φ,Ψ) are defined by

φ̇t,T = −m
∫
(t,T ]2

tr
(

Ψt,T (ds, du)K(u, t)K(s, t)>
)
, φT,T = 0, (3.8)

Ψt,T (ds, du) = −wδ{s=u}(ds, du)−
√
wRwt,T (s, u)

√
wdsdu, on [t, T ], (3.9)
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where Rwt,T is the d× d–matrix valued resolvent of (−2
√
wCt
√
w), with Ct the conditional

covariance function (3.5) and gt the conditional mean given by (3.4). In particular, t 7→
Ψt,T solves the Riccati equation with moving boundary

ψ̇t,T = 2Ψt,T ? Ċt ?Ψt,T on (t, T ]2 a.e., (3.10)

ψt,T (t, ·) = ψt,T (·, t)> = 0 on [t, T ] a.e., (3.11)

where ψt,T (s, u) =
√
wRwt,T (s, u)

√
w.

Proof. Setting Z = vec(X) and W = vec(W ), an application of the vectorization operator
vec on both sides of the d×m–matrix valued equation (3.1) yields the N := dm dimensional
vector valued Gaussian process

Zs = vec (g0(s)) +

∫ s

0
K(s, u)dWu. (3.12)

where K is the RN×N kernel

K : (s, u) 7→ (Im ⊗K(s, u))

coming from the relation (B.1), with ⊗ the Kronecker product. Whence, the conditional
mean and covariance functions of Z are given respectively by vec(gt) and

Ct(s, u) = (Im ⊗ Ct(s, u)), u, s ≤ T. (3.13)

In addition, due to (B.2),

tr(wXX>) = Z>(Im ⊗ w)Z, w ∈ SN .

• We first prove (3.6). Fix t ≤ T and u ∈ Sd+. An application of Theorem 2.2 yields

E
[
exp

(
−Z>T (Im ⊗ u)ZT

) ∣∣∣ Ft] =
exp (−Ht(T ))

det (IN + 2Ct(T, T )(Im ⊗ u))1/2
,

with

Ht(T ) = vec(gt(T ))>(Im ⊗ u) (IN + 2Ct(T, T )(Im ⊗ u))−1 vec(gt(T )).

We observe that by (3.13) and successive applications of the product rule (B.3)

(IN + 2Ct(T, T )(Im ⊗ u))−1 = ((Im ⊗ Id) + 2(Im ⊗ Ct(T, T ))(Im ⊗ u))−1

= (Im ⊗ (Id + 2Ct(T, T )u))−1

=
(
Im ⊗ (Id + 2Ct(T, T )u)−1

)
18



where the last equality follows from (B.5). Another application of (B.3) combined with
(B.2) yields that

Ht(T ) = tr
(
u (Id + 2Ct(T, T )u)−1 gt(T )gt(T )>

)
.

Similarly,

det (IN + 2Ct(T, T )(Im ⊗ u)) = det (Im ⊗ (Id + 2Ct(T, T )u))

= det (Im ⊗ (Id + 2Ct(T, T )u))

= det (Id + 2Ct(T, T )u)m

where we used (B.6) for the last identity. Combining the above proves (3.6).
• We now prove (3.7). Fix t ≤ T and w ∈ Sd+. An application of Theorem 2.7, justified by
Lemma 3.2, yields that

Lt,T (w) = exp

(
φt,T +

∫
(t,T ]2

vec(gt(s))
>Ψ̃t,T (ds, du) vec(gt(u))

)
, (3.14)

where

φ̇t,T = −
∫
(t,T ]2

tr
(

Ψ̃t,T (ds, du)K(u, t)K(s, t)>
)
, φT,T = 0, (3.15)

Ψ̃t,T (ds, du) = −(Im ⊗ w)δs=u(ds, du)− (Im ⊗
√
w)R̃wt,T (s, u)(Im ⊗

√
w)dsdu,

and R̃wt,T is the resolvent of 2Cwt (s, u). The claimed expressions now follows provided we
prove that

R̃wt,T =
(
Im ⊗Rwt,T

)
, (3.16)

where Rwt,T is the resolvent kernel of 2Cwt (s, u). Indeed, if this is the case, then, using the
the product rule (B.3) we get that

Ψ̃t,T = (Im ⊗Ψt,T ) , (3.17)

where Ψt,T is given by (3.9), so that, by (B.2),

vec(gt(s))
>Ψ̃t,T (ds, du) vec(gt(u)) = tr

(
gt(s)

>Ψt,T (ds, du)gt(u)
)
.

Plugging (3.17) back in (3.15) and using the identity (B.4) yields (3.8). Combining the
above shows that (3.14) is equal to (3.7). We now prove (3.16). For this, we define

Rwt,T =
(
Im ⊗Rwt,T

)
. Then, it follows from the resolvent equation (2.24) of Rwt,T and the

product rule (B.3) that Rwt,T solves

Rwt,T = −2Ct − 2Rwt,T ? Ct, Rwt,T ? Ct = Ct ?Rwt,T ,
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showing that Rwt,T is a resolvent of (−2Ct). By uniqueness of the resolvent, see Gripenberg
et al. (1990, Lemma 9.3.3), (3.16) holds.
• Finally, the Riccati equations (3.10)–(3.11) follow along the same lines by invoking The-
orem 2.7.

Remark 3.4. Proposition 2.6 can be applied to the vectorized Gaussian process Z = vec(X)
given by (3.12) to get an approximation formula for

E
[
exp

(
−
∫ T

t
tr
(
wXsX

>
s

)
ds

) ∣∣∣ Ft] = E
[
exp

(
−
∫ T

t
tr
(
Z>s (Im ⊗ w)Zs

)
ds

) ∣∣∣ Ft] .
3.2 A second representation for certain convolution kernels

The aim of this section is to link the Volterra Wishart distribution with conventional linear-
quadratic processes (Chen et al., 2004; Cheng and Scaillet, 2007) for the special case of
convolution kernels:

K(t, s) = k(t− s)1s≤t such that k(t) =

∫
R+

e−xtµ(dx), t > 0, (3.18)

where µ is a d×m–measure of locally bounded variation satisfying∫
R+

(
1 ∧ x−1/2

)
|µ|(dx) <∞, (3.19)

and |µ| is the total variation of the measure, as defined in Gripenberg et al. (1990, Defini-
tion 3.5.1). The condition (3.19) ensures that k is locally square integrable, see Abi Jaber
et al. (2019b, Lemma A.1). This is inspired by the approach initiated in Carmona et al.
(2000) and generalized to stochastic Volterra equations in Abi Jaber and El Euch (2019b);
Cuchiero and Teichmann (2019); Harms and Stefanovits (2019).

Let us now mention several kernels of interest that satisfy (3.18)-(3.19), we borrow the
following example from Abi Jaber et al. (2019b).

Example 3.5. (i) Smooth kernels: if |µij(R+)| < ∞, for every i, j = 1, . . . , d, then
(3.19) is satisfied and k is infinitely differentiable on [0, T ]. This is the case, for
instance, when µ(dx) =

∑n
i=1 c

n
i δxni (dx), for some cni ∈ Rd×d and xni ∈ R+, i =

1, . . . , n, which corresponds to

K(t) =

n∑
i=1

cni e
−xni t.

(ii) The fractional kernel (d = 1) entering in the construction of the Riemann-Liouville
fractional Brownian motion (1.1):

KRL(t) =
tH−1/2

Γ(H + 1/2)
,
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for some H ∈ (0, 1/2), which is the Laplace transform of

µ(dx) =
x−H−1/2

Γ(H + 1/2)Γ(1/2−H)
dx,

and more generally the Gamma kernel K(t) = KRL(t)e−ζt for H ∈ (0, 1/2) and ζ ∈ R
for which

µ(dx) =
(x− ζ)−H−1/21(ζ,∞)(x)

Γ(H + 1/2)Γ(1/2−H)
dx.

(iii) If K1 and K2 satisfy (3.18), then so does K1 + K2 and K1K2 with the respective
measures µ1 + µ2 and µ1 ∗ µ2. When µ1, µ2 satisfy (3.19), it is clear that µ1 + µ2
also satisfies (3.19). This condition is satisfied for the convolution µ1 ∗ µ2 provided∫
[1,∞)2(x+ y)−1/2µ1(dx)µ2(dy) < ∞, which is the case for instance if either µ1(R+)

or µ2(R+) are finite.

(iv) If K is a completely monotone kernel, i.e. K is infinitely differentiable on (0,∞) such
that (−1)nK(n)(t) is nonnegative for each t > 0, then, by Bernstein’s theorem, there
exists a nonnegative measure µ such that (3.18) holds, see (Gripenberg et al., 1990,
Theorem 5.2.5).

A straightforward application of stochastic Fubini’s theorem provides the representation
of (Xt, gt)t≥0 in terms of µ and the possibly infinite system of d×m-matrix-valued Ornstein-
Uhlenbeck processes

Yt(x) =

∫ t

0
e−x(t−s)dWs, t ≥ 0, x ∈ R+,

see for instance Abi Jaber et al. (2019b, Theorem 2.3).

Lemma 3.6. Assume that K is of the form (3.18) with µ satisfying (3.19), then

Xt = g0(t) +

∫
R+

µ(dx)Yt(x), t ≤ T,

gt(s) = g0(s) +

∫
R+

e−x(s−t)µ(dx)Yt(x), t ≤ s ≤ T.

Combined with (3.7), we get an exponentially quadratic representations of the charac-
teristic function of XX> in terms of the process Y .

Theorem 3.7. Assume that K is of the form (3.18) with µ satisfying (3.19) and fix w ∈ Sd+.
Then,

Lt,T (w) = exp

(
Θt,T + 2 tr

(∫
R+

Λt,T (x)>µ(dx)Yt(x)

)

+ tr

(∫
R2
+

Yt(x)>µ(dx)>Γt,T (x, y)µ(dy)Yt(y)

))
, (3.20)
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where t 7→ (Θt,T ,Λt,T ,Γt,T ) are given by

Θt,T =

∫
(t,T ]2

tr
(
g0(s)

>Ψt,T (ds, du)g0(s)
)

+ φt,T , (3.21)

Λt,T (x) =

∫
(t,T ]2

e−x(s−t)Ψt,T (ds, du)g0(u), (3.22)

Γt,T (x, y) =

∫
(t,T ]2

e−x(s−t)Ψt,T (ds, du)e−y(u−t), (3.23)

with (φ,Ψ) as in (3.8)-(3.9).

A direct differentiation of (Θ,Λ,Γ) combined with the Riccati equations (3.10)–(3.11)
for (φ,Ψ) yield a system of Riccati equation for (Θ,Λ,Γ).

Proposition 3.8. The functions t 7→ (Θt,T ,Λt,T ,Γt,T ) given by (3.21), (3.22) and (3.23)
solve the system of backward Riccati equations

Θ̇t,T = −R0(t,Λt,T ,Γt,T ), ΘT,T = 0, (3.24)

Λ̇t,T (x) = xΛt,T (x)−R1(t,Λt,T ,Γt,T )(x), ΛT,T (x) = 0, (3.25)

Γ̇t,T (x, y) = (x+ y)Γt,T (x, y)−R2(Γt,T )(x, y), ΓT,T (x, y) = 0, (3.26)

where

R0(t,Λ,Γ) = − tr
(
g0(t)

>wg0(t)
)

+m tr

(∫
R2
+

Γ(x, y)µ(dy)µ(dx)>

)

+ 2 tr

((∫
R+

Λ(x)>µ(dx)

)(∫
R+

Λ(y)>µ(dy)

)>)
,

R1(t,Λ,Γ)(x) = −wg0(t) + 2

(∫
R+

Γ(x, x′)µ(dy)

)(∫
R+

Λ(y)>µ(dy)

)>
,

R2(Γ)(x, y) = −w + 2

(∫
R+

Γ(x, x′)µ(dx′)

)(∫
R+

Γ(y, y′)µ(dy′)

)>
.

Similar Riccati equations to that of Γ have appeared in the literature when dealing
with convolution kernels of the form (3.18) in the presence of a quadratic structure, see
Abi Jaber et al. (2019b, Theorem 3.7), Alfonsi and Schied (2013, Theorem 1), Harms and
Stefanovits (2019, Lemma 5.4), Cuchiero and Teichmann (2019, Corollary 6.1). A general
existence and uniqueness result for more general equations has been recently obtained in
Abi Jaber et al. (2019c).

Remark 3.9. The expression (3.20) can be re-written in the following compact form

Lt,T (w) = exp (Θt,T + 2〈Λt,T , Yt〉µ + 〈Yt,Γt,TYt〉µ) .
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where Γt,T is the integral operator acting on L1(µ,Rd×m) induced by the kernel Γt,T :

(Γt,T f)(x) =

∫
R+

Γt,T (x, y)µ(dy)f(y), f ∈ L1(µ,Rd×m)

and 〈·, ·〉µ is the dual pairing

〈f, g〉µ = tr

(∫
R+

f(x)>µ(dx)>g(x)

)
, (f, g) ∈ L1(µ,Rd×m)× L∞(µ>,Rd×m).

We end this subsection with two examples establishing the connection with conventional
quadratic models.

Example 3.10. Fix Σ ∈ Rd×d. For the constant case k ≡ Σ we have µ(dx) = Σδ0(dx),
suppµ = {0} and Yt(0) = Wt ∈ Rd×m. For g0(t) ≡ 0, Λ ≡ 0 and (3.24) and (3.26) read

Θ̇t,T = −m tr
(

Γt,T (0, 0)ΣΣ>
)
, ΘT,T = 0,

Γ̇t,T (0, 0) = w − 2Γt,T (0, 0)ΣΣ>Γt,T (0, 0), ΓT,T (0, 0) = 0.

These are precisely the conventional backward matrix Riccati equations encountered for
conventional Wishart processes, see Alfonsi (2015, Equation (5.15)). In this case, we recover
the well-known Markovian expression for the conditional Laplace transform (3.20):

E
[
exp

(∫ T

t
tr
(
−wWsW

>
s

)
ds

) ∣∣∣ Ft] = exp
(

Θt,T + tr
(

Γt,T (0, 0)WtW
>
t

))
.

Example 3.11. Fix n ≥ 1, xni ∈ R+ and cni ∈ Rd×d, i = 1, . . . , n. Consider the kernel

kn(t) =
n∑
i=1

cni e
−xni t, t ≥ 0, (3.27)

which corresponds to the measure µn(dx) =
∑n

i=1 c
n
i δxni (dx). The system of Riccati equa-

tions (3.24), (3.25) (3.26) is reduced to a system of finite dimensional matrix Riccati equa-
tions for with values in R× Rnd×m × Rnd×nd given by:

Θ̇n
t,T = tr

(
g0(t)

>wg0(t)
)
−m tr

(
Γnt,TC

n
)
− 2 tr

(
Λn>t,TC

nΛnt,T

)
, Θn

T,T = 0, (3.28)

Λ̇nt,T = Dn
t +BnΛnt,T − 2Γnt,TC

nΛnt,T , ΛnT,T = 0, (3.29)

Γ̇nt,T = An +BnΓnt,T + Γnt,TB
n> − 2Γnt,TC

nΓnt,T , ΓnT,T = 0, (3.30)

where for all r = 1, . . . ,m i, j,= 1, . . . , n and k, l = 1, . . . , d, p = (i−1)d+k, q = (j−1)d+l,

(Dn
t )pr = (wg0(t))

kr, (Λnt,T )pr = Λt,T (xi)
kr,

(Cn)pq = (cni c
n>
j )kl, (Γnt,T )pq = Γt,T (xni , x

n
j )kl,
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and An and Bn are the nd× nd defined by

An = (1n ⊗ w), Bn = (diag(xn1 , . . . , x
n
n)⊗ Id)

with 1n the n× n matrix with all components equal to 1. The Riccati equation (3.30) can
be linearized by doubling the dimension and its solution is given explicitly by

Γnt,T = G2(T − t)G4(T − t)−1, t ≤ T,

where (
G1(t) G2(t)
G3(t) G4(t)

)
= exp

(
t

(
−Bn −An
−2Cn Bn

))
, t ≤ T,

see Levin (1959). Furthermore, we recover the well-known Markovian expression for the
conditional Laplace transform (3.20):

Lnt,T (w) = exp
(

Θn
t,T + 2 tr

(
Λn>t,T Ỹ

n
t

)
+ tr

(
Γnt,T Ỹ

n
t Ỹ

n>
t

))
, (3.31)

where

(Ỹ n
t )pr = (cni Yt(x

n
i ))kr, (3.32)

p = (i− 1)d+ k, for each i = 1, . . . , n, k = 1, . . . , d, r = 1, . . . ,m.

The previous example shows that Volterra Wishart processes can be seen as a superposi-
tion of possibly infinitely many conventional linear-quadratic processes in the sense of Chen
et al. (2004); Cheng and Scaillet (2007). This idea is used to build another approximation
procedure in the next subsection.

3.3 Another approximation procedure

An application of the Burkholder-Davis-Gundy inequality yields the following stability
result for the sequence

Xn
t = gn0 (t) +

∫ t

0
kn(t− s)dWs, n ≥ 1,

where gn0 : [0, T ]→ Rd×m and kn ∈ L2([0, T ],Rd×d), for each n ≥ 1.

Lemma 3.12. Fix k ∈ L2([0, T ],Rd×d) and g0 : [0, T ] → Rd×m measurable and bounded.
If ∫ T

0
|kn(s)− k(s)|2ds→ 0 and sup

t≤T
|gn0 (t)− g0(t)| → 0, as n→∞, (3.33)

then,

sup
t≤T

E [|Xn
t −Xt|p]→ 0, as n→∞, p ≥ 2.
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Combined with Example 3.11, we obtain another approximation scheme for the Laplace
transform based on finite-dimensional matrix Riccati equations (compare with Remark 3.4).

Proposition 3.13. Fix w ∈ Sd+ and t ≤ T . For each n, let kn be as in (3.27) for some
xni ∈ R+ and cni ∈ Rd×d. Assume that (3.33) holds. Then,

Lt,T (w) = lim
n→∞

exp
(

Θn
t,T + 2 tr

(
Λn>t,T Ỹ

n
t

)
+ tr

(
Γnt,T Ỹ

n
t Ỹ

n>
t

))
where (Θn,Λn,Γn) solve (3.28), (3.29) and (3.30) and Ỹ n is given by (3.32).

Proof. Fix t ≤ s ≤ T . Writing Xn>
s wXn

s −X>s wXs = (Xn
s +Xs)

>w(Xn
s −Xs), we get by

the Cauchy-Schwarz inequality that

E

[∣∣∣∣∫ T

t
(Xn>

s wXn
s −X>s wXs)ds

∣∣∣∣2
]
≤ c sup

s≤T

(
E
[
|Xs|2

]
+ E

[
|Xn

s |2
])

sup
s≤T

E
[
|Xn

s −Xs|2
]
,

for some constant c independent of n. It follows from Lemma 3.12 that (sups≤T E
[
|Xn

s |2
]
)n≥1

is uniformly bounded in n, so that the right hand side converges to 0 as n→∞. Whence,∫ T
t Xn>

s wXn
s ds →

∫ T
t X>s wXsds a.s. along a subsequence and the claimed convergence

follows from the dominated convergence theorem combined with (3.31).

For d = m = 1 and k of the form (3.18) for some measure µ, for suitable partitions
(ηni )0≤i≤n of R+, the choice

cni =

∫ ηni

ηni−1

µ(dx) and xni =
1

cni

∫ ηni

ηni−1

xµ(dx), i = 1, . . . , n,

ensures the L2-convergence of the kernels kn in (3.27), we refer to Abi Jaber (2019);
Abi Jaber and El Euch (2019a) for such constructions, see also Harms (2019) for other
choices of quadratures and for a detailed study of strong convergence rates.

4 Applications

4.1 Bond pricing in quadratic Volterra short rate models with default
risk

We consider a quadratic short rate model of the form

rt = tr
(
X>t QXt

)
+ ξ(t), t ≤ T,

where X is the d ×m Volterra process as in (3.1), Q ∈ Sd+ and ξ : [0, T ] → R is an input
curve used to match today’s yield curve and/or control the negativity level of the short

25



rate. The model replicates the asymmetrical distribution of interest rates, allows for rich
auto-correlation structures, and the possibility to account for long range dependence, see
for instance Benth and Rohde (2018); Corcuera et al. (2013).

An application of Theorem 3.3 yields the price P (·, T ) of a zero-coupon bond with
maturity T :

P (t, T ) = E
[
exp

(
−
∫ T

t
rsds

) ∣∣∣ Ft] = exp

(
−
∫ T

t
ξ(s)ds

)
Lt,T (Q), t ≤ T,

where L is given by (3.7).
One can also add a spread by considering the stochastic process

λt = tr
(
X>t Q̃Xt

)
+ ξ̃(t), t ≤ T,

for some Q̃ ∈ Sd+ and ξ̃ : [0, T ]→ R+ bounded function. By definition the spread is nonneg-
ative, correlated to the short rate with a possible long range dependence or roughness. The
introduction of λ can serve in two ways. Either in a multiple curve modeling framework,
to add a risky curve on top of the non-risk one with instantaneous rate r + λ or to model
default time. In the latter case, λ would correspond to the instantaneous intensity of a
Poisson process N such that the default time τ is defined as the first jump time of N . In
both cases, we denote by P̃ (·, T ) the price of the risky curve or the price of a defaultable
bond paying 1τ≤T at maturity T . Then, the price is given by

P̃ (t, T ) = E
[
exp

(
−
∫ T

t
(rs + λs)ds

) ∣∣∣ Ft]
= exp

(
−
∫ T

t
(ξ(s) + ξ̃(s))ds

)
Lt,T (Q+ Q̃),

for all t ≤ T , we refer to Lando (1998) for more details on the derivation of the defaultable
bond price.

In practice, Proposition 3.4 can be used to approximate Lt,T , and consequently P

and P̃ , see also Remark 3.4. For kernels of the form (3.18) the approximation results of
Section 3.3 also apply.

4.2 Pricing options on volatility/variance for basket products in Volterra
Wishart covariance models

We consider d ≥ 1 risky assets S = (S1, . . . , Sd) such that the instantaneous realized
covariance is given by

d〈logS〉t = XtX
>
t dt (4.1)

where X is the d×m process as in (3.1). The following specifications for the dynamics of
S fall into this framework.
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Example 4.1. (i) The Volterra Wishart covariance model for d = m:

dSt = diag(St)XtdBt, S0 ∈ Rd+

Xt = g0(t) +

∫ t

0
K(t, s)dWs,

with g0 : [0, T ] → Rd×d, a suitable measurable kernel K : [0, T ]2 → Rd×d, a d × d
Brownian motion W and

Bj = tr
(
Wjρ

>
j

)
+

√
1− tr

(
ρjρ>j

)
W⊥,j , j = 1, . . . , d,

for some ρj ∈ Rd×m such that tr
(
ρjρ
>
j

)
≤ 1, for j = 1, . . . , n, where W⊥ is a

d–dimensional Brownian motion independent of W .

(ii) The Volterra Stein-Stein model when d = m = 1:

dSt = StXtdBt, S0 > 0,

Xt = g0(t) +

∫ t

0
K(t, s)dWs, d〈B,W 〉t = ρdt,

for some ρ ∈ [−1, 1].

The approach of Carr and Lee (2008), based on Schürger (2002), can be adapted to
price various volatility and variance options on basket products. Indeed, consider a basket
product of the form

Pαt =

d∑
j=1

αj logSjt = α> logSt, t ≤ T,

for some α = (α1, . . . , αd)
> ∈ Rd. It follows from (4.1) that the integrated realized variance

Σα of Pα is given by

Σα
t =

∫ t

0
α>XsX

>
s αds =

∫ t

0
tr
(
αα>XsX

>
s

)
ds, t ≤ T.

Fix q ∈ (0, 1] and consider the q-th power variance swap whose payoff at maturity T is
given by

(Σα
T )q − F =

(∫ T

0
tr
(
αα>XsX

>
s

)
ds

)q
− F,

for some strike F ≥ 0. In particular, for q = 1/2 one recovers a volatility swap and for
q = 1 a variance swap. The value of the contract being null at t = 0, the fair strike F ∗q
reads

F ∗q = E

[(∫ T

0
tr
(
αα>XsX

>
s

)
ds

)q]
.
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The following proposition establishes the expression of the fair strike in terms of the
Laplace transform provided by Theorem 3.3.

Proposition 4.2. Assume that 0 < q < 1, then the fair strike of the q-th power variance
swap is given by

F ∗q =
q

Γ(1− q)

∫ ∞
0

1− L0,T
(
zαα>

)
zq+1

dz,

where L is given by (3.7). If q = 1, the fair strike for the variance swap reads

F ∗1 =

∫ T

0
tr
(
αα>g0(s)g0(s)

>ds
)
ds+

∫ T

0

∫ s

0
tr
(
αα>K(s, u)K(s, u)>

)
duds.

Proof. For 0 < q < 1, applying the identity

vq =
q

Γ(1− q)

∫ ∞
0

1− e−zv

zq+1
dz, 0 < q < 1, v ≥ 0,

see Schürger (2002), to v =
∫ T
0 tr

(
αα>XsX

>
s

)
ds, taking expectation and invoking Tonelli’s

theorem together with Theorem 3.3 yield the claimed identity. For q = 1, one could proceed
by differentiating the Laplace transform or more simply by using the dynamics of XX> as
in Remark 2.1.

Similarly, one can obtain the following formulas for negative powers

E

[(∫ T

0
tr
(
αα>XsX

>
s

)
ds+ ε

)−q]
=

1

Γ(1 + q)

∫ ∞
0
L0,T (z1/qαα>)e−z

1/qεdz, ε, q > 0,

using the integral representation, taken from Schürger (2002),

v−q =
1

qΓ(1 + q)

∫ ∞
0

e−z
1/qvdz, q, v > 0.

Again, the approximation formulas of Remark 3.4 and Section 3.3 can be applied to
compute L0,T .

A Wishart distribution

Proposition A.1. Let ξ be an RN Gaussian vector with mean vector µ ∈ RN and co-
variance matrix Σ ∈ SN+ , then ξξ> follows a non-central Wishart distributions with shape
parameter 1/2, scale parameter 2Σ and non-centrality parameter µµ>, written as

ξξ> ∼WISN

(
1

2
, µµ>, 2Σ

)
.

Furthermore,

E
[
exp

(
− tr

(
uξξ>

))]
=

exp
(
− tr

(
u(IN + 2Σu)−1µµ>

))
det (IN + 2Σu)1/2

, u ∈ SN+ .
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B Matrix tools

We recall some definitions and properties of matrix tools used in the proofs throughout the
article. For a complete review and proofs we refer to Magnus and Neudecker (2019).

Definition B.1. The vectorization operator vec is defined from Rd×m to Rdm by stacking
the columns of a d × m-matrix A one underneath another in a dm–dimensional vector
vec(A), i.e.

vec(A)p = Aij , p = (j − 1)d+ i,

for all i = 1, . . . , d and j = 1, . . . ,m.

Definition B.2. Let A ∈ Rd1×m1 and B ∈ Rd2×m2. The Kronecker product (A ⊗ B) is
defined as the d1d2 ×m1m2 matrix

A⊗B =

 A11B · · · A1m1B
...

...
Ad11B · · · Ad1m1B

 .

or equivalently

(A⊗B)pq = AikBjl, p = (i− 1)d2 + j, q = (k − 1)m2 + l,

for all i = 1, . . . , d1, j = 1, . . . , d2, k = 1, . . . ,m1 and l = 1, . . . ,m2.

Proposition B.3. For matrices A,B,C,D,X,w of suitable dimensions, the following re-
lations hold:

vec(AXB) =
(
B> ⊗A

)
vec(X) (B.1)

tr(A>wA) = vec(A)>(Im ⊗ w) vec(A) (B.2)

(A⊗B) (C ⊗D) = (AC ⊗BD) (B.3)

tr(A⊗B) = tr(A) tr(B) (B.4)

(A⊗B)−1 = (A−1 ⊗B−1) (B.5)

det(Im ⊗A) = det(A)m. (B.6)

C Proof of Theorem 2.7

Throughout this section we assume that the function (s, u) 7→ Ct(s, u) is continuous such
that (2.27) holds, where Ct is given by (2.3).

For each t ≤ T , we consider the integral operator Ct induced by the kernel Ct

(Ctf)(s) =

∫ T

0
Ct(s, u)f(u)du =

∫ T

t
Ct(s, u)f(u)du, f ∈ L2([0, T ],RN ), s ≤ T,
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where the last equality follows from the fact that Ct(s, u) = 0 for any u ≤ t. Since t 7→ Ct
is absolutely continuous, recall (2.4), we have that t 7→ Ct is differentiable with derivative
Ċt given by the Leibniz rule

(Ċtf)(s) =

∫ T

t
Ċt(s, u)f(u)du, f ∈ L2([0, T ],RN ), s ≤ T,

where we used the boundary condition Ct(·, t) = 0.

Lemma C.1. Let w ∈ SN+ and t 7→ Rwt,T be defined as in (2.23). Then,

sup
t≤T

∫ T

t

∫ T

t
|Rwt (s, u)|2dsdu <∞, (C.1)

sup
t≤T

sup
t≤s≤T

∫ T

t
|Rwt (s, u)|2du <∞, (C.2)

sup
t≤T

sup
t≤s,u≤T

|Rwt,T (s, u)| <∞. (C.3)

Proof. Fix t ≤ T . It follows from (2.23) that∫ T

t

∫ T

t
|Rwt (s, u)|2dsdu =

∑
n≥1

4(λnt,T )2

(1 + 2λnt,T )2
≤ 4

∑
n≥1

(λnt,T )2 = 4|w|
∫ T

t

∫ T

t
|Ct(s, u)|2dsdu,

which, combined with (2.27), proves (C.1). Furthermore, an application of Jensen and
Cauchy-Schwarz inequalities on the resolvent equation (2.24) yields

|Rwt (s, u)|2 ≤ 8 sup
t′≤T

sup
t′≤s′,u′≤T

|Ct′,T (s′, u′)|2
(

1 + T

∫ T

t
|Rwt (z, u)|2dz

)
, t ≤ s, u ≤ T.

Integrating the previous identity with respect to u leads to∫ T

t
|Rwt (s, u)|2du ≤ 8T sup

t′≤T
sup

t′≤s′,u′≤T
|Ct′,T (s′, u′)|2

(
1 + T

∫ T

t

∫ T

t
|Rwt (z, u)|2dzdu

)
,

for all s ≥ t. Combined with (2.27) and (C.1), we obtain (C.2). Finally, it follows from the
resolvent equation (2.24) together with Jensen and Cauchy-Schwarz inequalities that

|Rt(s, u)|2 ≤ 8 sup
t′≤T

sup
t′≤s′,u′≤T

|Ct′,T (s′, u′)|2
(

1 + T

∫ T

t
|Rwt (s, z)|2dz

)
for all t ≤ s, u ≤ T . The right hand side is bounded by a finite quantity which does not
depend on t, thanks to (2.27) and (C.2), yielding (C.3).

30



Lemma C.2. For each t ≤ s ≤ T , u 7→ Rwt,T (s, u) is continuous. For each s, u ≤ T ,
t 7→ Rwt,T (s, u) is continuous.

Proof. The first statement follows directly from the continuity of (s, u) 7→ Ct(s, u) for all
t ≤ T , the resolvent equation (2.24) and the dominated convergence theorem which is
justified by (2.27). The second statement is proved as follows. Fix t ≤ s, u ≤ T and h ∈ R
such that 0 ≤ t+ h ≤ T . The resolvent equation (2.24) yields

Rwt+h(s, u)−Rwt (s, u) = −2(Cwt+h(s, u)− Cwt (s, u))

− 2

∫ T

t
Rwt+h(s, z)(Cwt+h(z, u)− Cwt (z, u))dz

− 2

∫ T

t
(Rwt+h(s, z)−Rwt (s, z))Cwt (z, u)dz

+ 2

∫ t+h

t
Rwt+h(s, z)Cwt+h(z, u)dz

= I + II + III + IV

Since t 7→ Ct(s, u) is absolutely continuous, we have that I → 0 as h → 0 and also
that II → 0 by an application of Cauchy–Schwarz inequality, the bound (C.3), and the
dominated convergence theorem, which is justified by (2.27). To prove that III → 0, we
fix q ∈ RN and fu(s) := Cwt (s, u)q. Then,∫ T

t
(Rwt+h(s, z)−Rwt (s, z))Cwt (z, u)qdz = (Rw

t+hfu)(s)− (Rw
t fu)(s)→ 0, as h→ 0,

where the convergence follows from the continuity of t 7→ Rw
t obtained from that of t 7→ Ct,

recall (2.25). By arbitrariness of q, we get III → 0. Finally, it follows from (2.27) and
(C.3), that IV → 0 as h → 0. Combining the above yields Rwt+h(s, u) → Rwt (s, u) as
h→ 0.

Lemma C.3. t 7→ Rwt,T (s, u) is absolutely continuous for almost every (s, u) such that

Ṙwt,T (s, u) = −2
√
wĊt,T (s, u)

√
w − 2

∫ T

t

√
wĊt,T (s, z)

√
wRwt,T (z, u)dz

− 2

∫ T

t
Rwt,T (s, z)

√
wĊt,T (z, u)

√
wdz

− 2

∫ T

t

∫ T

t
Rwt,T (s, z)

√
wĊt,T (z, z′)

√
wRwt,T (z′, u)dzdz′, on [t, T ] a.e.

with the boundary condition

Rwt,T (·, t) = Rwt,T (t, ·)> = 0, t ≤ T. (C.4)
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Proof. The boundary condition (C.4) follows from the resolvent equation (2.24) and the
fact that Ct(·, t) = Ct(t, ·)> = 0, for all t ≤ T .
Step 1. It follows from (2.25) and the fact that t 7→ Ct is differentiable, that t 7→ Rw

t,T is
differentiable, so that

(Rw
t+h,T f)(s) = (Rw

t,T f)(s) + h(Ṙw
t,T f)(s) + o(|h|), f ∈ L2([0, T ],RN ), s ≤ T,(C.5)

for all h ∈ R such that 0 ≤ t+ h ≤ T , with

Ṙw
t,T = −2(id + Rw

t,T )
√
wĊt,T

√
w(id + Rw

t,T ).

The right hand side being a composition of integral operators, Ṙw
t,T is again an integral

operator with kernel given by

−2(δ +Rwt,T ) ?
√
wĊt,T

√
w ? (δ +Rwt,T ),

where by some abuse of notations δ denotes the kernel induced by the identity operator id,
that is (idf)(s) =

∫ T
t δs=u(ds, du)f(u) = f(s).

Step 2. Fix f a measurable and bounded function, t, h such that 0 ≤ t+h ≤ T , s ≤ T and
write

(Rw
t+h,T f)(s, u) =

∫ T

t+h
Rwt+h,T (s, u)f(u)du

= (Rw
t,T f)(s, u) +

∫ T

t

(
Rwt+h,T (s, u)−Rwt,T (s, u)

)
f(u)du

−
∫ t+h

t

(
Rwt+h,T (s, u)−Rwt,T (s, u)

)
f(u)du

+

∫ t+h

t

(
Rwt,T (s, t)−Rwt,T (s, u)

)
f(u)du

= I + II + III + IV

where we used the vanishing boundary condition (C.4) to introduce Rwt,T (s, t) in IV. Sub-
tracting the previous equation to (C.5) yields

II = h(Ṙw
t,T f)(s)− III− IV + o(|h|). (C.6)

An application of the Heine–Cantor theorem yields that the continuity statements in
Lemma C.2 can be strengthened to uniform continuity. Whence, for an arbitrary ε > 0
and for h small enough,

sup
u∈[t,t+h]

|Rwt,T (s, t)−Rwt,T (s, u)|+ sup
u∈[t,t+h]

|Rwt+h,T (s, u)−Rwt,T (s, u)| ≤ ε, t ≤ s ≤ T.
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This yields |III|+ |IV| ≤ chε, for some constant c > 0, so that taking limits in (C.6) gives

lim
h→0

1

h
II = (Ṙw

t,T f)(s).

An application of the dominated convergence theorem, which is justified by (C.3), yields
that for any u, s ≤ T t 7→ Rt(s, u) is absolutely continuous with

Ṙwt (s, u) = −2(δ +Rwt,T ) ?
√
wĊt,T

√
w ? (δ +Rwt,T ),

which is the claimed expression.

We can now complete the proof of Theorem 2.7.

Proof of Theorem 2.7. The claimed expression for the Laplace transform follows from (2.20),
the Riccati equation for Ψ as defined in (2.26) follows from Lemma C.3, and that of φ is
straightforward from (2.21).
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Christa Cuchiero, Damir Filipović, Eberhard Mayerhofer, and Josef Teichmann. Affine processes
on positive semidefinite matrices. The Annals of Applied Probability, 21(2):397–463, 2011.

Christa Cuchiero, Claudio Fontana, and Alessandro Gnoatto. Affine multiple yield curve models.
Mathematical Finance, 2016.
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Darrell Duffie, Damir Filipović, and Walter Schachermayer. Affine processes and applications in
finance. Ann. Appl. Probab., 13(3):984–1053, 2003. ISSN 1050-5164.

Ivar Fredholm. Sur une classe d’équations fonctionnelles. Acta mathematica, 27(1):365–390, 1903.

Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quantitative Finance,
18(6):933–949, 2018.

MA Golberg. A generalization of a formula of Bellman and Krein. Journal of Mathematical Analysis
and Applications, 42(3):513–521, 1973.

Christian Gourieroux and Razvan Sufana. Wishart quadratic term structure models. Les Cahiers
du CREF of HEC Montreal Working Paper, (03-10), 2003.

Christian Gouriéroux, Joann Jasiak, and Razvan Sufana. The Wishart autoregressive process of
multivariate stochastic volatility. Journal of Econometrics, 150(2):167–181, 2009.

Gustaf Gripenberg, Stig-Olof Londen, and Olof Staffans. Volterra integral and functional equations,
volume 34 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1990. ISBN 0-521-37289-5.

Archil Gulisashvili. Large deviation principle for Volterra type fractional stochastic volatility mod-
els. SIAM Journal on Financial Mathematics, 9(3):1102–1136, 2018.

Archil Gulisashvili, Frederi Viens, and Xin Zhang. Extreme-strike asymptotics for general gaussian
stochastic volatility models. Annals of Finance, 15(1):59–101, 2019.

Philipp Harms. Strong convergence rates for numerical approximations of fractional Brownian
motion. arXiv preprint arXiv:1902.01471, 2019.

Philipp Harms and David Stefanovits. Affine representations of fractional processes with applica-
tions in mathematical finance. Stochastic Processes and their Applications, 129(4):1185–1228,
2019.

John Hull and Alan White. Pricing interest-rate-derivative securities. The review of financial
studies, 3(4):573–592, 1990.

Mark Kac and Arnold JF Siegert. On the theory of noise in radio receivers with square law detectors.
Journal of Applied Physics, 18(4):383–397, 1947.

Kari Karhunen. Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci. Fennicae, AI, 34,
1946.

35



ML Kleptsyna, A Le Breton, and M Viot. New formulas concerning Laplace transforms of quadratic
forms for general Gaussian sequences. International Journal of Stochastic Analysis, 15(4):309–
325, 2002.

MG Krein. On a new method for solving linear integral equations of the first and second kinds. In
Dokl. Akad. Nauk SSSR, volume 100, pages 413–414, 1955.

David Lando. On Cox processes and credit risky securities. Review of Derivatives research, 2(2-3):
99–120, 1998.

JJ Levin. On the matrix Riccati equation. Proceedings of the American Mathematical Society, 10
(4):519–524, 1959.

Michel Loeve. Probability theory: foundations, random sequences. 1955.

Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons, 2019.

Johannes Muhle-Karbe, Oliver Pfaffel, and Robert Stelzer. Option pricing in multivariate stochastic
volatility models of OU type. SIAM Journal on Financial Mathematics, 3(1):66–94, 2012.

Szymon Peszat and Jerzy Zabczyk. Stochastic Partial Differential Equations with Lévy Noise: An
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