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Abstract: In diamond-machined freeform manufacturing processes, a tool-tip often leaves
behind characteristic mid-spatial frequency (MSF) structures on the optical surface. Unwanted
movement between the tool-tip and the part results in MSF structures with random variations.
Here, we analyze the effects of these MSF structures on the system’s optical performance and
derive simple analytic estimates for the optical transfer function in terms of the parameters of
these structures. These expressions are expected to aid in MSF tolerancing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Precision freeformmanufacturing allows the fabrication of surfaces with large numbers of degrees
of freedom. However, these processes typically involve the use of subaperture tools, which
leave behind surface grooves whose characteristic frequencies are between those of figure and
roughness. These errors, known as mid-spatial frequency (MSF) errors, introduce unwanted
effects that are difficult to characterize and complicate tolerancing on manufactured parts [1,2].

In prior work, we explored the effects on the optical transfer function (OTF) of wavefront errors,
including quadratic aberrations [3] as well as MSF groove structures due to subaperture tools [4].
In the latter case, two types of MSF groove errors common in freeform manufacturing processes
were analyzed: parallel straight grooves resulting from diamond milling, and concentric circular
(or spiral) grooves resulting from diamond turning. The key theoretical tool proposed there to
obtain analytic expressions for the OTF was referred to as the pupil-difference probability density
(PDPD), which is defined as the probability density that two random points in the pupil with
given vector separation have a given difference in wavefront error. This prior study assumed
regular grooves of equal height and width [4]. However, real processes present tool-tip or spindle
vibrations, causing the MSF structures to have profiles are not perfectly periodic. Diamond
machining usually involves a fixed tool-tip that makes contact with the optical part as the part is
moving (rotating or translating). A local coordinate system is used in which the three directions
are called the thrust, cutting, and feed directions of the machine, as shown in Fig. 1(a). It is
well established that there can be tool-tip vibration in all three of these directions [5–10], and so
incorporating such effects into the models for the OTF is of central importance. Vibrations in the
thrust and cutting directions cause random variations ti in the depth of each groove, following a
probability density KT(ti) with standard deviation µ, as shown in Fig. 1(c). Vibrations in the
feed direction, on the other hand, introduce random lateral groove displacements fi following a
probability density KF(fi) with standard deviation σ. Our goal is to provide simple approximate
formulas for the OTF of milled and turned surfaces that incorporate these effects.
The outline of this work is as follows: A review of the PDPD is provided in Sec. 2. The

analysis of MSF structures including the effects of tool-tip vibrations is given in Sec. 3 for milled
surfaces and in Sec. 4 for turned surfaces. For readers more interested in the formulas than the
formal derivations, Sec. 5 provides a self-contained summary of the main results.
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Fig. 1. (a) Diagram of the tool-tip (orange) and the rotating optical part (purple) in a
diamond-turning process, and the three directions of possible vibrations. (b) Nominal MSF
structure (black) with height h and period T . The size of the pupil is 2R, twice the radius.
An example of a MSF structure with random variations is also shown (gray). A sample cycle
from (b) is shown in (c) with the probability densities KT (red, with uncertainty µ) governing
thrust (and cutting) vibrations, and KF (blue, with uncertainty σ) governing feed vibrations.

2. Review of general PDPD theory

The PDPD, denoted as P(η, ρ), is defined as the probability density that for two random points
in the system’s pupil whose vector separation is ρ, the difference in aberration function W is
equal to some prescribed quantity η. Mathematically, this can be written in the following form:

P(η, ρ) ,

∫
O(ρ) δ{η − [W(q − ρ/2) −W(q + ρ/2)]} d2q∫

O(ρ) d
2q

, (1)

where , denotes a definition, δ is the Dirac delta distribution, and O(ρ) is the overlap region of
two pupil copies separated by ρ. Note that the area of O(ρ) normalized by its value at ρ = 0
gives precisely the OTF for a perfect unaberrated system. In the case of a system with a circular
pupil of radius R (say, in units of NA or spatial frequency), the perfect system’s OTF depends
only on ρ = |ρ | and is given by [11]

OTFperf(ρ) =

∫
O(ρ) d

2q∫
O(0) d

2q
=

2
π

[
cos−1

( ρ
2R

)
−

ρ

2R

√
1 −

( ρ
2R

)2]
. (2)

The usefulness of the PDPD stems from its one-dimensional Fourier relation with the OTF:

OTF(k, ρ) = OTFperf(ρ)P̃(k, ρ) = OTFperf(ρ)
∫

P(η, ρ) exp(ikη) dη, (3)

where the tilde denotes a Fourier transform from error difference η to wavenumber k. As was
shown in [3] and [4], working with the PDPD rather than directly with the OTF allows geometrical
insights that lead to useful approximations. This is also the case in the treatment that follows.

3. Effects of tool-tip vibrations in MSF structures for milled surfaces

ThePDPDdue to parallelMSFgrooves (e.g. resulting fromdiamondmilling) can be approximately
expressed in terms of the one-dimensional PDPD of its cross-section [4] by using the scalar pupil
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displacement variables qn = q · n̂ and ρn = ρ · n̂, where n̂ is the unit vector normal to the grooves.
The grooves of the nominal MSF structure (without tool-tip vibrations) can be modeled as a
piecewise-parabolic function, where h and T are the grooves’ nominal peak-to-valley (PV) and
width (or period), respectively, as illustrated in Fig. 1(b). It was shown in [4] that such a MSF
structure leads to a very simple nominal PDPD (and Fourier transform):

P1(η, ρn) =
1

w0(h,T , ρn)
rect

[
η

w0(h,T , ρn)

]
and P̃1(k, ρn) = sinc [kw0(h,T , ρn)/2] , (4)

where w0(h,T , ρn) = 8hρ̂+ ρ̂−, with ρ̂+ = (ρn/T)mod 1, ρ̂− = (1 − ρn/T)mod 1 = 1 − ρ̂+, and
rect(u) = 1 for |u| ≤ 1/2 and zero otherwise. The fact that P1 in Eq. (4) takes the form of a
rectangle function can be understood from Fig. 2 where we see that the difference of two displaced
versions of W takes on a regular piecewise-linear sawtooth shape (gray lines) constrained in η to
a localized region of width w0.

Fig. 2. (a) Two oppositely shifted copies of W, along with their difference ∆W, where ti and
tj denote the vertical shift of each parabolic segment for W(qn − ρn/2) and W(qn + ρn/2),
respectively, due to thrust vibration. (b) Zoom for one quasi-period, where the effect of
thrust vibration is seen to correspond to a vertical shift defined by the difference ti − tj.

At this point, it is useful to define the transition function Tρn as

Tρn (f , g) , Max
(
1 −

ρn
T
, 0

)
f +Min

( ρn
T
, 1

)
g, (5)

for any f and g. Clearly, Tρn gives rise to a linear transition between f and g as ρn passes through
the first period. This is useful in Secs. 3 and 4 because the PDPD involves the difference of two
copies of W displaced by ρn. When ρn < T , this difference includes points from the same period.
Although this is unimportant when the MSF structure is periodic (nominal), it is necessary to use
Tρn to account for the case when random variations are introduced to each period independently.

3.1. Pistons model for thrust vibrations

Let us start by considering fluctuations in the height of the ridges resulting from variations in
thrust (or cutting). We model these fluctuations by letting each parabolic segment be shifted
vertically by an amount ti, where each shift is assumed to be independent from all others,
following a zero-mean probability density KT(ti) whose standard deviation µ is assumed to be
small compared to h [see Fig. 1(c)]. To begin, we try an overly simplistic model that we call the
pistons model, where each complete parabolic segment is rigidly displaced, causing unphysical
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discontinuities in W as illustrated in Fig. 2(a). The difference of the two oppositely-shifted copies
of the error, ∆W = W(qn − ρn/2) −W(qn + ρn/2), is then also discontinuous.
One can see from Fig. 2 that the rectangular contribution for each straight segment of ∆W is

shifted in η by the difference ti − tj. Hence, the mean effect of thrust vibrations is simply given by

P1,T(η, ρn) =
∬ ∞

−∞

KT(ti)KT(tj)P1[η − (ti − tj)] dti dtj. (6)

Equation (6) has the form of a double convolution, so in the Fourier domain it becomes a product:

P̃1,T(k, ρn) = K̃2
T(k)P̃1(k, ρn). (7)

Estimated forms for the probability densities KT are reported in the literature [5,9,10], with
models that are based on studies of tool-tip and spindle resonance frequencies. The resulting
distribution (and its Fourier transform) governing thrust vibrations is given by

KT(t) = Re

(
1

π
√
2µ2 − t2

)
and K̃T(k) = J0

(√
2kµ

)
, (8)

where J0 is the zeroth order Bessel function of the first kind. This leads to the simple expression

P̃1,T(k, ρn) = J20
(√

2kµ
)

P̃1(k, ρn). (9)

Note that the difference between the two shifted copies of W in Fig. 2(a) were assumed to involve
different parabolic segments, with independent shifts ti and tj. This is a valid assumption as long
as ρn ≥ T . When ρn < T , the PDPD includes a contribution from the differences of each groove
with a displaced version of itself, and hence proportional to P1, the nominal PDPD. The weight of
this contribution diminishes proportionally to T − ρn as ρn increases, and disappears completely
once ρn ≥ T . Hence, we construct the OTF estimate by using the linear transition function in
Eq. (5) in the form OTF(k, ρn) ≈ OTFperf(ρ)Tρn (P̃1, P̃1,T). Figure 3 shows comparisons of this
OTF estimate with the average of several numerically computed OTFs of simulated realistic
realizations of such surfaces with the corresponding statistics, for several values of the ratio
µ/h. In these simulations, each parabolic segment is assigned a random shift ti but the resulting
surface is made continuous by extending the lower parabolic segment in each intersection. The
plots show that the pistons model predicts well the local maxima of the OTF, but fails even
for moderate values of µ/h near the minima (ρ̂+ ≈ 1/2), where the effects of the unphysical
discontinuities in W are exacerbated.

3.2. Realistic model for thrust vibrations

It turns out that an expression can be found based on a more realistic model with continuous
grooves, whose form is almost as simple as that of the pistons model. The key is to study the
shift s of the intersections of each segment of ∆W. As can be seen from Fig. 4(b), s depends not
only on ρn but also on the shifts ti and ti+1 of two contiguous grooves, as well as on the shift tj of
the groove in the displaced replica that overlaps with this junction. The value of s can be found
from simple geometric considerations to be

s(ti, ti+1, tj, ρ) = (ti − tj)ρ̂++(ti+1 − tj)ρ̂−, (10)

Because the slopes of the segments of ∆W do not change with these shifts, no scaling factor of
the probability density accompanies them. Since all intersections, whether they correspond to
positive or negative ∆W, undergo shifts of this type, the average effect of thrust vibrations is
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Fig. 3. OTF sections for various values of µ/h, for kh = 1 and 30 cycles across the aperture.
In each part, the nominal (black) OTF corresponds to the case of µ = 0, the numerical (blue)
OTF is the average OTF from 30 randomly generated [with KT given by Eq. (8)] MSF
surfaces, and the theoretical models are calculated from Eq. (9) (red) and Eq. (14) (green).

encapsulated by averaging versions of the nominal distributions shifted by s, weighted by the
probability densities of the displacements of the grooves:

P1,T(η, ρn) =
∭ ∞

−∞

KT(ti)KT(tj)KT(ti+1)P1
[
η − s(ti, ti+1, tj, ρn), ρn

]
dtidti+1dtj. (11)

It is convenient to perform a change of variables so that s = (ti − tj)ρ̂+ + (ti+1 − tj) is one of the
variables of integration along with a = t1 and b = ti+1. With this, Eq. (11) can be rewritten as

P1,T(η, ρn) =
∫ ∞

−∞

[∬ ∞

−∞

KT(a)KT(b)KT(aρ̂++bρ̂−−s) da db
]

P1(η − s, ρn) ds. (12)

Equation (12) can be viewed as a triple convolution, so in the Fourier domain we have

P̃1,T(k, ρn) = K̃T(k)K̃T(k ρ̂+)K̃T(k ρ̂−) P̃1(k, ρn). (13)

Note that Eq. (13) differs from the result for the pistons model, Eq. (7), in that it has three factors
of the characteristic function K̃T; furthermore, the arguments of two of these are dependent on ρn.
For KT given by Eq. (8), we have the following simple expression for P̃1,T(k, ρn):

P̃1,T(k, ρn) = J0
(√

2kµ
)

J0
(√

2kµρ̂+
)

J0
(√

2kµρ̂−
)

P̃1(k, ρn). (14)

Figure 3 shows comparisons of OTFperf(ρ)Tρn (P̃1, P̃1,T) where P̃1,T is given by Eq. (14), with
numerically-computed OTFs for several values of the ratio µ/h. Compared with the pistons
model’s result in Eq. (7), it is evident that Eq. (14) is more accurate, particularly near the local
minima of the OTF.

Although the form of KT in Eq. (8) is a realistic model for thrust vibrations, it is worth noting
that a zero-mean Gaussian form for KT of the same standard deviation, namely

KT(t) =
1
√
2πµ

exp
(
−

t2

2µ2

)
and K̃T(k) = exp

(
−

k2µ2

2

)
, (15)

predicts very similar results for the OTF. This is because it is the characteristic functions (and not
the probability densities) that appear as factors in Eq. (13), and the characteristic functions in
Eqs. (8) and (15) largely agree for kµ < 1. Under this assumption, P̃1,T can be written as

P̃1,T(k, ρn) = exp
[
−

k2µ2

2

(
ρ̂2+ + ρ̂

2
− + 1

)]
P̃1(k, ρn). (16)
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Fig. 4. (a) Two oppositely shifted copies of W, along with their difference ∆W, where ti and
tj denote the vertical shift of each parabolic segment for W(qn − ρn/2) and W(qn + ρn/2),
respectively, due to thrust vibration. (b) Zoom for one quasi-period, where the effect of
thrust vibration is seen to correspond to a vertical shift s of the intersection points, which is
defined in terms of ρ, ti, ti+1, and tj.

3.3. Feed vibrations model

We now model the effects of feed vibrations by letting each parabolic segment of the groove
structure be displaced laterally by an amount fi, as shown in Fig. 5(a). The displacements fi follow
a zero-mean probability density KF whose standard deviation σ is assumed to be small compared
to the nominal groove width T [see Fig. 1(c)]. These displacements modify the saw-tooth
structure of ∆W such that (unlike for thrust vibrations) the slopes of the different line segments
in ∆W change, as shown in Fig. 5(b). Therefore, not only do the limits of the contributions to the
PDPD change with the fluctuations, but also their relative weights.

Fig. 5. (a) Two oppositely shifted copies of W, along with their difference ∆W, where fi and
fj denote the horizontal shift for each parabolic segment of W(qn − ρn/2) and W(qn + ρn/2),
respectively. (b) Zoom for one quasi-period, where the effect of feed vibration is to alter both
the vertical position of the intersection (w/2 instead of the nominal w0/2) and the weight of
the contribution to the probability distribution (α/w instead of the nominal T/w0).
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The lateral displacements of the grooves cause each straight segment of ∆W to provide a
different contribution to the PDPD (illustrated by the green rectangle with width w and height α)
when compared to the nominal case (gray, with width w0 and height w−10 ). Due to the statistical
symmetry of the intersections, we can make the contributions symmetric around the origin in η
to facilitate the calculation. The expressions for w and α are then

w(fi, fi+1, fj, ρn) = 8h
(
ρ̂++

fj − fi
T

) (
ρ̂−+

fi+1 − fj
T

)
, (17)

α(fi, fi+1) = T + fi+1 − fi, (18)

which after averaging lead to the following expression for the PDPD:

P1,F(η, ρn) =
1
T

∭ ∞

−∞

KF(fi)KF(fi+1)KF(fj)
α(fi, fi+1)

w(fi, fi+1, fj)
rect

[
η

w(fi, fi+1, fj)

]
dfidfi+1dfj. (19)

The Fourier transform of Eq. (19) is given by

P̃1,F(k, ρn) =
1
T

∭ ∞

−∞

KF(fi)KF(fi+1)KF(fj)α(fi, fi+1) sinc
[
kw(fi, fi+1, fj)

2

]
dfidfi+1dfj. (20)

Estimated forms of KF are similar to those reported for KT [5,9,10]. However, to obtain an
analytic result, we assume a zero-mean normal distribution like that in Eq. (15):

KF(f ) =
1
√
2πσ

exp
(
−

f 2

2σ2

)
, (21)

Appendix A shows how Eq. (20) can then be solved to give the following expression:

P̃1,F(k, ρn) =
T
√
π

8khσ
Re

{
exp

(
−

T2 ρ̂2+
4σ2

)
erf[γ+(ρn)] + exp

(
−

T2 ρ̂2−
4σ2

)
erf[γ−(ρn)]

}
, (22)

where erf(u) is the error function and

γ±(ρn) ,
4khσ2(1 + ρ̂∓) + iT2 ρ̂±

2σ
√

T2 − 8ikhσ2 + 48k2h2σ4/T2
. (23)

Figure 6 shows the agreement of OTFperf(ρ)Tρn (P̃1, P̃1,F) using Eq. (22) with numerically-
generated results for several values of σ/T . The estimate is accurate near the local minima, but
there is a noticeable discrepancy near the local maxima (where ρ/T is an integer) due to the
appearance of an erroneous cusp, clearly visible in the insets of Figs. 6(a)–6(c). This discrepancy
arises from the model’s assumption about the relative order of the intersections between parabolic
segments in the two replicas of W. This assumption is violated for values of ρn that fall roughly
within σ of each maximum, where the relative order of these intersections can change. [Notice
from Fig. 3(d) that a similar behavior, albeit less important, was observed for thrust vibration.]
Although a more sophisticated model could be formulated to account for these effects, it would
be considerably more complicated, so we propose instead a simple sinusoidal model, based on
the observed shape of the numerically-generated OTFs shown in Figs. 6(a)–6(c), namely

P̃1,F(k, ρn) ≈ C0(σ) + C1(σ) cos
(
2πρn

T

)
, (24)

where C0(σ) and C1(σ) are chosen so that this sinusoidal coincides with Eq. (22) in regions
away from the local maxima. We choose as fitting points the local minima (ρ̂+ = ρ̂− = 1/2),
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where Eq. (22) is accurate, and points slightly away from the local maxima (ρ̂± = 1/8). The
full expressions are given in Appendix A. It turns out, however, that for kh < 3/2 the following
simple approximations to those expressions can be used

C0(σ) ≈
a0(kh)

2
exp

(
−
3k2h2σ2

T2

)
and C1(σ) ≈ a1(kh) exp

(
−
22k2h2σ2

T2

)
, (25)

where a0(kh)/2 and a1(kh), derived in [4], are the coefficients for the Fourier form of P̃1; note
that C0(0) = a0/2 and C1(0) = a1. The full expressions of a0 and a1 are given in Appendix B.
However, for kh < 3/2, it is sufficient to use their following truncated Taylor series:

a0(kh) ≈ 2 −
8
45

k2h2 and a1(kh) ≈
8
π4

k2h2. (26)

Figure 6 shows comparisons of the resulting estimate OTF ≈ OTFperf(ρ)Tρn (P̃1, P̃1,F) with P̃1,F
given by Eq. (24), with numerical simulations. It is evident that this simple model works well
even at the local maxima, where Eq. (22) fails.

Fig. 6. OTFs for various values of σ/T , for kh = 1 and 30 cycles across the aperture. In
each part, the nominal OTF (black) corresponds to the case of σ = 0, the numerical OTF
(blue) is generated by averaging the OTFs of 30 randomly generated MSF surfaces [with KT
given by Eq. (15)], and the theoretical models (red and green) are calculated from Eqs. (22)
and (24), respectively. The insets are zooms of the sections in the dotted black borders, and
show the failure of Eq. (22) (red) within a region of width 2σ.

3.4. Combination of thrust and feed vibrations

The combination of the two effects described so far, without the sinusoidal fitting technique
discussed in Sec. 3.3, is given by the product of Eqs. (16) and (22):

P̃1,C(k, ρn) = exp
[
−

k2µ2

2

(
ρ̂2+ + ρ̂

2
− + 1

)]
P̃1,F(k, ρn). (27)

The effects of thrust vibrations encapsulated in the exponential in Eq. (27) can also be incorporated
in the sinusoidal model described after Eq. (23) in order to arrive at a new simple sinusoidal
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model for the combined effects of thrust and feed vibrations:

P̃1,C(k, ρn) ≈ G0(µ,σ) + G1(µ,σ) cos
(
2πρn

T

)
, (28)

with G0(µ,σ) and G1(µ,σ) given explicitly in Appendix A. For kh < 3/2, the expressions for
G0 and G1 are approximately given by

G0(µ,σ) ≈ C0(σ) exp
(
−
3k2µ2

4

)
and G1(µ,σ) ≈ C1(σ) exp

(
−k2µ2

)
, (29)

with C0(σ) and C1(σ) given by their approximations in Eq. (25). The resulting estimate for the
OTF, given by OTFperf(ρ)Tρn (P̃1, P̃1,C), is compared to numerical simulations in Fig. 7.

Fig. 7. OTFs for various values of µ/h and σ/T , for kh = 1 and 30 cycles across the
aperture. In each, the nominal OTF (black) corresponds to the case of µ = σ = 0, the
numerical OTF (blue) is generated by averaging the OTFs of 75 randomly generated MSF
surfaces [with KT given by Eq. (15)], and the theoretical model (red) is calculated from Eq.
(27).

3.5. Standard deviation estimate

Tolerancing requires not only an estimate for the mean of the OTF but also for its spread. Based
on numerical simulations we propose the following expression for the standard deviation of P̃1,C
in terms of the dimensionless combinations kh (nominal PV in waves), 2R/T (number of cycles),
σ/T (relative feed vibration strength), and µ/h (relative thrust vibration strength):

∆P̃1,C(k, ρn) ≈
(kh)2

2

[
30T
2R

(
2σ2

T2 +
µ2

2h2

)]1/2
P̃1,C(k, ρn). (30)

Figure 8 shows the resulting estimate for the standard deviation for theOTF, namely±∆OTF(k, ρn) ≈
OTFperf(ρ)[Tρn (P̃1, P̃1,C ± ∆P̃1,C) − Tρn (P̃1, P̃1,C)] = ±OTFperf(ρ)Tρn (0,∆P̃1,C), compared with

Fig. 8. Estimated (red) and numerically calculated (blue) standard deviation of the OTF for
the indicated values of µ/h, σ/T and kh, with 30 cycles across the aperture, based on 50
randomly generated MSF surfaces [with KT given by Eq. (15)]. The difference of the OTF
of each realization with the average OTF is shown as a translucent gray curve.
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numerically generated OTF standard deviations assuming normal distributions for KT and KF.
Of course, OTFperf is an upperbound to OTF + ∆OTF, regardless of Eq. (30).

4. Effects of tool-tip vibrations in MSF structures for turned surfaces

We now extend the model to surfaces with concentric grooves such as those approximating
the MSF geometry on diamond-turned surfaces, where the description of the groove shapes
given earlier applies to the radial cross section, so that the relevant one-dimensional parameter
is ρ = |ρ |. As shown in [4], the PDPD for such groove structures can be decomposed in two
contributions: one due to the parts of the overlap region where the grooves from two shifted
copies of the error align roughly, and one where they do not (as shown in Appendix C.). The latter
usually dominates; this gives rise to a strong attenuation of the oscillations in the OTF and makes
the effect of variations along the grooves (which break the rotational symmetry) negligible.

4.1. Effects of thrust and feed vibrations

As shown in [4], the (Fourier-transformed) PDPD of a nominal groove structure with turned
geometry, P̃2, can be calculated from the corresponding quantity for the radial cross-section, P̃1,
by expressing the latter as a Fourier series in ρ and multiplying each term by an appropriate factor.
Since P̃1,C in Eq. (28) is already a truncated Fourier series, this transformation is straightforward,
and (as shown in Appendix B. with a0 → 2G0 and a1 → G1) it leads to

P̃2,C(k, ρ) ≈
{
G0(µ,σ) +

G1(µ,σ)κ
2F(ρ)

[
A(ρ) cos

(
2πρ
T
− φ0

)
+ B(ρ) cos

(
2πρ
T
+ φ0

)] }
×

{
[1 − G0(0, 0) − G1(0, 0)C(2)/2] exp

(
−16ρ2/T2

)
+ 1

}
,

(31)

Fig. 9. OTFs for various values of µ/h and σ/T , for kh = 1 with 20 cycles across the
aperture. In each, the nominal OTF (black) corresponds to the case of µ = σ = 0, the
numerical OTF (blue) is generated by averaging the OTFs of 75 randomly generated MSF
surfaces (with Gaussian statistics), and the theoretical model (red) is calculated from Eq.
(31).
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which combines the effects of thrust and feed vibrations in the same manner that Eq. (27) does.
Here κ ≈ 0.597 and φ0 ≈ π/5 and C is the Fresnel cosine integral. The resulting OTF estimate
is given by OTFperf(ρ)Tρ(P̃2, P̃2,C); this quantity, with K̃T given by Eq. (15), is compared with
numerical simulations in Fig. 9. Note that the parts proportional to G0 and G1 in Eq. (31)
correspond to the average value (baseline) and the oscillations of the OTF, respectively. Since
the OTF oscillations for a turned surface are small for low values of kh, it is possible to further
approximate G1(kh) ≈ 0 in Eq. (31) for an even simpler expression for P̃2,C.

4.2. Standard deviation estimate

Based on numerical simulations we propose an estimate for the standard deviation of P̃2,C:

∆P̃2,C(k, ρ) ≈
(kh)3/2

2
√
3

[ √
30

2R/T

({
8σ2

T2 +
σ

T

}2
+
µ2

h2

)]1/2
P̃2,C(k, ρ). (32)

Figure 10 shows how ±∆OTF(k, ρ) ≈ ±OTFperf(ρ)Tρ(0,∆P̃2,C) compares with numerically
generated OTF standard deviations. Once again, OTFperf is an upperbound to OTF + ∆OTF.

Fig. 10. Estimated (red) and numerically calculated (blue) standard deviation of the OTF
for the indicated values of µ/h, σ/T and kh, with 20 cycles across the aperture, based on 50
randomly generated MSF surfaces (with Gaussian statistics). The difference of the OTF of
each realization with the average OTF is shown as a translucent gray curve.

5. Summary of results

The OTF estimates derived in this work can be summarized by the following simple expression:

OTF(k, ρ) ≈ OTFperf(ρ)B(ρ)
{
Max

(
1 −

x
T
, 0

)
G0(0, 0) +Min

( x
T
, 1

)
G0(µ,σ)

+

[
Max

(
1 −

x
T
, 0

)
G1(0, 0) +Min

( x
T
, 1

)
G1(µ,σ)

]
C(x)

}
,

(33)

where x = ρ · n̂ for a milled surface with grooves aligned perpendicularly to the unit vector n̂ and
x = ρ = |ρ | for a turned surface, OTFperf(ρ) is given in Eq. (2), G0 and G1 are given by

G0(µ,σ) ≈
(
1 −

4
45

k2h2
)

exp
(
−
3k2h2σ2

T2 −
3k2µ2

4

)
, (34)

G1(µ,σ) ≈
8
π4

k2h2 exp
(
−
22k2h2σ2

T2 − k2µ2
)
, (35)
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B(ρ) , 1 and B(ρ) , 0.07k2h2 exp(−16ρ2/T2) + 1 for milled and turned surfaces, respectively,
and the oscillatory function C is defined as

C(x) ,


cos

(
2πx
T

)
milled,

0.3
F(x)

[
A(x) cos

(
2πx
T
− π/5

)
+ B(x) cos

(
2πx
T
+ π/5

)]
turned,

(36)

where A,B and F are given in Appendix C. Recall that k is the wavenumber, h is the nominal PV
of the wavefront error, T is the nominal groove width, and µ and σ are the standard deviations of
the the displacements caused by thrust/cutting and feed vibrations, respectively (see Fig. 1).
The corresponding estimates for the standard deviations of the OTFs are given by

∆OTF(k, x) = OTF(k, x)Min
( x
T
, 1

) 
(kh)2

2

√
30T
2R

(
2σ2

T2 +
µ2

2h2

)
milled,

(kh)3/2

2
√
3

√√√
30T
2R

[(
8σ2

T2 +
σ

T

)2
+
µ2

h2

]
turned.

(37)

It is important to remember that OTFperf is a strict upperbound to OTF + ∆OTF.

6. Concluding remarks

Diamond-machined freeform optical surfaces are inevitably affected by the presence of MSF
structures, which cause degradation in optical quality and performance. In this work, we extend
the analysis of these errors initiated in [4] by incorporating the effects of vibrations in the thrust,
cutting and feed directions, resulting from unwanted relative movement between the diamond
tool-tip and the optical element under fabrication. The study was based on a mathematical
representation referred to as the PDPD, which allows a geometric/visual interpretation of the
effects of these errors.
By working in the PDPD domain, we show how thrust and feed vibrations modify the

nominal PDPD through several probability integrals. Although most of the examples presented
assumed that the vibrations follow a normal distribution, the theory is general for any probability
distribution. Parallel and concentric MSF groove patterns were considered, and expressions
for the corresponding mean OTF and spread were given. It should be noted, though, that
several approximations were assumed when modeling MSF structures with random variations
in both milled and turned geometries. For example, in the consideration of milled surfaces,
Eq. (28) does not account for variations along the grooves’ direction; these effects can be
incorporated by multiplying the result by the Fourier transform of a PDPD describing those
variations. Furthermore, for turned surfaces, Eq. (31) does not account for variations that break
the rotational symmetry of turned MSF structures; the effect of these variations are negligible.

The results serve to further complement previous tolerancing tools regarding MSF structures
found on freeform optical surfaces. Since all realistic diamond-machining processes involve
tool-tip vibrations MSF structures, the expressions presented here provide a means to further
predict the degradation of the OTF beyond the nominally periodic MSF structures.

Appendix A: Milled feed vibration derivation

We begin by defining the characteristic functions K̃F as

KF(fi) =
1
2π

∫ ∞

−∞

K̃F(pi)e−ipifi dpi. (38)
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With this substitution, Eq. (20) becomes a sextuple integral:

P̃1,F(k, ρ) =
1

T(2π)3

∭∭ ∞

−∞

K̃F(pi)K̃F(pj)K̃F(pi+1)e−i(pifi+pj fj+pi+1fi+1)

× α(fi, fi+1) sinc
[
kw(fi, fj, fi+1)

2

]
dfidfjdfi+1dpidpjdpi+1.

(39)

After making a change of variables (with unit Jacobian) from fi, fi+1 to q, r according to
q = ρ + fj − fi, r = ρ − T + fj − fi+1, the integrals in fj and pj can be solved analytically to yield

P̃1,F(k, ρ) =
1

T(2π)3

∬ ∞

−∞

K̃F(pi)K̃F(pi + pi+1)K̃F(pi+1)e−ipiρeic(T−ρ)

×

[∬ ∞

−∞

eipiqeipi+1r(q − r) sinc
(
4kh
T2 qr

)
dqdr

]
dpidpi+1.

(40)

The double integral in the square brackets can also be solved analytically, so that Eq. (40)
becomes

P̃1,F(k, ρ) = −
iT

8πkh

∬ ∞

−∞

K̃F(pi)K̃F(pi + pi+1)K̃F(pi+1)e−ipiρeic(T−ρ)

× cos
(
pipi+1T2

4kh

) (
1
pi
−

1
pi+1

)
dpidpi+1.

(41)

By assuming the Gaussian form for KF in Eq. (15), Eq. (41) can be solved to give Eq. (22).
The exact forms of the coefficients C0 and C1 in Eq. (24) are given by

C0(σ) =
T
√
π

(1 +
√
2)8khσ

(
√
2Re

{
exp

(
−

T2

256σ2

)
erf

[
γ+

(
T
8

)]
+ exp

(
−

49T2

256σ2

)
erf

[
γ−

(
T
8

)]}
+ 2 exp

(
−

T2

16σ2

)
Re [erf(γ0)]

)
,

(42)

C1(σ) =
(2 −
√
2)T
√
π

8khσ

(
Re

{
exp

(
−

T2

256σ2

)
erf

[
γ+

(
T
8

)]
+ exp

(
−

49T2

256σ2

)
erf

[
γ−

(
T
8

)]}
− 2 exp

(
−

T2

16σ2

)
Re [erf(γ0)]

)
,

(43)
for γ0 , γ+(T/2) = γ−(T/2). The corresponding forms for G0 and G1 in Eq. (28) are

G0(µ,σ)=
T
√
π

(1+
√
2)8khσ

(
√
2Re

{
exp

(
−

T2

256σ2

)
erf

[
γ+

(
T
8

)]
+ exp

(
−

49T2

256σ2

)
erf

[
γ−

(
T
8

)]}
+ 2 exp

(
9k2µ2

64

)
exp

(
−

T2

16σ2

)
Re [erf(γ0)]

)
exp

(
−
57k2µ2

64

)
,

(44)

G1(µ,σ) =
(2 −
√
2)T
√
π

8khσ

(
Re

{
exp

(
−

T2

256σ2

)
erf

[
γ+

(
T
8

)]
+ exp

(
−

49T2

256σ2

)
erf

[
γ−

(
T
8

)]}
− 2 exp

(
9k2µ2

64

)
exp

(
−

T2

16σ2

)
Re [erf(γ0)]

)
exp

(
−
57k2µ2

64

)
.

(45)
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Appendix B: Review of PDPD theory for diamond-turned surfaces

This appendix summarizes the results in [4] for finding the Fourier transform of the PDPD for
turned surfaces (P̃2) from that for milled surfaces (P̃1) with the same cross-section, and provides
corrections to two typographic errors in [4]. This relation was found to take the form

P̃2(k, ρ) =
1

F(ρ)

[
A(ρ)
2
Q̂tP̃1(k, ρ) +

B(ρ)
2
Q̂τP̃1(k, ρ) + E(ρ)P̃0(k)

]
, (46)

where A,B,E and F represent specific areas within the overlap of the two shifted circular aperture
copies whose expressions are given in Appendix C., the integral operator Q̂x is defined as

Q̂xf (ρ) =
∫ 1

0

f (ρ − xv)
√

v
dv, (47)

for x given by either t = Min(ρ, T) or τ = −Min(2R − ρ, T), and P̃0(k) ,
∫ T
0 P̃1(k, ρ) dρ/T is the

average value of P̃1 over one period. Please note that the equations in [4] corresponding to Eq.
(46) included an erroneous extra factor of

√
2 in the prefactor of B(ρ), and the expressions in [4]

for the areas A, B and E included some errors that are now corrected in Appendix C.
The action of Q̂x is simplest to calculate if P̃1 is expressed as a Fourier series:

P̃1(k, ρ) =
a0
2
+

∞∑
m=1

am cos
(
2πmρ

T

)
, (48)

The Fourier series following the transformation is given by

Q̂xP̃1(k, ρ) = a0

+

√
T
|x|

∞∑
m=1

am
√

m

[
C

(
2
√

m|x|
T

)
cos

(
2πmρ

T

)
+ sgn(x)S

(
2
√

m|x|
T

)
sin

(
2πmρ

T

)]
,
(49)

where C and S are the Fresnel cosine and sine integrals. For MSF with moderate PV errors, the
first two terms in the series in Eq. (49) are dominant, so we can use the approximation

P̃2(k, ρ) ≈
a0
2
+ a1

[
PC(ρ) cos

(
2πρ
T

)
+ PS(ρ) sin

(
2πρ
T

)]
, (50)

where

PC(ρ) ,
1

2F(ρ)

[
A(ρ)

√
T
t

C

(
2
√

t
T

)
+ B(ρ)

√
T
τ

C
(
2
√
τ

T

)]
, (51)

PS(ρ) ,
1

2F(ρ)

[
A(ρ)

√
T
t

S

(
2
√

t
T

)
− B(ρ)

√
T
τ

S
(
2
√
τ

T

)]
. (52)

Aside from the first and last periods [ρ ∈ (0, T) ∪ (2R − T , 2R)], t/T and τ/T are unity. Since we
consider the first period separately later, and the OTF of the last period is strongly attenuated by
the prefactor OTFperf , we can simply use t/T = τ/T = 1 leading to the approximations

PC(ρ) ≈
A(ρ)C (2) + B(ρ)C (2)

2F(ρ)
and PS(ρ) ≈

A(ρ)S (2) − B(ρ)S (2)
2F(ρ)

. (53)

Using Eqs. (53) and simple trigonometric identities, Eq. (50) can be written as

P̃2(k, ρ) ≈
a0
2
+

a1κ
2F(ρ)

[
A(ρ) cos

(
2πρ
T
− φ0

)
+ B(ρ) cos

(
2πρ
T
+ φ0

)]
, (54)

where κ =
√

C2(2) + S2(2) ≈ 0.597 and φ0 = tan−1[S(2)/C(2)] ≈ π/5. To ensure that the value
of the OTF is unity at ρ = 0, the erroneous assumption that t/T = τ/T = 1 for the first period can
be patched up with a factor of [1 − a0/2 − a1C(2)/2] exp

(
−16ρ2/T2) + 1, as seen in Eq. (31).
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Note that, for µ = 0 and σ = 0, am were found in [4] to be given by

am =
π

8kh

�����erfi
[
(1 + i)(2kh − mπ)

4
√

kh/2

]
+ erfi

[
(1 + i)(2kh + mπ)

4
√

kh/2

] �����2 , (55)

where erfi(u) is the imaginary error function. Equations (26) give the truncated (to second order)
Taylor series of a0(kh) and a1(kh), which are a valid approximation for kh . 3/2.

Appendix C: Definitions of overlap area functions

The area functions A(ρ) and B(ρ) are given for ρ < R by

A(ρ) =
1
8

{
4R2 cos−1

[
ρ
(
V2 + X+

)
2RU2

+

]
− ρV cosh−1

(
X′+
U2
+

)
−
ρV
U2
+

√
X2
+′
− U4

+

}
(56)

B(ρ) = πρV/16, (57)

while for ρ ≥ R they are
A(ρ) = 0 (58)

B(ρ) =
1
8

{
2πR2 − 4R2 sin−1

(
2Rρ

V2 + X−

)
− ρV sin−1

(
X′−
U2
−

)
+
ρV
U2
−

√
U4
− − X2

−′

}
, (59)

where

V =
√

T(T + 2ρ), U± =
√

V2 ± ρ2, X± =
√

V4 ± 4R2U2
±, X′± = X± − ρ2. (60)

For all ρ ∈ [0, 2R], we have

F(ρ) =
1
2

[
R2arccos

( ρ
2R

)
−
ρ

2

√
R2 −

( ρ
2

)2]
=
πR2

4
OTFperf(ρ). (61)

Figure 11 shows a graphical representation of A(ρ),B(ρ), and E(ρ) = F(ρ) − A(ρ) − B(ρ) as the
areas of the blue, red, and green regions, respectively.

Fig. 11. The overlap area between two shifted copies of a circular pupil is divided into A,B,
and E (blue, red, and green). (a) and (b) show the cases of ρ ≤ R and ρ > R, respectively.
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